xref: /openbmc/linux/kernel/time/sched_clock.c (revision af958a38)
1 /*
2  * sched_clock.c: support for extending counters to full 64-bit ns counter
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 #include <linux/clocksource.h>
9 #include <linux/init.h>
10 #include <linux/jiffies.h>
11 #include <linux/ktime.h>
12 #include <linux/kernel.h>
13 #include <linux/moduleparam.h>
14 #include <linux/sched.h>
15 #include <linux/syscore_ops.h>
16 #include <linux/hrtimer.h>
17 #include <linux/sched_clock.h>
18 #include <linux/seqlock.h>
19 #include <linux/bitops.h>
20 
21 struct clock_data {
22 	ktime_t wrap_kt;
23 	u64 epoch_ns;
24 	u64 epoch_cyc;
25 	seqcount_t seq;
26 	unsigned long rate;
27 	u32 mult;
28 	u32 shift;
29 	bool suspended;
30 };
31 
32 static struct hrtimer sched_clock_timer;
33 static int irqtime = -1;
34 
35 core_param(irqtime, irqtime, int, 0400);
36 
37 static struct clock_data cd = {
38 	.mult	= NSEC_PER_SEC / HZ,
39 };
40 
41 static u64 __read_mostly sched_clock_mask;
42 
43 static u64 notrace jiffy_sched_clock_read(void)
44 {
45 	/*
46 	 * We don't need to use get_jiffies_64 on 32-bit arches here
47 	 * because we register with BITS_PER_LONG
48 	 */
49 	return (u64)(jiffies - INITIAL_JIFFIES);
50 }
51 
52 static u64 __read_mostly (*read_sched_clock)(void) = jiffy_sched_clock_read;
53 
54 static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
55 {
56 	return (cyc * mult) >> shift;
57 }
58 
59 unsigned long long notrace sched_clock(void)
60 {
61 	u64 epoch_ns;
62 	u64 epoch_cyc;
63 	u64 cyc;
64 	unsigned long seq;
65 
66 	if (cd.suspended)
67 		return cd.epoch_ns;
68 
69 	do {
70 		seq = raw_read_seqcount_begin(&cd.seq);
71 		epoch_cyc = cd.epoch_cyc;
72 		epoch_ns = cd.epoch_ns;
73 	} while (read_seqcount_retry(&cd.seq, seq));
74 
75 	cyc = read_sched_clock();
76 	cyc = (cyc - epoch_cyc) & sched_clock_mask;
77 	return epoch_ns + cyc_to_ns(cyc, cd.mult, cd.shift);
78 }
79 
80 /*
81  * Atomically update the sched_clock epoch.
82  */
83 static void notrace update_sched_clock(void)
84 {
85 	unsigned long flags;
86 	u64 cyc;
87 	u64 ns;
88 
89 	cyc = read_sched_clock();
90 	ns = cd.epoch_ns +
91 		cyc_to_ns((cyc - cd.epoch_cyc) & sched_clock_mask,
92 			  cd.mult, cd.shift);
93 
94 	raw_local_irq_save(flags);
95 	raw_write_seqcount_begin(&cd.seq);
96 	cd.epoch_ns = ns;
97 	cd.epoch_cyc = cyc;
98 	raw_write_seqcount_end(&cd.seq);
99 	raw_local_irq_restore(flags);
100 }
101 
102 static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt)
103 {
104 	update_sched_clock();
105 	hrtimer_forward_now(hrt, cd.wrap_kt);
106 	return HRTIMER_RESTART;
107 }
108 
109 void __init sched_clock_register(u64 (*read)(void), int bits,
110 				 unsigned long rate)
111 {
112 	u64 res, wrap, new_mask, new_epoch, cyc, ns;
113 	u32 new_mult, new_shift;
114 	ktime_t new_wrap_kt;
115 	unsigned long r;
116 	char r_unit;
117 
118 	if (cd.rate > rate)
119 		return;
120 
121 	WARN_ON(!irqs_disabled());
122 
123 	/* calculate the mult/shift to convert counter ticks to ns. */
124 	clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 3600);
125 
126 	new_mask = CLOCKSOURCE_MASK(bits);
127 
128 	/* calculate how many ns until we wrap */
129 	wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask);
130 	new_wrap_kt = ns_to_ktime(wrap - (wrap >> 3));
131 
132 	/* update epoch for new counter and update epoch_ns from old counter*/
133 	new_epoch = read();
134 	cyc = read_sched_clock();
135 	ns = cd.epoch_ns + cyc_to_ns((cyc - cd.epoch_cyc) & sched_clock_mask,
136 			  cd.mult, cd.shift);
137 
138 	raw_write_seqcount_begin(&cd.seq);
139 	read_sched_clock = read;
140 	sched_clock_mask = new_mask;
141 	cd.rate = rate;
142 	cd.wrap_kt = new_wrap_kt;
143 	cd.mult = new_mult;
144 	cd.shift = new_shift;
145 	cd.epoch_cyc = new_epoch;
146 	cd.epoch_ns = ns;
147 	raw_write_seqcount_end(&cd.seq);
148 
149 	r = rate;
150 	if (r >= 4000000) {
151 		r /= 1000000;
152 		r_unit = 'M';
153 	} else if (r >= 1000) {
154 		r /= 1000;
155 		r_unit = 'k';
156 	} else
157 		r_unit = ' ';
158 
159 	/* calculate the ns resolution of this counter */
160 	res = cyc_to_ns(1ULL, new_mult, new_shift);
161 
162 	pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n",
163 		bits, r, r_unit, res, wrap);
164 
165 	/* Enable IRQ time accounting if we have a fast enough sched_clock */
166 	if (irqtime > 0 || (irqtime == -1 && rate >= 1000000))
167 		enable_sched_clock_irqtime();
168 
169 	pr_debug("Registered %pF as sched_clock source\n", read);
170 }
171 
172 void __init sched_clock_postinit(void)
173 {
174 	/*
175 	 * If no sched_clock function has been provided at that point,
176 	 * make it the final one one.
177 	 */
178 	if (read_sched_clock == jiffy_sched_clock_read)
179 		sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ);
180 
181 	update_sched_clock();
182 
183 	/*
184 	 * Start the timer to keep sched_clock() properly updated and
185 	 * sets the initial epoch.
186 	 */
187 	hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
188 	sched_clock_timer.function = sched_clock_poll;
189 	hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
190 }
191 
192 static int sched_clock_suspend(void)
193 {
194 	update_sched_clock();
195 	hrtimer_cancel(&sched_clock_timer);
196 	cd.suspended = true;
197 	return 0;
198 }
199 
200 static void sched_clock_resume(void)
201 {
202 	cd.epoch_cyc = read_sched_clock();
203 	hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
204 	cd.suspended = false;
205 }
206 
207 static struct syscore_ops sched_clock_ops = {
208 	.suspend = sched_clock_suspend,
209 	.resume = sched_clock_resume,
210 };
211 
212 static int __init sched_clock_syscore_init(void)
213 {
214 	register_syscore_ops(&sched_clock_ops);
215 	return 0;
216 }
217 device_initcall(sched_clock_syscore_init);
218