1 /* 2 * sched_clock.c: Generic sched_clock() support, to extend low level 3 * hardware time counters to full 64-bit ns values. 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 */ 9 #include <linux/clocksource.h> 10 #include <linux/init.h> 11 #include <linux/jiffies.h> 12 #include <linux/ktime.h> 13 #include <linux/kernel.h> 14 #include <linux/moduleparam.h> 15 #include <linux/sched.h> 16 #include <linux/sched/clock.h> 17 #include <linux/syscore_ops.h> 18 #include <linux/hrtimer.h> 19 #include <linux/sched_clock.h> 20 #include <linux/seqlock.h> 21 #include <linux/bitops.h> 22 23 /** 24 * struct clock_read_data - data required to read from sched_clock() 25 * 26 * @epoch_ns: sched_clock() value at last update 27 * @epoch_cyc: Clock cycle value at last update. 28 * @sched_clock_mask: Bitmask for two's complement subtraction of non 64bit 29 * clocks. 30 * @read_sched_clock: Current clock source (or dummy source when suspended). 31 * @mult: Multipler for scaled math conversion. 32 * @shift: Shift value for scaled math conversion. 33 * 34 * Care must be taken when updating this structure; it is read by 35 * some very hot code paths. It occupies <=40 bytes and, when combined 36 * with the seqcount used to synchronize access, comfortably fits into 37 * a 64 byte cache line. 38 */ 39 struct clock_read_data { 40 u64 epoch_ns; 41 u64 epoch_cyc; 42 u64 sched_clock_mask; 43 u64 (*read_sched_clock)(void); 44 u32 mult; 45 u32 shift; 46 }; 47 48 /** 49 * struct clock_data - all data needed for sched_clock() (including 50 * registration of a new clock source) 51 * 52 * @seq: Sequence counter for protecting updates. The lowest 53 * bit is the index for @read_data. 54 * @read_data: Data required to read from sched_clock. 55 * @wrap_kt: Duration for which clock can run before wrapping. 56 * @rate: Tick rate of the registered clock. 57 * @actual_read_sched_clock: Registered hardware level clock read function. 58 * 59 * The ordering of this structure has been chosen to optimize cache 60 * performance. In particular 'seq' and 'read_data[0]' (combined) should fit 61 * into a single 64-byte cache line. 62 */ 63 struct clock_data { 64 seqcount_t seq; 65 struct clock_read_data read_data[2]; 66 ktime_t wrap_kt; 67 unsigned long rate; 68 69 u64 (*actual_read_sched_clock)(void); 70 }; 71 72 static struct hrtimer sched_clock_timer; 73 static int irqtime = -1; 74 75 core_param(irqtime, irqtime, int, 0400); 76 77 static u64 notrace jiffy_sched_clock_read(void) 78 { 79 /* 80 * We don't need to use get_jiffies_64 on 32-bit arches here 81 * because we register with BITS_PER_LONG 82 */ 83 return (u64)(jiffies - INITIAL_JIFFIES); 84 } 85 86 static struct clock_data cd ____cacheline_aligned = { 87 .read_data[0] = { .mult = NSEC_PER_SEC / HZ, 88 .read_sched_clock = jiffy_sched_clock_read, }, 89 .actual_read_sched_clock = jiffy_sched_clock_read, 90 }; 91 92 static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift) 93 { 94 return (cyc * mult) >> shift; 95 } 96 97 unsigned long long notrace sched_clock(void) 98 { 99 u64 cyc, res; 100 unsigned long seq; 101 struct clock_read_data *rd; 102 103 do { 104 seq = raw_read_seqcount(&cd.seq); 105 rd = cd.read_data + (seq & 1); 106 107 cyc = (rd->read_sched_clock() - rd->epoch_cyc) & 108 rd->sched_clock_mask; 109 res = rd->epoch_ns + cyc_to_ns(cyc, rd->mult, rd->shift); 110 } while (read_seqcount_retry(&cd.seq, seq)); 111 112 return res; 113 } 114 115 /* 116 * Updating the data required to read the clock. 117 * 118 * sched_clock() will never observe mis-matched data even if called from 119 * an NMI. We do this by maintaining an odd/even copy of the data and 120 * steering sched_clock() to one or the other using a sequence counter. 121 * In order to preserve the data cache profile of sched_clock() as much 122 * as possible the system reverts back to the even copy when the update 123 * completes; the odd copy is used *only* during an update. 124 */ 125 static void update_clock_read_data(struct clock_read_data *rd) 126 { 127 /* update the backup (odd) copy with the new data */ 128 cd.read_data[1] = *rd; 129 130 /* steer readers towards the odd copy */ 131 raw_write_seqcount_latch(&cd.seq); 132 133 /* now its safe for us to update the normal (even) copy */ 134 cd.read_data[0] = *rd; 135 136 /* switch readers back to the even copy */ 137 raw_write_seqcount_latch(&cd.seq); 138 } 139 140 /* 141 * Atomically update the sched_clock() epoch. 142 */ 143 static void update_sched_clock(void) 144 { 145 u64 cyc; 146 u64 ns; 147 struct clock_read_data rd; 148 149 rd = cd.read_data[0]; 150 151 cyc = cd.actual_read_sched_clock(); 152 ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift); 153 154 rd.epoch_ns = ns; 155 rd.epoch_cyc = cyc; 156 157 update_clock_read_data(&rd); 158 } 159 160 static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt) 161 { 162 update_sched_clock(); 163 hrtimer_forward_now(hrt, cd.wrap_kt); 164 165 return HRTIMER_RESTART; 166 } 167 168 void __init 169 sched_clock_register(u64 (*read)(void), int bits, unsigned long rate) 170 { 171 u64 res, wrap, new_mask, new_epoch, cyc, ns; 172 u32 new_mult, new_shift; 173 unsigned long r; 174 char r_unit; 175 struct clock_read_data rd; 176 177 if (cd.rate > rate) 178 return; 179 180 WARN_ON(!irqs_disabled()); 181 182 /* Calculate the mult/shift to convert counter ticks to ns. */ 183 clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 3600); 184 185 new_mask = CLOCKSOURCE_MASK(bits); 186 cd.rate = rate; 187 188 /* Calculate how many nanosecs until we risk wrapping */ 189 wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask, NULL); 190 cd.wrap_kt = ns_to_ktime(wrap); 191 192 rd = cd.read_data[0]; 193 194 /* Update epoch for new counter and update 'epoch_ns' from old counter*/ 195 new_epoch = read(); 196 cyc = cd.actual_read_sched_clock(); 197 ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift); 198 cd.actual_read_sched_clock = read; 199 200 rd.read_sched_clock = read; 201 rd.sched_clock_mask = new_mask; 202 rd.mult = new_mult; 203 rd.shift = new_shift; 204 rd.epoch_cyc = new_epoch; 205 rd.epoch_ns = ns; 206 207 update_clock_read_data(&rd); 208 209 r = rate; 210 if (r >= 4000000) { 211 r /= 1000000; 212 r_unit = 'M'; 213 } else { 214 if (r >= 1000) { 215 r /= 1000; 216 r_unit = 'k'; 217 } else { 218 r_unit = ' '; 219 } 220 } 221 222 /* Calculate the ns resolution of this counter */ 223 res = cyc_to_ns(1ULL, new_mult, new_shift); 224 225 pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n", 226 bits, r, r_unit, res, wrap); 227 228 /* Enable IRQ time accounting if we have a fast enough sched_clock() */ 229 if (irqtime > 0 || (irqtime == -1 && rate >= 1000000)) 230 enable_sched_clock_irqtime(); 231 232 pr_debug("Registered %pF as sched_clock source\n", read); 233 } 234 235 void __init sched_clock_postinit(void) 236 { 237 /* 238 * If no sched_clock() function has been provided at that point, 239 * make it the final one one. 240 */ 241 if (cd.actual_read_sched_clock == jiffy_sched_clock_read) 242 sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ); 243 244 update_sched_clock(); 245 246 /* 247 * Start the timer to keep sched_clock() properly updated and 248 * sets the initial epoch. 249 */ 250 hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 251 sched_clock_timer.function = sched_clock_poll; 252 hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL); 253 } 254 255 /* 256 * Clock read function for use when the clock is suspended. 257 * 258 * This function makes it appear to sched_clock() as if the clock 259 * stopped counting at its last update. 260 * 261 * This function must only be called from the critical 262 * section in sched_clock(). It relies on the read_seqcount_retry() 263 * at the end of the critical section to be sure we observe the 264 * correct copy of 'epoch_cyc'. 265 */ 266 static u64 notrace suspended_sched_clock_read(void) 267 { 268 unsigned long seq = raw_read_seqcount(&cd.seq); 269 270 return cd.read_data[seq & 1].epoch_cyc; 271 } 272 273 static int sched_clock_suspend(void) 274 { 275 struct clock_read_data *rd = &cd.read_data[0]; 276 277 update_sched_clock(); 278 hrtimer_cancel(&sched_clock_timer); 279 rd->read_sched_clock = suspended_sched_clock_read; 280 281 return 0; 282 } 283 284 static void sched_clock_resume(void) 285 { 286 struct clock_read_data *rd = &cd.read_data[0]; 287 288 rd->epoch_cyc = cd.actual_read_sched_clock(); 289 hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL); 290 rd->read_sched_clock = cd.actual_read_sched_clock; 291 } 292 293 static struct syscore_ops sched_clock_ops = { 294 .suspend = sched_clock_suspend, 295 .resume = sched_clock_resume, 296 }; 297 298 static int __init sched_clock_syscore_init(void) 299 { 300 register_syscore_ops(&sched_clock_ops); 301 302 return 0; 303 } 304 device_initcall(sched_clock_syscore_init); 305