xref: /openbmc/linux/kernel/time/sched_clock.c (revision b34e08d5)
1 /*
2  * sched_clock.c: support for extending counters to full 64-bit ns counter
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 #include <linux/clocksource.h>
9 #include <linux/init.h>
10 #include <linux/jiffies.h>
11 #include <linux/ktime.h>
12 #include <linux/kernel.h>
13 #include <linux/moduleparam.h>
14 #include <linux/sched.h>
15 #include <linux/syscore_ops.h>
16 #include <linux/hrtimer.h>
17 #include <linux/sched_clock.h>
18 #include <linux/seqlock.h>
19 #include <linux/bitops.h>
20 
21 struct clock_data {
22 	ktime_t wrap_kt;
23 	u64 epoch_ns;
24 	u64 epoch_cyc;
25 	seqcount_t seq;
26 	unsigned long rate;
27 	u32 mult;
28 	u32 shift;
29 	bool suspended;
30 };
31 
32 static struct hrtimer sched_clock_timer;
33 static int irqtime = -1;
34 
35 core_param(irqtime, irqtime, int, 0400);
36 
37 static struct clock_data cd = {
38 	.mult	= NSEC_PER_SEC / HZ,
39 };
40 
41 static u64 __read_mostly sched_clock_mask;
42 
43 static u64 notrace jiffy_sched_clock_read(void)
44 {
45 	/*
46 	 * We don't need to use get_jiffies_64 on 32-bit arches here
47 	 * because we register with BITS_PER_LONG
48 	 */
49 	return (u64)(jiffies - INITIAL_JIFFIES);
50 }
51 
52 static u32 __read_mostly (*read_sched_clock_32)(void);
53 
54 static u64 notrace read_sched_clock_32_wrapper(void)
55 {
56 	return read_sched_clock_32();
57 }
58 
59 static u64 __read_mostly (*read_sched_clock)(void) = jiffy_sched_clock_read;
60 
61 static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
62 {
63 	return (cyc * mult) >> shift;
64 }
65 
66 unsigned long long notrace sched_clock(void)
67 {
68 	u64 epoch_ns;
69 	u64 epoch_cyc;
70 	u64 cyc;
71 	unsigned long seq;
72 
73 	if (cd.suspended)
74 		return cd.epoch_ns;
75 
76 	do {
77 		seq = raw_read_seqcount_begin(&cd.seq);
78 		epoch_cyc = cd.epoch_cyc;
79 		epoch_ns = cd.epoch_ns;
80 	} while (read_seqcount_retry(&cd.seq, seq));
81 
82 	cyc = read_sched_clock();
83 	cyc = (cyc - epoch_cyc) & sched_clock_mask;
84 	return epoch_ns + cyc_to_ns(cyc, cd.mult, cd.shift);
85 }
86 
87 /*
88  * Atomically update the sched_clock epoch.
89  */
90 static void notrace update_sched_clock(void)
91 {
92 	unsigned long flags;
93 	u64 cyc;
94 	u64 ns;
95 
96 	cyc = read_sched_clock();
97 	ns = cd.epoch_ns +
98 		cyc_to_ns((cyc - cd.epoch_cyc) & sched_clock_mask,
99 			  cd.mult, cd.shift);
100 
101 	raw_local_irq_save(flags);
102 	raw_write_seqcount_begin(&cd.seq);
103 	cd.epoch_ns = ns;
104 	cd.epoch_cyc = cyc;
105 	raw_write_seqcount_end(&cd.seq);
106 	raw_local_irq_restore(flags);
107 }
108 
109 static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt)
110 {
111 	update_sched_clock();
112 	hrtimer_forward_now(hrt, cd.wrap_kt);
113 	return HRTIMER_RESTART;
114 }
115 
116 void __init sched_clock_register(u64 (*read)(void), int bits,
117 				 unsigned long rate)
118 {
119 	u64 res, wrap, new_mask, new_epoch, cyc, ns;
120 	u32 new_mult, new_shift;
121 	ktime_t new_wrap_kt;
122 	unsigned long r;
123 	char r_unit;
124 
125 	if (cd.rate > rate)
126 		return;
127 
128 	WARN_ON(!irqs_disabled());
129 
130 	/* calculate the mult/shift to convert counter ticks to ns. */
131 	clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 3600);
132 
133 	new_mask = CLOCKSOURCE_MASK(bits);
134 
135 	/* calculate how many ns until we wrap */
136 	wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask);
137 	new_wrap_kt = ns_to_ktime(wrap - (wrap >> 3));
138 
139 	/* update epoch for new counter and update epoch_ns from old counter*/
140 	new_epoch = read();
141 	cyc = read_sched_clock();
142 	ns = cd.epoch_ns + cyc_to_ns((cyc - cd.epoch_cyc) & sched_clock_mask,
143 			  cd.mult, cd.shift);
144 
145 	raw_write_seqcount_begin(&cd.seq);
146 	read_sched_clock = read;
147 	sched_clock_mask = new_mask;
148 	cd.rate = rate;
149 	cd.wrap_kt = new_wrap_kt;
150 	cd.mult = new_mult;
151 	cd.shift = new_shift;
152 	cd.epoch_cyc = new_epoch;
153 	cd.epoch_ns = ns;
154 	raw_write_seqcount_end(&cd.seq);
155 
156 	r = rate;
157 	if (r >= 4000000) {
158 		r /= 1000000;
159 		r_unit = 'M';
160 	} else if (r >= 1000) {
161 		r /= 1000;
162 		r_unit = 'k';
163 	} else
164 		r_unit = ' ';
165 
166 	/* calculate the ns resolution of this counter */
167 	res = cyc_to_ns(1ULL, new_mult, new_shift);
168 
169 	pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n",
170 		bits, r, r_unit, res, wrap);
171 
172 	/* Enable IRQ time accounting if we have a fast enough sched_clock */
173 	if (irqtime > 0 || (irqtime == -1 && rate >= 1000000))
174 		enable_sched_clock_irqtime();
175 
176 	pr_debug("Registered %pF as sched_clock source\n", read);
177 }
178 
179 void __init setup_sched_clock(u32 (*read)(void), int bits, unsigned long rate)
180 {
181 	read_sched_clock_32 = read;
182 	sched_clock_register(read_sched_clock_32_wrapper, bits, rate);
183 }
184 
185 void __init sched_clock_postinit(void)
186 {
187 	/*
188 	 * If no sched_clock function has been provided at that point,
189 	 * make it the final one one.
190 	 */
191 	if (read_sched_clock == jiffy_sched_clock_read)
192 		sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ);
193 
194 	update_sched_clock();
195 
196 	/*
197 	 * Start the timer to keep sched_clock() properly updated and
198 	 * sets the initial epoch.
199 	 */
200 	hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
201 	sched_clock_timer.function = sched_clock_poll;
202 	hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
203 }
204 
205 static int sched_clock_suspend(void)
206 {
207 	sched_clock_poll(&sched_clock_timer);
208 	cd.suspended = true;
209 	return 0;
210 }
211 
212 static void sched_clock_resume(void)
213 {
214 	cd.epoch_cyc = read_sched_clock();
215 	cd.suspended = false;
216 }
217 
218 static struct syscore_ops sched_clock_ops = {
219 	.suspend = sched_clock_suspend,
220 	.resume = sched_clock_resume,
221 };
222 
223 static int __init sched_clock_syscore_init(void)
224 {
225 	register_syscore_ops(&sched_clock_ops);
226 	return 0;
227 }
228 device_initcall(sched_clock_syscore_init);
229