1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/kernel/time/tick-broadcast-hrtimer.c 4 * This file emulates a local clock event device 5 * via a pseudo clock device. 6 */ 7 #include <linux/cpu.h> 8 #include <linux/err.h> 9 #include <linux/hrtimer.h> 10 #include <linux/interrupt.h> 11 #include <linux/percpu.h> 12 #include <linux/profile.h> 13 #include <linux/clockchips.h> 14 #include <linux/sched.h> 15 #include <linux/smp.h> 16 #include <linux/module.h> 17 18 #include "tick-internal.h" 19 20 static struct hrtimer bctimer; 21 22 static int bc_shutdown(struct clock_event_device *evt) 23 { 24 /* 25 * Note, we cannot cancel the timer here as we might 26 * run into the following live lock scenario: 27 * 28 * cpu 0 cpu1 29 * lock(broadcast_lock); 30 * hrtimer_interrupt() 31 * bc_handler() 32 * tick_handle_oneshot_broadcast(); 33 * lock(broadcast_lock); 34 * hrtimer_cancel() 35 * wait_for_callback() 36 */ 37 hrtimer_try_to_cancel(&bctimer); 38 return 0; 39 } 40 41 /* 42 * This is called from the guts of the broadcast code when the cpu 43 * which is about to enter idle has the earliest broadcast timer event. 44 */ 45 static int bc_set_next(ktime_t expires, struct clock_event_device *bc) 46 { 47 int bc_moved; 48 /* 49 * We try to cancel the timer first. If the callback is on 50 * flight on some other cpu then we let it handle it. If we 51 * were able to cancel the timer nothing can rearm it as we 52 * own broadcast_lock. 53 * 54 * However we can also be called from the event handler of 55 * ce_broadcast_hrtimer itself when it expires. We cannot 56 * restart the timer because we are in the callback, but we 57 * can set the expiry time and let the callback return 58 * HRTIMER_RESTART. 59 * 60 * Since we are in the idle loop at this point and because 61 * hrtimer_{start/cancel} functions call into tracing, 62 * calls to these functions must be bound within RCU_NONIDLE. 63 */ 64 RCU_NONIDLE({ 65 bc_moved = hrtimer_try_to_cancel(&bctimer) >= 0; 66 if (bc_moved) 67 hrtimer_start(&bctimer, expires, 68 HRTIMER_MODE_ABS_PINNED);}); 69 if (bc_moved) { 70 /* Bind the "device" to the cpu */ 71 bc->bound_on = smp_processor_id(); 72 } else if (bc->bound_on == smp_processor_id()) { 73 hrtimer_set_expires(&bctimer, expires); 74 } 75 return 0; 76 } 77 78 static struct clock_event_device ce_broadcast_hrtimer = { 79 .name = "bc_hrtimer", 80 .set_state_shutdown = bc_shutdown, 81 .set_next_ktime = bc_set_next, 82 .features = CLOCK_EVT_FEAT_ONESHOT | 83 CLOCK_EVT_FEAT_KTIME | 84 CLOCK_EVT_FEAT_HRTIMER, 85 .rating = 0, 86 .bound_on = -1, 87 .min_delta_ns = 1, 88 .max_delta_ns = KTIME_MAX, 89 .min_delta_ticks = 1, 90 .max_delta_ticks = ULONG_MAX, 91 .mult = 1, 92 .shift = 0, 93 .cpumask = cpu_all_mask, 94 }; 95 96 static enum hrtimer_restart bc_handler(struct hrtimer *t) 97 { 98 ce_broadcast_hrtimer.event_handler(&ce_broadcast_hrtimer); 99 100 if (clockevent_state_oneshot(&ce_broadcast_hrtimer)) 101 if (ce_broadcast_hrtimer.next_event != KTIME_MAX) 102 return HRTIMER_RESTART; 103 104 return HRTIMER_NORESTART; 105 } 106 107 void tick_setup_hrtimer_broadcast(void) 108 { 109 hrtimer_init(&bctimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 110 bctimer.function = bc_handler; 111 clockevents_register_device(&ce_broadcast_hrtimer); 112 } 113