xref: /openbmc/linux/kernel/time/sched_clock.c (revision a44e4f3a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic sched_clock() support, to extend low level hardware time
4  * counters to full 64-bit ns values.
5  */
6 #include <linux/clocksource.h>
7 #include <linux/init.h>
8 #include <linux/jiffies.h>
9 #include <linux/ktime.h>
10 #include <linux/kernel.h>
11 #include <linux/moduleparam.h>
12 #include <linux/sched.h>
13 #include <linux/sched/clock.h>
14 #include <linux/syscore_ops.h>
15 #include <linux/hrtimer.h>
16 #include <linux/sched_clock.h>
17 #include <linux/seqlock.h>
18 #include <linux/bitops.h>
19 
20 #include "timekeeping.h"
21 
22 /**
23  * struct clock_read_data - data required to read from sched_clock()
24  *
25  * @epoch_ns:		sched_clock() value at last update
26  * @epoch_cyc:		Clock cycle value at last update.
27  * @sched_clock_mask:   Bitmask for two's complement subtraction of non 64bit
28  *			clocks.
29  * @read_sched_clock:	Current clock source (or dummy source when suspended).
30  * @mult:		Multipler for scaled math conversion.
31  * @shift:		Shift value for scaled math conversion.
32  *
33  * Care must be taken when updating this structure; it is read by
34  * some very hot code paths. It occupies <=40 bytes and, when combined
35  * with the seqcount used to synchronize access, comfortably fits into
36  * a 64 byte cache line.
37  */
38 struct clock_read_data {
39 	u64 epoch_ns;
40 	u64 epoch_cyc;
41 	u64 sched_clock_mask;
42 	u64 (*read_sched_clock)(void);
43 	u32 mult;
44 	u32 shift;
45 };
46 
47 /**
48  * struct clock_data - all data needed for sched_clock() (including
49  *                     registration of a new clock source)
50  *
51  * @seq:		Sequence counter for protecting updates. The lowest
52  *			bit is the index for @read_data.
53  * @read_data:		Data required to read from sched_clock.
54  * @wrap_kt:		Duration for which clock can run before wrapping.
55  * @rate:		Tick rate of the registered clock.
56  * @actual_read_sched_clock: Registered hardware level clock read function.
57  *
58  * The ordering of this structure has been chosen to optimize cache
59  * performance. In particular 'seq' and 'read_data[0]' (combined) should fit
60  * into a single 64-byte cache line.
61  */
62 struct clock_data {
63 	seqcount_t		seq;
64 	struct clock_read_data	read_data[2];
65 	ktime_t			wrap_kt;
66 	unsigned long		rate;
67 
68 	u64 (*actual_read_sched_clock)(void);
69 };
70 
71 static struct hrtimer sched_clock_timer;
72 static int irqtime = -1;
73 
74 core_param(irqtime, irqtime, int, 0400);
75 
76 static u64 notrace jiffy_sched_clock_read(void)
77 {
78 	/*
79 	 * We don't need to use get_jiffies_64 on 32-bit arches here
80 	 * because we register with BITS_PER_LONG
81 	 */
82 	return (u64)(jiffies - INITIAL_JIFFIES);
83 }
84 
85 static struct clock_data cd ____cacheline_aligned = {
86 	.read_data[0] = { .mult = NSEC_PER_SEC / HZ,
87 			  .read_sched_clock = jiffy_sched_clock_read, },
88 	.actual_read_sched_clock = jiffy_sched_clock_read,
89 };
90 
91 static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
92 {
93 	return (cyc * mult) >> shift;
94 }
95 
96 unsigned long long notrace sched_clock(void)
97 {
98 	u64 cyc, res;
99 	unsigned int seq;
100 	struct clock_read_data *rd;
101 
102 	do {
103 		seq = raw_read_seqcount(&cd.seq);
104 		rd = cd.read_data + (seq & 1);
105 
106 		cyc = (rd->read_sched_clock() - rd->epoch_cyc) &
107 		      rd->sched_clock_mask;
108 		res = rd->epoch_ns + cyc_to_ns(cyc, rd->mult, rd->shift);
109 	} while (read_seqcount_retry(&cd.seq, seq));
110 
111 	return res;
112 }
113 
114 /*
115  * Updating the data required to read the clock.
116  *
117  * sched_clock() will never observe mis-matched data even if called from
118  * an NMI. We do this by maintaining an odd/even copy of the data and
119  * steering sched_clock() to one or the other using a sequence counter.
120  * In order to preserve the data cache profile of sched_clock() as much
121  * as possible the system reverts back to the even copy when the update
122  * completes; the odd copy is used *only* during an update.
123  */
124 static void update_clock_read_data(struct clock_read_data *rd)
125 {
126 	/* update the backup (odd) copy with the new data */
127 	cd.read_data[1] = *rd;
128 
129 	/* steer readers towards the odd copy */
130 	raw_write_seqcount_latch(&cd.seq);
131 
132 	/* now its safe for us to update the normal (even) copy */
133 	cd.read_data[0] = *rd;
134 
135 	/* switch readers back to the even copy */
136 	raw_write_seqcount_latch(&cd.seq);
137 }
138 
139 /*
140  * Atomically update the sched_clock() epoch.
141  */
142 static void update_sched_clock(void)
143 {
144 	u64 cyc;
145 	u64 ns;
146 	struct clock_read_data rd;
147 
148 	rd = cd.read_data[0];
149 
150 	cyc = cd.actual_read_sched_clock();
151 	ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
152 
153 	rd.epoch_ns = ns;
154 	rd.epoch_cyc = cyc;
155 
156 	update_clock_read_data(&rd);
157 }
158 
159 static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt)
160 {
161 	update_sched_clock();
162 	hrtimer_forward_now(hrt, cd.wrap_kt);
163 
164 	return HRTIMER_RESTART;
165 }
166 
167 void __init
168 sched_clock_register(u64 (*read)(void), int bits, unsigned long rate)
169 {
170 	u64 res, wrap, new_mask, new_epoch, cyc, ns;
171 	u32 new_mult, new_shift;
172 	unsigned long r;
173 	char r_unit;
174 	struct clock_read_data rd;
175 
176 	if (cd.rate > rate)
177 		return;
178 
179 	WARN_ON(!irqs_disabled());
180 
181 	/* Calculate the mult/shift to convert counter ticks to ns. */
182 	clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 3600);
183 
184 	new_mask = CLOCKSOURCE_MASK(bits);
185 	cd.rate = rate;
186 
187 	/* Calculate how many nanosecs until we risk wrapping */
188 	wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask, NULL);
189 	cd.wrap_kt = ns_to_ktime(wrap);
190 
191 	rd = cd.read_data[0];
192 
193 	/* Update epoch for new counter and update 'epoch_ns' from old counter*/
194 	new_epoch = read();
195 	cyc = cd.actual_read_sched_clock();
196 	ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
197 	cd.actual_read_sched_clock = read;
198 
199 	rd.read_sched_clock	= read;
200 	rd.sched_clock_mask	= new_mask;
201 	rd.mult			= new_mult;
202 	rd.shift		= new_shift;
203 	rd.epoch_cyc		= new_epoch;
204 	rd.epoch_ns		= ns;
205 
206 	update_clock_read_data(&rd);
207 
208 	if (sched_clock_timer.function != NULL) {
209 		/* update timeout for clock wrap */
210 		hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
211 	}
212 
213 	r = rate;
214 	if (r >= 4000000) {
215 		r /= 1000000;
216 		r_unit = 'M';
217 	} else {
218 		if (r >= 1000) {
219 			r /= 1000;
220 			r_unit = 'k';
221 		} else {
222 			r_unit = ' ';
223 		}
224 	}
225 
226 	/* Calculate the ns resolution of this counter */
227 	res = cyc_to_ns(1ULL, new_mult, new_shift);
228 
229 	pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n",
230 		bits, r, r_unit, res, wrap);
231 
232 	/* Enable IRQ time accounting if we have a fast enough sched_clock() */
233 	if (irqtime > 0 || (irqtime == -1 && rate >= 1000000))
234 		enable_sched_clock_irqtime();
235 
236 	pr_debug("Registered %pS as sched_clock source\n", read);
237 }
238 
239 void __init generic_sched_clock_init(void)
240 {
241 	/*
242 	 * If no sched_clock() function has been provided at that point,
243 	 * make it the final one one.
244 	 */
245 	if (cd.actual_read_sched_clock == jiffy_sched_clock_read)
246 		sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ);
247 
248 	update_sched_clock();
249 
250 	/*
251 	 * Start the timer to keep sched_clock() properly updated and
252 	 * sets the initial epoch.
253 	 */
254 	hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
255 	sched_clock_timer.function = sched_clock_poll;
256 	hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
257 }
258 
259 /*
260  * Clock read function for use when the clock is suspended.
261  *
262  * This function makes it appear to sched_clock() as if the clock
263  * stopped counting at its last update.
264  *
265  * This function must only be called from the critical
266  * section in sched_clock(). It relies on the read_seqcount_retry()
267  * at the end of the critical section to be sure we observe the
268  * correct copy of 'epoch_cyc'.
269  */
270 static u64 notrace suspended_sched_clock_read(void)
271 {
272 	unsigned int seq = raw_read_seqcount(&cd.seq);
273 
274 	return cd.read_data[seq & 1].epoch_cyc;
275 }
276 
277 int sched_clock_suspend(void)
278 {
279 	struct clock_read_data *rd = &cd.read_data[0];
280 
281 	update_sched_clock();
282 	hrtimer_cancel(&sched_clock_timer);
283 	rd->read_sched_clock = suspended_sched_clock_read;
284 
285 	return 0;
286 }
287 
288 void sched_clock_resume(void)
289 {
290 	struct clock_read_data *rd = &cd.read_data[0];
291 
292 	rd->epoch_cyc = cd.actual_read_sched_clock();
293 	hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
294 	rd->read_sched_clock = cd.actual_read_sched_clock;
295 }
296 
297 static struct syscore_ops sched_clock_ops = {
298 	.suspend	= sched_clock_suspend,
299 	.resume		= sched_clock_resume,
300 };
301 
302 static int __init sched_clock_syscore_init(void)
303 {
304 	register_syscore_ops(&sched_clock_ops);
305 
306 	return 0;
307 }
308 device_initcall(sched_clock_syscore_init);
309