xref: /openbmc/linux/kernel/time/tick-broadcast.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /*
2  * linux/kernel/time/tick-broadcast.c
3  *
4  * This file contains functions which emulate a local clock-event
5  * device via a broadcast event source.
6  *
7  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10  *
11  * This code is licenced under the GPL version 2. For details see
12  * kernel-base/COPYING.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/smp.h>
22 #include <linux/module.h>
23 
24 #include "tick-internal.h"
25 
26 /*
27  * Broadcast support for broken x86 hardware, where the local apic
28  * timer stops in C3 state.
29  */
30 
31 static struct tick_device tick_broadcast_device;
32 static cpumask_var_t tick_broadcast_mask __cpumask_var_read_mostly;
33 static cpumask_var_t tick_broadcast_on __cpumask_var_read_mostly;
34 static cpumask_var_t tmpmask __cpumask_var_read_mostly;
35 static int tick_broadcast_forced;
36 
37 static __cacheline_aligned_in_smp DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
38 
39 #ifdef CONFIG_TICK_ONESHOT
40 static void tick_broadcast_setup_oneshot(struct clock_event_device *bc);
41 static void tick_broadcast_clear_oneshot(int cpu);
42 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
43 #else
44 static inline void tick_broadcast_setup_oneshot(struct clock_event_device *bc) { BUG(); }
45 static inline void tick_broadcast_clear_oneshot(int cpu) { }
46 static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
47 #endif
48 
49 /*
50  * Debugging: see timer_list.c
51  */
52 struct tick_device *tick_get_broadcast_device(void)
53 {
54 	return &tick_broadcast_device;
55 }
56 
57 struct cpumask *tick_get_broadcast_mask(void)
58 {
59 	return tick_broadcast_mask;
60 }
61 
62 /*
63  * Start the device in periodic mode
64  */
65 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
66 {
67 	if (bc)
68 		tick_setup_periodic(bc, 1);
69 }
70 
71 /*
72  * Check, if the device can be utilized as broadcast device:
73  */
74 static bool tick_check_broadcast_device(struct clock_event_device *curdev,
75 					struct clock_event_device *newdev)
76 {
77 	if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
78 	    (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
79 	    (newdev->features & CLOCK_EVT_FEAT_C3STOP))
80 		return false;
81 
82 	if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
83 	    !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
84 		return false;
85 
86 	return !curdev || newdev->rating > curdev->rating;
87 }
88 
89 /*
90  * Conditionally install/replace broadcast device
91  */
92 void tick_install_broadcast_device(struct clock_event_device *dev)
93 {
94 	struct clock_event_device *cur = tick_broadcast_device.evtdev;
95 
96 	if (!tick_check_broadcast_device(cur, dev))
97 		return;
98 
99 	if (!try_module_get(dev->owner))
100 		return;
101 
102 	clockevents_exchange_device(cur, dev);
103 	if (cur)
104 		cur->event_handler = clockevents_handle_noop;
105 	tick_broadcast_device.evtdev = dev;
106 	if (!cpumask_empty(tick_broadcast_mask))
107 		tick_broadcast_start_periodic(dev);
108 	/*
109 	 * Inform all cpus about this. We might be in a situation
110 	 * where we did not switch to oneshot mode because the per cpu
111 	 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
112 	 * of a oneshot capable broadcast device. Without that
113 	 * notification the systems stays stuck in periodic mode
114 	 * forever.
115 	 */
116 	if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
117 		tick_clock_notify();
118 }
119 
120 /*
121  * Check, if the device is the broadcast device
122  */
123 int tick_is_broadcast_device(struct clock_event_device *dev)
124 {
125 	return (dev && tick_broadcast_device.evtdev == dev);
126 }
127 
128 int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
129 {
130 	int ret = -ENODEV;
131 
132 	if (tick_is_broadcast_device(dev)) {
133 		raw_spin_lock(&tick_broadcast_lock);
134 		ret = __clockevents_update_freq(dev, freq);
135 		raw_spin_unlock(&tick_broadcast_lock);
136 	}
137 	return ret;
138 }
139 
140 
141 static void err_broadcast(const struct cpumask *mask)
142 {
143 	pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
144 }
145 
146 static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
147 {
148 	if (!dev->broadcast)
149 		dev->broadcast = tick_broadcast;
150 	if (!dev->broadcast) {
151 		pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
152 			     dev->name);
153 		dev->broadcast = err_broadcast;
154 	}
155 }
156 
157 /*
158  * Check, if the device is disfunctional and a place holder, which
159  * needs to be handled by the broadcast device.
160  */
161 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
162 {
163 	struct clock_event_device *bc = tick_broadcast_device.evtdev;
164 	unsigned long flags;
165 	int ret = 0;
166 
167 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
168 
169 	/*
170 	 * Devices might be registered with both periodic and oneshot
171 	 * mode disabled. This signals, that the device needs to be
172 	 * operated from the broadcast device and is a placeholder for
173 	 * the cpu local device.
174 	 */
175 	if (!tick_device_is_functional(dev)) {
176 		dev->event_handler = tick_handle_periodic;
177 		tick_device_setup_broadcast_func(dev);
178 		cpumask_set_cpu(cpu, tick_broadcast_mask);
179 		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
180 			tick_broadcast_start_periodic(bc);
181 		else
182 			tick_broadcast_setup_oneshot(bc);
183 		ret = 1;
184 	} else {
185 		/*
186 		 * Clear the broadcast bit for this cpu if the
187 		 * device is not power state affected.
188 		 */
189 		if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
190 			cpumask_clear_cpu(cpu, tick_broadcast_mask);
191 		else
192 			tick_device_setup_broadcast_func(dev);
193 
194 		/*
195 		 * Clear the broadcast bit if the CPU is not in
196 		 * periodic broadcast on state.
197 		 */
198 		if (!cpumask_test_cpu(cpu, tick_broadcast_on))
199 			cpumask_clear_cpu(cpu, tick_broadcast_mask);
200 
201 		switch (tick_broadcast_device.mode) {
202 		case TICKDEV_MODE_ONESHOT:
203 			/*
204 			 * If the system is in oneshot mode we can
205 			 * unconditionally clear the oneshot mask bit,
206 			 * because the CPU is running and therefore
207 			 * not in an idle state which causes the power
208 			 * state affected device to stop. Let the
209 			 * caller initialize the device.
210 			 */
211 			tick_broadcast_clear_oneshot(cpu);
212 			ret = 0;
213 			break;
214 
215 		case TICKDEV_MODE_PERIODIC:
216 			/*
217 			 * If the system is in periodic mode, check
218 			 * whether the broadcast device can be
219 			 * switched off now.
220 			 */
221 			if (cpumask_empty(tick_broadcast_mask) && bc)
222 				clockevents_shutdown(bc);
223 			/*
224 			 * If we kept the cpu in the broadcast mask,
225 			 * tell the caller to leave the per cpu device
226 			 * in shutdown state. The periodic interrupt
227 			 * is delivered by the broadcast device, if
228 			 * the broadcast device exists and is not
229 			 * hrtimer based.
230 			 */
231 			if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER))
232 				ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
233 			break;
234 		default:
235 			break;
236 		}
237 	}
238 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
239 	return ret;
240 }
241 
242 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
243 int tick_receive_broadcast(void)
244 {
245 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
246 	struct clock_event_device *evt = td->evtdev;
247 
248 	if (!evt)
249 		return -ENODEV;
250 
251 	if (!evt->event_handler)
252 		return -EINVAL;
253 
254 	evt->event_handler(evt);
255 	return 0;
256 }
257 #endif
258 
259 /*
260  * Broadcast the event to the cpus, which are set in the mask (mangled).
261  */
262 static bool tick_do_broadcast(struct cpumask *mask)
263 {
264 	int cpu = smp_processor_id();
265 	struct tick_device *td;
266 	bool local = false;
267 
268 	/*
269 	 * Check, if the current cpu is in the mask
270 	 */
271 	if (cpumask_test_cpu(cpu, mask)) {
272 		struct clock_event_device *bc = tick_broadcast_device.evtdev;
273 
274 		cpumask_clear_cpu(cpu, mask);
275 		/*
276 		 * We only run the local handler, if the broadcast
277 		 * device is not hrtimer based. Otherwise we run into
278 		 * a hrtimer recursion.
279 		 *
280 		 * local timer_interrupt()
281 		 *   local_handler()
282 		 *     expire_hrtimers()
283 		 *       bc_handler()
284 		 *         local_handler()
285 		 *	     expire_hrtimers()
286 		 */
287 		local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER);
288 	}
289 
290 	if (!cpumask_empty(mask)) {
291 		/*
292 		 * It might be necessary to actually check whether the devices
293 		 * have different broadcast functions. For now, just use the
294 		 * one of the first device. This works as long as we have this
295 		 * misfeature only on x86 (lapic)
296 		 */
297 		td = &per_cpu(tick_cpu_device, cpumask_first(mask));
298 		td->evtdev->broadcast(mask);
299 	}
300 	return local;
301 }
302 
303 /*
304  * Periodic broadcast:
305  * - invoke the broadcast handlers
306  */
307 static bool tick_do_periodic_broadcast(void)
308 {
309 	cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
310 	return tick_do_broadcast(tmpmask);
311 }
312 
313 /*
314  * Event handler for periodic broadcast ticks
315  */
316 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
317 {
318 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
319 	bool bc_local;
320 
321 	raw_spin_lock(&tick_broadcast_lock);
322 
323 	/* Handle spurious interrupts gracefully */
324 	if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) {
325 		raw_spin_unlock(&tick_broadcast_lock);
326 		return;
327 	}
328 
329 	bc_local = tick_do_periodic_broadcast();
330 
331 	if (clockevent_state_oneshot(dev)) {
332 		ktime_t next = ktime_add(dev->next_event, tick_period);
333 
334 		clockevents_program_event(dev, next, true);
335 	}
336 	raw_spin_unlock(&tick_broadcast_lock);
337 
338 	/*
339 	 * We run the handler of the local cpu after dropping
340 	 * tick_broadcast_lock because the handler might deadlock when
341 	 * trying to switch to oneshot mode.
342 	 */
343 	if (bc_local)
344 		td->evtdev->event_handler(td->evtdev);
345 }
346 
347 /**
348  * tick_broadcast_control - Enable/disable or force broadcast mode
349  * @mode:	The selected broadcast mode
350  *
351  * Called when the system enters a state where affected tick devices
352  * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
353  */
354 void tick_broadcast_control(enum tick_broadcast_mode mode)
355 {
356 	struct clock_event_device *bc, *dev;
357 	struct tick_device *td;
358 	int cpu, bc_stopped;
359 	unsigned long flags;
360 
361 	/* Protects also the local clockevent device. */
362 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
363 	td = this_cpu_ptr(&tick_cpu_device);
364 	dev = td->evtdev;
365 
366 	/*
367 	 * Is the device not affected by the powerstate ?
368 	 */
369 	if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
370 		goto out;
371 
372 	if (!tick_device_is_functional(dev))
373 		goto out;
374 
375 	cpu = smp_processor_id();
376 	bc = tick_broadcast_device.evtdev;
377 	bc_stopped = cpumask_empty(tick_broadcast_mask);
378 
379 	switch (mode) {
380 	case TICK_BROADCAST_FORCE:
381 		tick_broadcast_forced = 1;
382 	case TICK_BROADCAST_ON:
383 		cpumask_set_cpu(cpu, tick_broadcast_on);
384 		if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
385 			/*
386 			 * Only shutdown the cpu local device, if:
387 			 *
388 			 * - the broadcast device exists
389 			 * - the broadcast device is not a hrtimer based one
390 			 * - the broadcast device is in periodic mode to
391 			 *   avoid a hickup during switch to oneshot mode
392 			 */
393 			if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) &&
394 			    tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
395 				clockevents_shutdown(dev);
396 		}
397 		break;
398 
399 	case TICK_BROADCAST_OFF:
400 		if (tick_broadcast_forced)
401 			break;
402 		cpumask_clear_cpu(cpu, tick_broadcast_on);
403 		if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
404 			if (tick_broadcast_device.mode ==
405 			    TICKDEV_MODE_PERIODIC)
406 				tick_setup_periodic(dev, 0);
407 		}
408 		break;
409 	}
410 
411 	if (bc) {
412 		if (cpumask_empty(tick_broadcast_mask)) {
413 			if (!bc_stopped)
414 				clockevents_shutdown(bc);
415 		} else if (bc_stopped) {
416 			if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
417 				tick_broadcast_start_periodic(bc);
418 			else
419 				tick_broadcast_setup_oneshot(bc);
420 		}
421 	}
422 out:
423 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
424 }
425 EXPORT_SYMBOL_GPL(tick_broadcast_control);
426 
427 /*
428  * Set the periodic handler depending on broadcast on/off
429  */
430 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
431 {
432 	if (!broadcast)
433 		dev->event_handler = tick_handle_periodic;
434 	else
435 		dev->event_handler = tick_handle_periodic_broadcast;
436 }
437 
438 #ifdef CONFIG_HOTPLUG_CPU
439 /*
440  * Remove a CPU from broadcasting
441  */
442 void tick_shutdown_broadcast(unsigned int cpu)
443 {
444 	struct clock_event_device *bc;
445 	unsigned long flags;
446 
447 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
448 
449 	bc = tick_broadcast_device.evtdev;
450 	cpumask_clear_cpu(cpu, tick_broadcast_mask);
451 	cpumask_clear_cpu(cpu, tick_broadcast_on);
452 
453 	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
454 		if (bc && cpumask_empty(tick_broadcast_mask))
455 			clockevents_shutdown(bc);
456 	}
457 
458 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
459 }
460 #endif
461 
462 void tick_suspend_broadcast(void)
463 {
464 	struct clock_event_device *bc;
465 	unsigned long flags;
466 
467 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
468 
469 	bc = tick_broadcast_device.evtdev;
470 	if (bc)
471 		clockevents_shutdown(bc);
472 
473 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
474 }
475 
476 /*
477  * This is called from tick_resume_local() on a resuming CPU. That's
478  * called from the core resume function, tick_unfreeze() and the magic XEN
479  * resume hackery.
480  *
481  * In none of these cases the broadcast device mode can change and the
482  * bit of the resuming CPU in the broadcast mask is safe as well.
483  */
484 bool tick_resume_check_broadcast(void)
485 {
486 	if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
487 		return false;
488 	else
489 		return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
490 }
491 
492 void tick_resume_broadcast(void)
493 {
494 	struct clock_event_device *bc;
495 	unsigned long flags;
496 
497 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
498 
499 	bc = tick_broadcast_device.evtdev;
500 
501 	if (bc) {
502 		clockevents_tick_resume(bc);
503 
504 		switch (tick_broadcast_device.mode) {
505 		case TICKDEV_MODE_PERIODIC:
506 			if (!cpumask_empty(tick_broadcast_mask))
507 				tick_broadcast_start_periodic(bc);
508 			break;
509 		case TICKDEV_MODE_ONESHOT:
510 			if (!cpumask_empty(tick_broadcast_mask))
511 				tick_resume_broadcast_oneshot(bc);
512 			break;
513 		}
514 	}
515 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
516 }
517 
518 #ifdef CONFIG_TICK_ONESHOT
519 
520 static cpumask_var_t tick_broadcast_oneshot_mask __cpumask_var_read_mostly;
521 static cpumask_var_t tick_broadcast_pending_mask __cpumask_var_read_mostly;
522 static cpumask_var_t tick_broadcast_force_mask __cpumask_var_read_mostly;
523 
524 /*
525  * Exposed for debugging: see timer_list.c
526  */
527 struct cpumask *tick_get_broadcast_oneshot_mask(void)
528 {
529 	return tick_broadcast_oneshot_mask;
530 }
531 
532 /*
533  * Called before going idle with interrupts disabled. Checks whether a
534  * broadcast event from the other core is about to happen. We detected
535  * that in tick_broadcast_oneshot_control(). The callsite can use this
536  * to avoid a deep idle transition as we are about to get the
537  * broadcast IPI right away.
538  */
539 int tick_check_broadcast_expired(void)
540 {
541 	return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
542 }
543 
544 /*
545  * Set broadcast interrupt affinity
546  */
547 static void tick_broadcast_set_affinity(struct clock_event_device *bc,
548 					const struct cpumask *cpumask)
549 {
550 	if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
551 		return;
552 
553 	if (cpumask_equal(bc->cpumask, cpumask))
554 		return;
555 
556 	bc->cpumask = cpumask;
557 	irq_set_affinity(bc->irq, bc->cpumask);
558 }
559 
560 static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
561 				     ktime_t expires)
562 {
563 	if (!clockevent_state_oneshot(bc))
564 		clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
565 
566 	clockevents_program_event(bc, expires, 1);
567 	tick_broadcast_set_affinity(bc, cpumask_of(cpu));
568 }
569 
570 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
571 {
572 	clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
573 }
574 
575 /*
576  * Called from irq_enter() when idle was interrupted to reenable the
577  * per cpu device.
578  */
579 void tick_check_oneshot_broadcast_this_cpu(void)
580 {
581 	if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
582 		struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
583 
584 		/*
585 		 * We might be in the middle of switching over from
586 		 * periodic to oneshot. If the CPU has not yet
587 		 * switched over, leave the device alone.
588 		 */
589 		if (td->mode == TICKDEV_MODE_ONESHOT) {
590 			clockevents_switch_state(td->evtdev,
591 					      CLOCK_EVT_STATE_ONESHOT);
592 		}
593 	}
594 }
595 
596 /*
597  * Handle oneshot mode broadcasting
598  */
599 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
600 {
601 	struct tick_device *td;
602 	ktime_t now, next_event;
603 	int cpu, next_cpu = 0;
604 	bool bc_local;
605 
606 	raw_spin_lock(&tick_broadcast_lock);
607 	dev->next_event = KTIME_MAX;
608 	next_event = KTIME_MAX;
609 	cpumask_clear(tmpmask);
610 	now = ktime_get();
611 	/* Find all expired events */
612 	for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
613 		/*
614 		 * Required for !SMP because for_each_cpu() reports
615 		 * unconditionally CPU0 as set on UP kernels.
616 		 */
617 		if (!IS_ENABLED(CONFIG_SMP) &&
618 		    cpumask_empty(tick_broadcast_oneshot_mask))
619 			break;
620 
621 		td = &per_cpu(tick_cpu_device, cpu);
622 		if (td->evtdev->next_event <= now) {
623 			cpumask_set_cpu(cpu, tmpmask);
624 			/*
625 			 * Mark the remote cpu in the pending mask, so
626 			 * it can avoid reprogramming the cpu local
627 			 * timer in tick_broadcast_oneshot_control().
628 			 */
629 			cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
630 		} else if (td->evtdev->next_event < next_event) {
631 			next_event = td->evtdev->next_event;
632 			next_cpu = cpu;
633 		}
634 	}
635 
636 	/*
637 	 * Remove the current cpu from the pending mask. The event is
638 	 * delivered immediately in tick_do_broadcast() !
639 	 */
640 	cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
641 
642 	/* Take care of enforced broadcast requests */
643 	cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
644 	cpumask_clear(tick_broadcast_force_mask);
645 
646 	/*
647 	 * Sanity check. Catch the case where we try to broadcast to
648 	 * offline cpus.
649 	 */
650 	if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
651 		cpumask_and(tmpmask, tmpmask, cpu_online_mask);
652 
653 	/*
654 	 * Wakeup the cpus which have an expired event.
655 	 */
656 	bc_local = tick_do_broadcast(tmpmask);
657 
658 	/*
659 	 * Two reasons for reprogram:
660 	 *
661 	 * - The global event did not expire any CPU local
662 	 * events. This happens in dyntick mode, as the maximum PIT
663 	 * delta is quite small.
664 	 *
665 	 * - There are pending events on sleeping CPUs which were not
666 	 * in the event mask
667 	 */
668 	if (next_event != KTIME_MAX)
669 		tick_broadcast_set_event(dev, next_cpu, next_event);
670 
671 	raw_spin_unlock(&tick_broadcast_lock);
672 
673 	if (bc_local) {
674 		td = this_cpu_ptr(&tick_cpu_device);
675 		td->evtdev->event_handler(td->evtdev);
676 	}
677 }
678 
679 static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
680 {
681 	if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
682 		return 0;
683 	if (bc->next_event == KTIME_MAX)
684 		return 0;
685 	return bc->bound_on == cpu ? -EBUSY : 0;
686 }
687 
688 static void broadcast_shutdown_local(struct clock_event_device *bc,
689 				     struct clock_event_device *dev)
690 {
691 	/*
692 	 * For hrtimer based broadcasting we cannot shutdown the cpu
693 	 * local device if our own event is the first one to expire or
694 	 * if we own the broadcast timer.
695 	 */
696 	if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
697 		if (broadcast_needs_cpu(bc, smp_processor_id()))
698 			return;
699 		if (dev->next_event < bc->next_event)
700 			return;
701 	}
702 	clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
703 }
704 
705 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
706 {
707 	struct clock_event_device *bc, *dev;
708 	int cpu, ret = 0;
709 	ktime_t now;
710 
711 	/*
712 	 * If there is no broadcast device, tell the caller not to go
713 	 * into deep idle.
714 	 */
715 	if (!tick_broadcast_device.evtdev)
716 		return -EBUSY;
717 
718 	dev = this_cpu_ptr(&tick_cpu_device)->evtdev;
719 
720 	raw_spin_lock(&tick_broadcast_lock);
721 	bc = tick_broadcast_device.evtdev;
722 	cpu = smp_processor_id();
723 
724 	if (state == TICK_BROADCAST_ENTER) {
725 		/*
726 		 * If the current CPU owns the hrtimer broadcast
727 		 * mechanism, it cannot go deep idle and we do not add
728 		 * the CPU to the broadcast mask. We don't have to go
729 		 * through the EXIT path as the local timer is not
730 		 * shutdown.
731 		 */
732 		ret = broadcast_needs_cpu(bc, cpu);
733 		if (ret)
734 			goto out;
735 
736 		/*
737 		 * If the broadcast device is in periodic mode, we
738 		 * return.
739 		 */
740 		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
741 			/* If it is a hrtimer based broadcast, return busy */
742 			if (bc->features & CLOCK_EVT_FEAT_HRTIMER)
743 				ret = -EBUSY;
744 			goto out;
745 		}
746 
747 		if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
748 			WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
749 
750 			/* Conditionally shut down the local timer. */
751 			broadcast_shutdown_local(bc, dev);
752 
753 			/*
754 			 * We only reprogram the broadcast timer if we
755 			 * did not mark ourself in the force mask and
756 			 * if the cpu local event is earlier than the
757 			 * broadcast event. If the current CPU is in
758 			 * the force mask, then we are going to be
759 			 * woken by the IPI right away; we return
760 			 * busy, so the CPU does not try to go deep
761 			 * idle.
762 			 */
763 			if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) {
764 				ret = -EBUSY;
765 			} else if (dev->next_event < bc->next_event) {
766 				tick_broadcast_set_event(bc, cpu, dev->next_event);
767 				/*
768 				 * In case of hrtimer broadcasts the
769 				 * programming might have moved the
770 				 * timer to this cpu. If yes, remove
771 				 * us from the broadcast mask and
772 				 * return busy.
773 				 */
774 				ret = broadcast_needs_cpu(bc, cpu);
775 				if (ret) {
776 					cpumask_clear_cpu(cpu,
777 						tick_broadcast_oneshot_mask);
778 				}
779 			}
780 		}
781 	} else {
782 		if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
783 			clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
784 			/*
785 			 * The cpu which was handling the broadcast
786 			 * timer marked this cpu in the broadcast
787 			 * pending mask and fired the broadcast
788 			 * IPI. So we are going to handle the expired
789 			 * event anyway via the broadcast IPI
790 			 * handler. No need to reprogram the timer
791 			 * with an already expired event.
792 			 */
793 			if (cpumask_test_and_clear_cpu(cpu,
794 				       tick_broadcast_pending_mask))
795 				goto out;
796 
797 			/*
798 			 * Bail out if there is no next event.
799 			 */
800 			if (dev->next_event == KTIME_MAX)
801 				goto out;
802 			/*
803 			 * If the pending bit is not set, then we are
804 			 * either the CPU handling the broadcast
805 			 * interrupt or we got woken by something else.
806 			 *
807 			 * We are not longer in the broadcast mask, so
808 			 * if the cpu local expiry time is already
809 			 * reached, we would reprogram the cpu local
810 			 * timer with an already expired event.
811 			 *
812 			 * This can lead to a ping-pong when we return
813 			 * to idle and therefor rearm the broadcast
814 			 * timer before the cpu local timer was able
815 			 * to fire. This happens because the forced
816 			 * reprogramming makes sure that the event
817 			 * will happen in the future and depending on
818 			 * the min_delta setting this might be far
819 			 * enough out that the ping-pong starts.
820 			 *
821 			 * If the cpu local next_event has expired
822 			 * then we know that the broadcast timer
823 			 * next_event has expired as well and
824 			 * broadcast is about to be handled. So we
825 			 * avoid reprogramming and enforce that the
826 			 * broadcast handler, which did not run yet,
827 			 * will invoke the cpu local handler.
828 			 *
829 			 * We cannot call the handler directly from
830 			 * here, because we might be in a NOHZ phase
831 			 * and we did not go through the irq_enter()
832 			 * nohz fixups.
833 			 */
834 			now = ktime_get();
835 			if (dev->next_event <= now) {
836 				cpumask_set_cpu(cpu, tick_broadcast_force_mask);
837 				goto out;
838 			}
839 			/*
840 			 * We got woken by something else. Reprogram
841 			 * the cpu local timer device.
842 			 */
843 			tick_program_event(dev->next_event, 1);
844 		}
845 	}
846 out:
847 	raw_spin_unlock(&tick_broadcast_lock);
848 	return ret;
849 }
850 
851 /*
852  * Reset the one shot broadcast for a cpu
853  *
854  * Called with tick_broadcast_lock held
855  */
856 static void tick_broadcast_clear_oneshot(int cpu)
857 {
858 	cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
859 	cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
860 }
861 
862 static void tick_broadcast_init_next_event(struct cpumask *mask,
863 					   ktime_t expires)
864 {
865 	struct tick_device *td;
866 	int cpu;
867 
868 	for_each_cpu(cpu, mask) {
869 		td = &per_cpu(tick_cpu_device, cpu);
870 		if (td->evtdev)
871 			td->evtdev->next_event = expires;
872 	}
873 }
874 
875 /**
876  * tick_broadcast_setup_oneshot - setup the broadcast device
877  */
878 static void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
879 {
880 	int cpu = smp_processor_id();
881 
882 	if (!bc)
883 		return;
884 
885 	/* Set it up only once ! */
886 	if (bc->event_handler != tick_handle_oneshot_broadcast) {
887 		int was_periodic = clockevent_state_periodic(bc);
888 
889 		bc->event_handler = tick_handle_oneshot_broadcast;
890 
891 		/*
892 		 * We must be careful here. There might be other CPUs
893 		 * waiting for periodic broadcast. We need to set the
894 		 * oneshot_mask bits for those and program the
895 		 * broadcast device to fire.
896 		 */
897 		cpumask_copy(tmpmask, tick_broadcast_mask);
898 		cpumask_clear_cpu(cpu, tmpmask);
899 		cpumask_or(tick_broadcast_oneshot_mask,
900 			   tick_broadcast_oneshot_mask, tmpmask);
901 
902 		if (was_periodic && !cpumask_empty(tmpmask)) {
903 			clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
904 			tick_broadcast_init_next_event(tmpmask,
905 						       tick_next_period);
906 			tick_broadcast_set_event(bc, cpu, tick_next_period);
907 		} else
908 			bc->next_event = KTIME_MAX;
909 	} else {
910 		/*
911 		 * The first cpu which switches to oneshot mode sets
912 		 * the bit for all other cpus which are in the general
913 		 * (periodic) broadcast mask. So the bit is set and
914 		 * would prevent the first broadcast enter after this
915 		 * to program the bc device.
916 		 */
917 		tick_broadcast_clear_oneshot(cpu);
918 	}
919 }
920 
921 /*
922  * Select oneshot operating mode for the broadcast device
923  */
924 void tick_broadcast_switch_to_oneshot(void)
925 {
926 	struct clock_event_device *bc;
927 	unsigned long flags;
928 
929 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
930 
931 	tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
932 	bc = tick_broadcast_device.evtdev;
933 	if (bc)
934 		tick_broadcast_setup_oneshot(bc);
935 
936 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
937 }
938 
939 #ifdef CONFIG_HOTPLUG_CPU
940 void hotplug_cpu__broadcast_tick_pull(int deadcpu)
941 {
942 	struct clock_event_device *bc;
943 	unsigned long flags;
944 
945 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
946 	bc = tick_broadcast_device.evtdev;
947 
948 	if (bc && broadcast_needs_cpu(bc, deadcpu)) {
949 		/* This moves the broadcast assignment to this CPU: */
950 		clockevents_program_event(bc, bc->next_event, 1);
951 	}
952 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
953 }
954 
955 /*
956  * Remove a dead CPU from broadcasting
957  */
958 void tick_shutdown_broadcast_oneshot(unsigned int cpu)
959 {
960 	unsigned long flags;
961 
962 	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
963 
964 	/*
965 	 * Clear the broadcast masks for the dead cpu, but do not stop
966 	 * the broadcast device!
967 	 */
968 	cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
969 	cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
970 	cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
971 
972 	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
973 }
974 #endif
975 
976 /*
977  * Check, whether the broadcast device is in one shot mode
978  */
979 int tick_broadcast_oneshot_active(void)
980 {
981 	return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
982 }
983 
984 /*
985  * Check whether the broadcast device supports oneshot.
986  */
987 bool tick_broadcast_oneshot_available(void)
988 {
989 	struct clock_event_device *bc = tick_broadcast_device.evtdev;
990 
991 	return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
992 }
993 
994 #else
995 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
996 {
997 	struct clock_event_device *bc = tick_broadcast_device.evtdev;
998 
999 	if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER))
1000 		return -EBUSY;
1001 
1002 	return 0;
1003 }
1004 #endif
1005 
1006 void __init tick_broadcast_init(void)
1007 {
1008 	zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
1009 	zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
1010 	zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
1011 #ifdef CONFIG_TICK_ONESHOT
1012 	zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
1013 	zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
1014 	zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
1015 #endif
1016 }
1017