1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Generic sched_clock() support, to extend low level hardware time 4 * counters to full 64-bit ns values. 5 */ 6 #include <linux/clocksource.h> 7 #include <linux/init.h> 8 #include <linux/jiffies.h> 9 #include <linux/ktime.h> 10 #include <linux/kernel.h> 11 #include <linux/moduleparam.h> 12 #include <linux/sched.h> 13 #include <linux/sched/clock.h> 14 #include <linux/syscore_ops.h> 15 #include <linux/hrtimer.h> 16 #include <linux/sched_clock.h> 17 #include <linux/seqlock.h> 18 #include <linux/bitops.h> 19 20 #include "timekeeping.h" 21 22 /** 23 * struct clock_read_data - data required to read from sched_clock() 24 * 25 * @epoch_ns: sched_clock() value at last update 26 * @epoch_cyc: Clock cycle value at last update. 27 * @sched_clock_mask: Bitmask for two's complement subtraction of non 64bit 28 * clocks. 29 * @read_sched_clock: Current clock source (or dummy source when suspended). 30 * @mult: Multipler for scaled math conversion. 31 * @shift: Shift value for scaled math conversion. 32 * 33 * Care must be taken when updating this structure; it is read by 34 * some very hot code paths. It occupies <=40 bytes and, when combined 35 * with the seqcount used to synchronize access, comfortably fits into 36 * a 64 byte cache line. 37 */ 38 struct clock_read_data { 39 u64 epoch_ns; 40 u64 epoch_cyc; 41 u64 sched_clock_mask; 42 u64 (*read_sched_clock)(void); 43 u32 mult; 44 u32 shift; 45 }; 46 47 /** 48 * struct clock_data - all data needed for sched_clock() (including 49 * registration of a new clock source) 50 * 51 * @seq: Sequence counter for protecting updates. The lowest 52 * bit is the index for @read_data. 53 * @read_data: Data required to read from sched_clock. 54 * @wrap_kt: Duration for which clock can run before wrapping. 55 * @rate: Tick rate of the registered clock. 56 * @actual_read_sched_clock: Registered hardware level clock read function. 57 * 58 * The ordering of this structure has been chosen to optimize cache 59 * performance. In particular 'seq' and 'read_data[0]' (combined) should fit 60 * into a single 64-byte cache line. 61 */ 62 struct clock_data { 63 seqcount_t seq; 64 struct clock_read_data read_data[2]; 65 ktime_t wrap_kt; 66 unsigned long rate; 67 68 u64 (*actual_read_sched_clock)(void); 69 }; 70 71 static struct hrtimer sched_clock_timer; 72 static int irqtime = -1; 73 74 core_param(irqtime, irqtime, int, 0400); 75 76 static u64 notrace jiffy_sched_clock_read(void) 77 { 78 /* 79 * We don't need to use get_jiffies_64 on 32-bit arches here 80 * because we register with BITS_PER_LONG 81 */ 82 return (u64)(jiffies - INITIAL_JIFFIES); 83 } 84 85 static struct clock_data cd ____cacheline_aligned = { 86 .read_data[0] = { .mult = NSEC_PER_SEC / HZ, 87 .read_sched_clock = jiffy_sched_clock_read, }, 88 .actual_read_sched_clock = jiffy_sched_clock_read, 89 }; 90 91 static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift) 92 { 93 return (cyc * mult) >> shift; 94 } 95 96 unsigned long long notrace sched_clock(void) 97 { 98 u64 cyc, res; 99 unsigned int seq; 100 struct clock_read_data *rd; 101 102 do { 103 seq = raw_read_seqcount(&cd.seq); 104 rd = cd.read_data + (seq & 1); 105 106 cyc = (rd->read_sched_clock() - rd->epoch_cyc) & 107 rd->sched_clock_mask; 108 res = rd->epoch_ns + cyc_to_ns(cyc, rd->mult, rd->shift); 109 } while (read_seqcount_retry(&cd.seq, seq)); 110 111 return res; 112 } 113 114 /* 115 * Updating the data required to read the clock. 116 * 117 * sched_clock() will never observe mis-matched data even if called from 118 * an NMI. We do this by maintaining an odd/even copy of the data and 119 * steering sched_clock() to one or the other using a sequence counter. 120 * In order to preserve the data cache profile of sched_clock() as much 121 * as possible the system reverts back to the even copy when the update 122 * completes; the odd copy is used *only* during an update. 123 */ 124 static void update_clock_read_data(struct clock_read_data *rd) 125 { 126 /* update the backup (odd) copy with the new data */ 127 cd.read_data[1] = *rd; 128 129 /* steer readers towards the odd copy */ 130 raw_write_seqcount_latch(&cd.seq); 131 132 /* now its safe for us to update the normal (even) copy */ 133 cd.read_data[0] = *rd; 134 135 /* switch readers back to the even copy */ 136 raw_write_seqcount_latch(&cd.seq); 137 } 138 139 /* 140 * Atomically update the sched_clock() epoch. 141 */ 142 static void update_sched_clock(void) 143 { 144 u64 cyc; 145 u64 ns; 146 struct clock_read_data rd; 147 148 rd = cd.read_data[0]; 149 150 cyc = cd.actual_read_sched_clock(); 151 ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift); 152 153 rd.epoch_ns = ns; 154 rd.epoch_cyc = cyc; 155 156 update_clock_read_data(&rd); 157 } 158 159 static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt) 160 { 161 update_sched_clock(); 162 hrtimer_forward_now(hrt, cd.wrap_kt); 163 164 return HRTIMER_RESTART; 165 } 166 167 void __init 168 sched_clock_register(u64 (*read)(void), int bits, unsigned long rate) 169 { 170 u64 res, wrap, new_mask, new_epoch, cyc, ns; 171 u32 new_mult, new_shift; 172 unsigned long r; 173 char r_unit; 174 struct clock_read_data rd; 175 176 if (cd.rate > rate) 177 return; 178 179 WARN_ON(!irqs_disabled()); 180 181 /* Calculate the mult/shift to convert counter ticks to ns. */ 182 clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 3600); 183 184 new_mask = CLOCKSOURCE_MASK(bits); 185 cd.rate = rate; 186 187 /* Calculate how many nanosecs until we risk wrapping */ 188 wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask, NULL); 189 cd.wrap_kt = ns_to_ktime(wrap); 190 191 rd = cd.read_data[0]; 192 193 /* Update epoch for new counter and update 'epoch_ns' from old counter*/ 194 new_epoch = read(); 195 cyc = cd.actual_read_sched_clock(); 196 ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift); 197 cd.actual_read_sched_clock = read; 198 199 rd.read_sched_clock = read; 200 rd.sched_clock_mask = new_mask; 201 rd.mult = new_mult; 202 rd.shift = new_shift; 203 rd.epoch_cyc = new_epoch; 204 rd.epoch_ns = ns; 205 206 update_clock_read_data(&rd); 207 208 if (sched_clock_timer.function != NULL) { 209 /* update timeout for clock wrap */ 210 hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL); 211 } 212 213 r = rate; 214 if (r >= 4000000) { 215 r /= 1000000; 216 r_unit = 'M'; 217 } else { 218 if (r >= 1000) { 219 r /= 1000; 220 r_unit = 'k'; 221 } else { 222 r_unit = ' '; 223 } 224 } 225 226 /* Calculate the ns resolution of this counter */ 227 res = cyc_to_ns(1ULL, new_mult, new_shift); 228 229 pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n", 230 bits, r, r_unit, res, wrap); 231 232 /* Enable IRQ time accounting if we have a fast enough sched_clock() */ 233 if (irqtime > 0 || (irqtime == -1 && rate >= 1000000)) 234 enable_sched_clock_irqtime(); 235 236 pr_debug("Registered %pS as sched_clock source\n", read); 237 } 238 239 void __init generic_sched_clock_init(void) 240 { 241 /* 242 * If no sched_clock() function has been provided at that point, 243 * make it the final one one. 244 */ 245 if (cd.actual_read_sched_clock == jiffy_sched_clock_read) 246 sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ); 247 248 update_sched_clock(); 249 250 /* 251 * Start the timer to keep sched_clock() properly updated and 252 * sets the initial epoch. 253 */ 254 hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 255 sched_clock_timer.function = sched_clock_poll; 256 hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL); 257 } 258 259 /* 260 * Clock read function for use when the clock is suspended. 261 * 262 * This function makes it appear to sched_clock() as if the clock 263 * stopped counting at its last update. 264 * 265 * This function must only be called from the critical 266 * section in sched_clock(). It relies on the read_seqcount_retry() 267 * at the end of the critical section to be sure we observe the 268 * correct copy of 'epoch_cyc'. 269 */ 270 static u64 notrace suspended_sched_clock_read(void) 271 { 272 unsigned int seq = raw_read_seqcount(&cd.seq); 273 274 return cd.read_data[seq & 1].epoch_cyc; 275 } 276 277 int sched_clock_suspend(void) 278 { 279 struct clock_read_data *rd = &cd.read_data[0]; 280 281 update_sched_clock(); 282 hrtimer_cancel(&sched_clock_timer); 283 rd->read_sched_clock = suspended_sched_clock_read; 284 285 return 0; 286 } 287 288 void sched_clock_resume(void) 289 { 290 struct clock_read_data *rd = &cd.read_data[0]; 291 292 rd->epoch_cyc = cd.actual_read_sched_clock(); 293 hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL); 294 rd->read_sched_clock = cd.actual_read_sched_clock; 295 } 296 297 static struct syscore_ops sched_clock_ops = { 298 .suspend = sched_clock_suspend, 299 .resume = sched_clock_resume, 300 }; 301 302 static int __init sched_clock_syscore_init(void) 303 { 304 register_syscore_ops(&sched_clock_ops); 305 306 return 0; 307 } 308 device_initcall(sched_clock_syscore_init); 309