1 /* 2 * linux/kernel/time/tick-broadcast.c 3 * 4 * This file contains functions which emulate a local clock-event 5 * device via a broadcast event source. 6 * 7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner 10 * 11 * This code is licenced under the GPL version 2. For details see 12 * kernel-base/COPYING. 13 */ 14 #include <linux/cpu.h> 15 #include <linux/err.h> 16 #include <linux/hrtimer.h> 17 #include <linux/interrupt.h> 18 #include <linux/percpu.h> 19 #include <linux/profile.h> 20 #include <linux/sched.h> 21 #include <linux/smp.h> 22 #include <linux/module.h> 23 24 #include "tick-internal.h" 25 26 /* 27 * Broadcast support for broken x86 hardware, where the local apic 28 * timer stops in C3 state. 29 */ 30 31 static struct tick_device tick_broadcast_device; 32 static cpumask_var_t tick_broadcast_mask __cpumask_var_read_mostly; 33 static cpumask_var_t tick_broadcast_on __cpumask_var_read_mostly; 34 static cpumask_var_t tmpmask __cpumask_var_read_mostly; 35 static int tick_broadcast_forced; 36 37 static __cacheline_aligned_in_smp DEFINE_RAW_SPINLOCK(tick_broadcast_lock); 38 39 #ifdef CONFIG_TICK_ONESHOT 40 static void tick_broadcast_setup_oneshot(struct clock_event_device *bc); 41 static void tick_broadcast_clear_oneshot(int cpu); 42 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc); 43 #else 44 static inline void tick_broadcast_setup_oneshot(struct clock_event_device *bc) { BUG(); } 45 static inline void tick_broadcast_clear_oneshot(int cpu) { } 46 static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { } 47 #endif 48 49 /* 50 * Debugging: see timer_list.c 51 */ 52 struct tick_device *tick_get_broadcast_device(void) 53 { 54 return &tick_broadcast_device; 55 } 56 57 struct cpumask *tick_get_broadcast_mask(void) 58 { 59 return tick_broadcast_mask; 60 } 61 62 /* 63 * Start the device in periodic mode 64 */ 65 static void tick_broadcast_start_periodic(struct clock_event_device *bc) 66 { 67 if (bc) 68 tick_setup_periodic(bc, 1); 69 } 70 71 /* 72 * Check, if the device can be utilized as broadcast device: 73 */ 74 static bool tick_check_broadcast_device(struct clock_event_device *curdev, 75 struct clock_event_device *newdev) 76 { 77 if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) || 78 (newdev->features & CLOCK_EVT_FEAT_PERCPU) || 79 (newdev->features & CLOCK_EVT_FEAT_C3STOP)) 80 return false; 81 82 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT && 83 !(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) 84 return false; 85 86 return !curdev || newdev->rating > curdev->rating; 87 } 88 89 /* 90 * Conditionally install/replace broadcast device 91 */ 92 void tick_install_broadcast_device(struct clock_event_device *dev) 93 { 94 struct clock_event_device *cur = tick_broadcast_device.evtdev; 95 96 if (!tick_check_broadcast_device(cur, dev)) 97 return; 98 99 if (!try_module_get(dev->owner)) 100 return; 101 102 clockevents_exchange_device(cur, dev); 103 if (cur) 104 cur->event_handler = clockevents_handle_noop; 105 tick_broadcast_device.evtdev = dev; 106 if (!cpumask_empty(tick_broadcast_mask)) 107 tick_broadcast_start_periodic(dev); 108 /* 109 * Inform all cpus about this. We might be in a situation 110 * where we did not switch to oneshot mode because the per cpu 111 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack 112 * of a oneshot capable broadcast device. Without that 113 * notification the systems stays stuck in periodic mode 114 * forever. 115 */ 116 if (dev->features & CLOCK_EVT_FEAT_ONESHOT) 117 tick_clock_notify(); 118 } 119 120 /* 121 * Check, if the device is the broadcast device 122 */ 123 int tick_is_broadcast_device(struct clock_event_device *dev) 124 { 125 return (dev && tick_broadcast_device.evtdev == dev); 126 } 127 128 int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq) 129 { 130 int ret = -ENODEV; 131 132 if (tick_is_broadcast_device(dev)) { 133 raw_spin_lock(&tick_broadcast_lock); 134 ret = __clockevents_update_freq(dev, freq); 135 raw_spin_unlock(&tick_broadcast_lock); 136 } 137 return ret; 138 } 139 140 141 static void err_broadcast(const struct cpumask *mask) 142 { 143 pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n"); 144 } 145 146 static void tick_device_setup_broadcast_func(struct clock_event_device *dev) 147 { 148 if (!dev->broadcast) 149 dev->broadcast = tick_broadcast; 150 if (!dev->broadcast) { 151 pr_warn_once("%s depends on broadcast, but no broadcast function available\n", 152 dev->name); 153 dev->broadcast = err_broadcast; 154 } 155 } 156 157 /* 158 * Check, if the device is disfunctional and a place holder, which 159 * needs to be handled by the broadcast device. 160 */ 161 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu) 162 { 163 struct clock_event_device *bc = tick_broadcast_device.evtdev; 164 unsigned long flags; 165 int ret = 0; 166 167 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 168 169 /* 170 * Devices might be registered with both periodic and oneshot 171 * mode disabled. This signals, that the device needs to be 172 * operated from the broadcast device and is a placeholder for 173 * the cpu local device. 174 */ 175 if (!tick_device_is_functional(dev)) { 176 dev->event_handler = tick_handle_periodic; 177 tick_device_setup_broadcast_func(dev); 178 cpumask_set_cpu(cpu, tick_broadcast_mask); 179 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) 180 tick_broadcast_start_periodic(bc); 181 else 182 tick_broadcast_setup_oneshot(bc); 183 ret = 1; 184 } else { 185 /* 186 * Clear the broadcast bit for this cpu if the 187 * device is not power state affected. 188 */ 189 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) 190 cpumask_clear_cpu(cpu, tick_broadcast_mask); 191 else 192 tick_device_setup_broadcast_func(dev); 193 194 /* 195 * Clear the broadcast bit if the CPU is not in 196 * periodic broadcast on state. 197 */ 198 if (!cpumask_test_cpu(cpu, tick_broadcast_on)) 199 cpumask_clear_cpu(cpu, tick_broadcast_mask); 200 201 switch (tick_broadcast_device.mode) { 202 case TICKDEV_MODE_ONESHOT: 203 /* 204 * If the system is in oneshot mode we can 205 * unconditionally clear the oneshot mask bit, 206 * because the CPU is running and therefore 207 * not in an idle state which causes the power 208 * state affected device to stop. Let the 209 * caller initialize the device. 210 */ 211 tick_broadcast_clear_oneshot(cpu); 212 ret = 0; 213 break; 214 215 case TICKDEV_MODE_PERIODIC: 216 /* 217 * If the system is in periodic mode, check 218 * whether the broadcast device can be 219 * switched off now. 220 */ 221 if (cpumask_empty(tick_broadcast_mask) && bc) 222 clockevents_shutdown(bc); 223 /* 224 * If we kept the cpu in the broadcast mask, 225 * tell the caller to leave the per cpu device 226 * in shutdown state. The periodic interrupt 227 * is delivered by the broadcast device, if 228 * the broadcast device exists and is not 229 * hrtimer based. 230 */ 231 if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER)) 232 ret = cpumask_test_cpu(cpu, tick_broadcast_mask); 233 break; 234 default: 235 break; 236 } 237 } 238 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 239 return ret; 240 } 241 242 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 243 int tick_receive_broadcast(void) 244 { 245 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 246 struct clock_event_device *evt = td->evtdev; 247 248 if (!evt) 249 return -ENODEV; 250 251 if (!evt->event_handler) 252 return -EINVAL; 253 254 evt->event_handler(evt); 255 return 0; 256 } 257 #endif 258 259 /* 260 * Broadcast the event to the cpus, which are set in the mask (mangled). 261 */ 262 static bool tick_do_broadcast(struct cpumask *mask) 263 { 264 int cpu = smp_processor_id(); 265 struct tick_device *td; 266 bool local = false; 267 268 /* 269 * Check, if the current cpu is in the mask 270 */ 271 if (cpumask_test_cpu(cpu, mask)) { 272 struct clock_event_device *bc = tick_broadcast_device.evtdev; 273 274 cpumask_clear_cpu(cpu, mask); 275 /* 276 * We only run the local handler, if the broadcast 277 * device is not hrtimer based. Otherwise we run into 278 * a hrtimer recursion. 279 * 280 * local timer_interrupt() 281 * local_handler() 282 * expire_hrtimers() 283 * bc_handler() 284 * local_handler() 285 * expire_hrtimers() 286 */ 287 local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER); 288 } 289 290 if (!cpumask_empty(mask)) { 291 /* 292 * It might be necessary to actually check whether the devices 293 * have different broadcast functions. For now, just use the 294 * one of the first device. This works as long as we have this 295 * misfeature only on x86 (lapic) 296 */ 297 td = &per_cpu(tick_cpu_device, cpumask_first(mask)); 298 td->evtdev->broadcast(mask); 299 } 300 return local; 301 } 302 303 /* 304 * Periodic broadcast: 305 * - invoke the broadcast handlers 306 */ 307 static bool tick_do_periodic_broadcast(void) 308 { 309 cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask); 310 return tick_do_broadcast(tmpmask); 311 } 312 313 /* 314 * Event handler for periodic broadcast ticks 315 */ 316 static void tick_handle_periodic_broadcast(struct clock_event_device *dev) 317 { 318 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 319 bool bc_local; 320 321 raw_spin_lock(&tick_broadcast_lock); 322 323 /* Handle spurious interrupts gracefully */ 324 if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) { 325 raw_spin_unlock(&tick_broadcast_lock); 326 return; 327 } 328 329 bc_local = tick_do_periodic_broadcast(); 330 331 if (clockevent_state_oneshot(dev)) { 332 ktime_t next = ktime_add(dev->next_event, tick_period); 333 334 clockevents_program_event(dev, next, true); 335 } 336 raw_spin_unlock(&tick_broadcast_lock); 337 338 /* 339 * We run the handler of the local cpu after dropping 340 * tick_broadcast_lock because the handler might deadlock when 341 * trying to switch to oneshot mode. 342 */ 343 if (bc_local) 344 td->evtdev->event_handler(td->evtdev); 345 } 346 347 /** 348 * tick_broadcast_control - Enable/disable or force broadcast mode 349 * @mode: The selected broadcast mode 350 * 351 * Called when the system enters a state where affected tick devices 352 * might stop. Note: TICK_BROADCAST_FORCE cannot be undone. 353 */ 354 void tick_broadcast_control(enum tick_broadcast_mode mode) 355 { 356 struct clock_event_device *bc, *dev; 357 struct tick_device *td; 358 int cpu, bc_stopped; 359 unsigned long flags; 360 361 /* Protects also the local clockevent device. */ 362 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 363 td = this_cpu_ptr(&tick_cpu_device); 364 dev = td->evtdev; 365 366 /* 367 * Is the device not affected by the powerstate ? 368 */ 369 if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP)) 370 goto out; 371 372 if (!tick_device_is_functional(dev)) 373 goto out; 374 375 cpu = smp_processor_id(); 376 bc = tick_broadcast_device.evtdev; 377 bc_stopped = cpumask_empty(tick_broadcast_mask); 378 379 switch (mode) { 380 case TICK_BROADCAST_FORCE: 381 tick_broadcast_forced = 1; 382 case TICK_BROADCAST_ON: 383 cpumask_set_cpu(cpu, tick_broadcast_on); 384 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) { 385 /* 386 * Only shutdown the cpu local device, if: 387 * 388 * - the broadcast device exists 389 * - the broadcast device is not a hrtimer based one 390 * - the broadcast device is in periodic mode to 391 * avoid a hickup during switch to oneshot mode 392 */ 393 if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) && 394 tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) 395 clockevents_shutdown(dev); 396 } 397 break; 398 399 case TICK_BROADCAST_OFF: 400 if (tick_broadcast_forced) 401 break; 402 cpumask_clear_cpu(cpu, tick_broadcast_on); 403 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) { 404 if (tick_broadcast_device.mode == 405 TICKDEV_MODE_PERIODIC) 406 tick_setup_periodic(dev, 0); 407 } 408 break; 409 } 410 411 if (bc) { 412 if (cpumask_empty(tick_broadcast_mask)) { 413 if (!bc_stopped) 414 clockevents_shutdown(bc); 415 } else if (bc_stopped) { 416 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) 417 tick_broadcast_start_periodic(bc); 418 else 419 tick_broadcast_setup_oneshot(bc); 420 } 421 } 422 out: 423 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 424 } 425 EXPORT_SYMBOL_GPL(tick_broadcast_control); 426 427 /* 428 * Set the periodic handler depending on broadcast on/off 429 */ 430 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast) 431 { 432 if (!broadcast) 433 dev->event_handler = tick_handle_periodic; 434 else 435 dev->event_handler = tick_handle_periodic_broadcast; 436 } 437 438 #ifdef CONFIG_HOTPLUG_CPU 439 /* 440 * Remove a CPU from broadcasting 441 */ 442 void tick_shutdown_broadcast(unsigned int cpu) 443 { 444 struct clock_event_device *bc; 445 unsigned long flags; 446 447 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 448 449 bc = tick_broadcast_device.evtdev; 450 cpumask_clear_cpu(cpu, tick_broadcast_mask); 451 cpumask_clear_cpu(cpu, tick_broadcast_on); 452 453 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) { 454 if (bc && cpumask_empty(tick_broadcast_mask)) 455 clockevents_shutdown(bc); 456 } 457 458 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 459 } 460 #endif 461 462 void tick_suspend_broadcast(void) 463 { 464 struct clock_event_device *bc; 465 unsigned long flags; 466 467 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 468 469 bc = tick_broadcast_device.evtdev; 470 if (bc) 471 clockevents_shutdown(bc); 472 473 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 474 } 475 476 /* 477 * This is called from tick_resume_local() on a resuming CPU. That's 478 * called from the core resume function, tick_unfreeze() and the magic XEN 479 * resume hackery. 480 * 481 * In none of these cases the broadcast device mode can change and the 482 * bit of the resuming CPU in the broadcast mask is safe as well. 483 */ 484 bool tick_resume_check_broadcast(void) 485 { 486 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT) 487 return false; 488 else 489 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask); 490 } 491 492 void tick_resume_broadcast(void) 493 { 494 struct clock_event_device *bc; 495 unsigned long flags; 496 497 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 498 499 bc = tick_broadcast_device.evtdev; 500 501 if (bc) { 502 clockevents_tick_resume(bc); 503 504 switch (tick_broadcast_device.mode) { 505 case TICKDEV_MODE_PERIODIC: 506 if (!cpumask_empty(tick_broadcast_mask)) 507 tick_broadcast_start_periodic(bc); 508 break; 509 case TICKDEV_MODE_ONESHOT: 510 if (!cpumask_empty(tick_broadcast_mask)) 511 tick_resume_broadcast_oneshot(bc); 512 break; 513 } 514 } 515 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 516 } 517 518 #ifdef CONFIG_TICK_ONESHOT 519 520 static cpumask_var_t tick_broadcast_oneshot_mask __cpumask_var_read_mostly; 521 static cpumask_var_t tick_broadcast_pending_mask __cpumask_var_read_mostly; 522 static cpumask_var_t tick_broadcast_force_mask __cpumask_var_read_mostly; 523 524 /* 525 * Exposed for debugging: see timer_list.c 526 */ 527 struct cpumask *tick_get_broadcast_oneshot_mask(void) 528 { 529 return tick_broadcast_oneshot_mask; 530 } 531 532 /* 533 * Called before going idle with interrupts disabled. Checks whether a 534 * broadcast event from the other core is about to happen. We detected 535 * that in tick_broadcast_oneshot_control(). The callsite can use this 536 * to avoid a deep idle transition as we are about to get the 537 * broadcast IPI right away. 538 */ 539 int tick_check_broadcast_expired(void) 540 { 541 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask); 542 } 543 544 /* 545 * Set broadcast interrupt affinity 546 */ 547 static void tick_broadcast_set_affinity(struct clock_event_device *bc, 548 const struct cpumask *cpumask) 549 { 550 if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ)) 551 return; 552 553 if (cpumask_equal(bc->cpumask, cpumask)) 554 return; 555 556 bc->cpumask = cpumask; 557 irq_set_affinity(bc->irq, bc->cpumask); 558 } 559 560 static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu, 561 ktime_t expires) 562 { 563 if (!clockevent_state_oneshot(bc)) 564 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT); 565 566 clockevents_program_event(bc, expires, 1); 567 tick_broadcast_set_affinity(bc, cpumask_of(cpu)); 568 } 569 570 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc) 571 { 572 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT); 573 } 574 575 /* 576 * Called from irq_enter() when idle was interrupted to reenable the 577 * per cpu device. 578 */ 579 void tick_check_oneshot_broadcast_this_cpu(void) 580 { 581 if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) { 582 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 583 584 /* 585 * We might be in the middle of switching over from 586 * periodic to oneshot. If the CPU has not yet 587 * switched over, leave the device alone. 588 */ 589 if (td->mode == TICKDEV_MODE_ONESHOT) { 590 clockevents_switch_state(td->evtdev, 591 CLOCK_EVT_STATE_ONESHOT); 592 } 593 } 594 } 595 596 /* 597 * Handle oneshot mode broadcasting 598 */ 599 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev) 600 { 601 struct tick_device *td; 602 ktime_t now, next_event; 603 int cpu, next_cpu = 0; 604 bool bc_local; 605 606 raw_spin_lock(&tick_broadcast_lock); 607 dev->next_event = KTIME_MAX; 608 next_event = KTIME_MAX; 609 cpumask_clear(tmpmask); 610 now = ktime_get(); 611 /* Find all expired events */ 612 for_each_cpu(cpu, tick_broadcast_oneshot_mask) { 613 /* 614 * Required for !SMP because for_each_cpu() reports 615 * unconditionally CPU0 as set on UP kernels. 616 */ 617 if (!IS_ENABLED(CONFIG_SMP) && 618 cpumask_empty(tick_broadcast_oneshot_mask)) 619 break; 620 621 td = &per_cpu(tick_cpu_device, cpu); 622 if (td->evtdev->next_event <= now) { 623 cpumask_set_cpu(cpu, tmpmask); 624 /* 625 * Mark the remote cpu in the pending mask, so 626 * it can avoid reprogramming the cpu local 627 * timer in tick_broadcast_oneshot_control(). 628 */ 629 cpumask_set_cpu(cpu, tick_broadcast_pending_mask); 630 } else if (td->evtdev->next_event < next_event) { 631 next_event = td->evtdev->next_event; 632 next_cpu = cpu; 633 } 634 } 635 636 /* 637 * Remove the current cpu from the pending mask. The event is 638 * delivered immediately in tick_do_broadcast() ! 639 */ 640 cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask); 641 642 /* Take care of enforced broadcast requests */ 643 cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask); 644 cpumask_clear(tick_broadcast_force_mask); 645 646 /* 647 * Sanity check. Catch the case where we try to broadcast to 648 * offline cpus. 649 */ 650 if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask))) 651 cpumask_and(tmpmask, tmpmask, cpu_online_mask); 652 653 /* 654 * Wakeup the cpus which have an expired event. 655 */ 656 bc_local = tick_do_broadcast(tmpmask); 657 658 /* 659 * Two reasons for reprogram: 660 * 661 * - The global event did not expire any CPU local 662 * events. This happens in dyntick mode, as the maximum PIT 663 * delta is quite small. 664 * 665 * - There are pending events on sleeping CPUs which were not 666 * in the event mask 667 */ 668 if (next_event != KTIME_MAX) 669 tick_broadcast_set_event(dev, next_cpu, next_event); 670 671 raw_spin_unlock(&tick_broadcast_lock); 672 673 if (bc_local) { 674 td = this_cpu_ptr(&tick_cpu_device); 675 td->evtdev->event_handler(td->evtdev); 676 } 677 } 678 679 static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu) 680 { 681 if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER)) 682 return 0; 683 if (bc->next_event == KTIME_MAX) 684 return 0; 685 return bc->bound_on == cpu ? -EBUSY : 0; 686 } 687 688 static void broadcast_shutdown_local(struct clock_event_device *bc, 689 struct clock_event_device *dev) 690 { 691 /* 692 * For hrtimer based broadcasting we cannot shutdown the cpu 693 * local device if our own event is the first one to expire or 694 * if we own the broadcast timer. 695 */ 696 if (bc->features & CLOCK_EVT_FEAT_HRTIMER) { 697 if (broadcast_needs_cpu(bc, smp_processor_id())) 698 return; 699 if (dev->next_event < bc->next_event) 700 return; 701 } 702 clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN); 703 } 704 705 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state) 706 { 707 struct clock_event_device *bc, *dev; 708 int cpu, ret = 0; 709 ktime_t now; 710 711 /* 712 * If there is no broadcast device, tell the caller not to go 713 * into deep idle. 714 */ 715 if (!tick_broadcast_device.evtdev) 716 return -EBUSY; 717 718 dev = this_cpu_ptr(&tick_cpu_device)->evtdev; 719 720 raw_spin_lock(&tick_broadcast_lock); 721 bc = tick_broadcast_device.evtdev; 722 cpu = smp_processor_id(); 723 724 if (state == TICK_BROADCAST_ENTER) { 725 /* 726 * If the current CPU owns the hrtimer broadcast 727 * mechanism, it cannot go deep idle and we do not add 728 * the CPU to the broadcast mask. We don't have to go 729 * through the EXIT path as the local timer is not 730 * shutdown. 731 */ 732 ret = broadcast_needs_cpu(bc, cpu); 733 if (ret) 734 goto out; 735 736 /* 737 * If the broadcast device is in periodic mode, we 738 * return. 739 */ 740 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) { 741 /* If it is a hrtimer based broadcast, return busy */ 742 if (bc->features & CLOCK_EVT_FEAT_HRTIMER) 743 ret = -EBUSY; 744 goto out; 745 } 746 747 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) { 748 WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask)); 749 750 /* Conditionally shut down the local timer. */ 751 broadcast_shutdown_local(bc, dev); 752 753 /* 754 * We only reprogram the broadcast timer if we 755 * did not mark ourself in the force mask and 756 * if the cpu local event is earlier than the 757 * broadcast event. If the current CPU is in 758 * the force mask, then we are going to be 759 * woken by the IPI right away; we return 760 * busy, so the CPU does not try to go deep 761 * idle. 762 */ 763 if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) { 764 ret = -EBUSY; 765 } else if (dev->next_event < bc->next_event) { 766 tick_broadcast_set_event(bc, cpu, dev->next_event); 767 /* 768 * In case of hrtimer broadcasts the 769 * programming might have moved the 770 * timer to this cpu. If yes, remove 771 * us from the broadcast mask and 772 * return busy. 773 */ 774 ret = broadcast_needs_cpu(bc, cpu); 775 if (ret) { 776 cpumask_clear_cpu(cpu, 777 tick_broadcast_oneshot_mask); 778 } 779 } 780 } 781 } else { 782 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) { 783 clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT); 784 /* 785 * The cpu which was handling the broadcast 786 * timer marked this cpu in the broadcast 787 * pending mask and fired the broadcast 788 * IPI. So we are going to handle the expired 789 * event anyway via the broadcast IPI 790 * handler. No need to reprogram the timer 791 * with an already expired event. 792 */ 793 if (cpumask_test_and_clear_cpu(cpu, 794 tick_broadcast_pending_mask)) 795 goto out; 796 797 /* 798 * Bail out if there is no next event. 799 */ 800 if (dev->next_event == KTIME_MAX) 801 goto out; 802 /* 803 * If the pending bit is not set, then we are 804 * either the CPU handling the broadcast 805 * interrupt or we got woken by something else. 806 * 807 * We are not longer in the broadcast mask, so 808 * if the cpu local expiry time is already 809 * reached, we would reprogram the cpu local 810 * timer with an already expired event. 811 * 812 * This can lead to a ping-pong when we return 813 * to idle and therefor rearm the broadcast 814 * timer before the cpu local timer was able 815 * to fire. This happens because the forced 816 * reprogramming makes sure that the event 817 * will happen in the future and depending on 818 * the min_delta setting this might be far 819 * enough out that the ping-pong starts. 820 * 821 * If the cpu local next_event has expired 822 * then we know that the broadcast timer 823 * next_event has expired as well and 824 * broadcast is about to be handled. So we 825 * avoid reprogramming and enforce that the 826 * broadcast handler, which did not run yet, 827 * will invoke the cpu local handler. 828 * 829 * We cannot call the handler directly from 830 * here, because we might be in a NOHZ phase 831 * and we did not go through the irq_enter() 832 * nohz fixups. 833 */ 834 now = ktime_get(); 835 if (dev->next_event <= now) { 836 cpumask_set_cpu(cpu, tick_broadcast_force_mask); 837 goto out; 838 } 839 /* 840 * We got woken by something else. Reprogram 841 * the cpu local timer device. 842 */ 843 tick_program_event(dev->next_event, 1); 844 } 845 } 846 out: 847 raw_spin_unlock(&tick_broadcast_lock); 848 return ret; 849 } 850 851 /* 852 * Reset the one shot broadcast for a cpu 853 * 854 * Called with tick_broadcast_lock held 855 */ 856 static void tick_broadcast_clear_oneshot(int cpu) 857 { 858 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask); 859 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask); 860 } 861 862 static void tick_broadcast_init_next_event(struct cpumask *mask, 863 ktime_t expires) 864 { 865 struct tick_device *td; 866 int cpu; 867 868 for_each_cpu(cpu, mask) { 869 td = &per_cpu(tick_cpu_device, cpu); 870 if (td->evtdev) 871 td->evtdev->next_event = expires; 872 } 873 } 874 875 /** 876 * tick_broadcast_setup_oneshot - setup the broadcast device 877 */ 878 static void tick_broadcast_setup_oneshot(struct clock_event_device *bc) 879 { 880 int cpu = smp_processor_id(); 881 882 if (!bc) 883 return; 884 885 /* Set it up only once ! */ 886 if (bc->event_handler != tick_handle_oneshot_broadcast) { 887 int was_periodic = clockevent_state_periodic(bc); 888 889 bc->event_handler = tick_handle_oneshot_broadcast; 890 891 /* 892 * We must be careful here. There might be other CPUs 893 * waiting for periodic broadcast. We need to set the 894 * oneshot_mask bits for those and program the 895 * broadcast device to fire. 896 */ 897 cpumask_copy(tmpmask, tick_broadcast_mask); 898 cpumask_clear_cpu(cpu, tmpmask); 899 cpumask_or(tick_broadcast_oneshot_mask, 900 tick_broadcast_oneshot_mask, tmpmask); 901 902 if (was_periodic && !cpumask_empty(tmpmask)) { 903 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT); 904 tick_broadcast_init_next_event(tmpmask, 905 tick_next_period); 906 tick_broadcast_set_event(bc, cpu, tick_next_period); 907 } else 908 bc->next_event = KTIME_MAX; 909 } else { 910 /* 911 * The first cpu which switches to oneshot mode sets 912 * the bit for all other cpus which are in the general 913 * (periodic) broadcast mask. So the bit is set and 914 * would prevent the first broadcast enter after this 915 * to program the bc device. 916 */ 917 tick_broadcast_clear_oneshot(cpu); 918 } 919 } 920 921 /* 922 * Select oneshot operating mode for the broadcast device 923 */ 924 void tick_broadcast_switch_to_oneshot(void) 925 { 926 struct clock_event_device *bc; 927 unsigned long flags; 928 929 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 930 931 tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT; 932 bc = tick_broadcast_device.evtdev; 933 if (bc) 934 tick_broadcast_setup_oneshot(bc); 935 936 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 937 } 938 939 #ifdef CONFIG_HOTPLUG_CPU 940 void hotplug_cpu__broadcast_tick_pull(int deadcpu) 941 { 942 struct clock_event_device *bc; 943 unsigned long flags; 944 945 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 946 bc = tick_broadcast_device.evtdev; 947 948 if (bc && broadcast_needs_cpu(bc, deadcpu)) { 949 /* This moves the broadcast assignment to this CPU: */ 950 clockevents_program_event(bc, bc->next_event, 1); 951 } 952 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 953 } 954 955 /* 956 * Remove a dead CPU from broadcasting 957 */ 958 void tick_shutdown_broadcast_oneshot(unsigned int cpu) 959 { 960 unsigned long flags; 961 962 raw_spin_lock_irqsave(&tick_broadcast_lock, flags); 963 964 /* 965 * Clear the broadcast masks for the dead cpu, but do not stop 966 * the broadcast device! 967 */ 968 cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask); 969 cpumask_clear_cpu(cpu, tick_broadcast_pending_mask); 970 cpumask_clear_cpu(cpu, tick_broadcast_force_mask); 971 972 raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags); 973 } 974 #endif 975 976 /* 977 * Check, whether the broadcast device is in one shot mode 978 */ 979 int tick_broadcast_oneshot_active(void) 980 { 981 return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT; 982 } 983 984 /* 985 * Check whether the broadcast device supports oneshot. 986 */ 987 bool tick_broadcast_oneshot_available(void) 988 { 989 struct clock_event_device *bc = tick_broadcast_device.evtdev; 990 991 return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false; 992 } 993 994 #else 995 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state) 996 { 997 struct clock_event_device *bc = tick_broadcast_device.evtdev; 998 999 if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER)) 1000 return -EBUSY; 1001 1002 return 0; 1003 } 1004 #endif 1005 1006 void __init tick_broadcast_init(void) 1007 { 1008 zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT); 1009 zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT); 1010 zalloc_cpumask_var(&tmpmask, GFP_NOWAIT); 1011 #ifdef CONFIG_TICK_ONESHOT 1012 zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT); 1013 zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT); 1014 zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT); 1015 #endif 1016 } 1017