1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Generic sched_clock() support, to extend low level hardware time 4 * counters to full 64-bit ns values. 5 */ 6 #include <linux/clocksource.h> 7 #include <linux/init.h> 8 #include <linux/jiffies.h> 9 #include <linux/ktime.h> 10 #include <linux/kernel.h> 11 #include <linux/math.h> 12 #include <linux/moduleparam.h> 13 #include <linux/sched.h> 14 #include <linux/sched/clock.h> 15 #include <linux/syscore_ops.h> 16 #include <linux/hrtimer.h> 17 #include <linux/sched_clock.h> 18 #include <linux/seqlock.h> 19 #include <linux/bitops.h> 20 21 #include "timekeeping.h" 22 23 /** 24 * struct clock_data - all data needed for sched_clock() (including 25 * registration of a new clock source) 26 * 27 * @seq: Sequence counter for protecting updates. The lowest 28 * bit is the index for @read_data. 29 * @read_data: Data required to read from sched_clock. 30 * @wrap_kt: Duration for which clock can run before wrapping. 31 * @rate: Tick rate of the registered clock. 32 * @actual_read_sched_clock: Registered hardware level clock read function. 33 * 34 * The ordering of this structure has been chosen to optimize cache 35 * performance. In particular 'seq' and 'read_data[0]' (combined) should fit 36 * into a single 64-byte cache line. 37 */ 38 struct clock_data { 39 seqcount_latch_t seq; 40 struct clock_read_data read_data[2]; 41 ktime_t wrap_kt; 42 unsigned long rate; 43 44 u64 (*actual_read_sched_clock)(void); 45 }; 46 47 static struct hrtimer sched_clock_timer; 48 static int irqtime = -1; 49 50 core_param(irqtime, irqtime, int, 0400); 51 52 static u64 notrace jiffy_sched_clock_read(void) 53 { 54 /* 55 * We don't need to use get_jiffies_64 on 32-bit arches here 56 * because we register with BITS_PER_LONG 57 */ 58 return (u64)(jiffies - INITIAL_JIFFIES); 59 } 60 61 static struct clock_data cd ____cacheline_aligned = { 62 .read_data[0] = { .mult = NSEC_PER_SEC / HZ, 63 .read_sched_clock = jiffy_sched_clock_read, }, 64 .actual_read_sched_clock = jiffy_sched_clock_read, 65 }; 66 67 static __always_inline u64 cyc_to_ns(u64 cyc, u32 mult, u32 shift) 68 { 69 return (cyc * mult) >> shift; 70 } 71 72 notrace struct clock_read_data *sched_clock_read_begin(unsigned int *seq) 73 { 74 *seq = raw_read_seqcount_latch(&cd.seq); 75 return cd.read_data + (*seq & 1); 76 } 77 78 notrace int sched_clock_read_retry(unsigned int seq) 79 { 80 return raw_read_seqcount_latch_retry(&cd.seq, seq); 81 } 82 83 unsigned long long noinstr sched_clock_noinstr(void) 84 { 85 struct clock_read_data *rd; 86 unsigned int seq; 87 u64 cyc, res; 88 89 do { 90 seq = raw_read_seqcount_latch(&cd.seq); 91 rd = cd.read_data + (seq & 1); 92 93 cyc = (rd->read_sched_clock() - rd->epoch_cyc) & 94 rd->sched_clock_mask; 95 res = rd->epoch_ns + cyc_to_ns(cyc, rd->mult, rd->shift); 96 } while (raw_read_seqcount_latch_retry(&cd.seq, seq)); 97 98 return res; 99 } 100 101 unsigned long long notrace sched_clock(void) 102 { 103 unsigned long long ns; 104 preempt_disable_notrace(); 105 ns = sched_clock_noinstr(); 106 preempt_enable_notrace(); 107 return ns; 108 } 109 110 /* 111 * Updating the data required to read the clock. 112 * 113 * sched_clock() will never observe mis-matched data even if called from 114 * an NMI. We do this by maintaining an odd/even copy of the data and 115 * steering sched_clock() to one or the other using a sequence counter. 116 * In order to preserve the data cache profile of sched_clock() as much 117 * as possible the system reverts back to the even copy when the update 118 * completes; the odd copy is used *only* during an update. 119 */ 120 static void update_clock_read_data(struct clock_read_data *rd) 121 { 122 /* update the backup (odd) copy with the new data */ 123 cd.read_data[1] = *rd; 124 125 /* steer readers towards the odd copy */ 126 raw_write_seqcount_latch(&cd.seq); 127 128 /* now its safe for us to update the normal (even) copy */ 129 cd.read_data[0] = *rd; 130 131 /* switch readers back to the even copy */ 132 raw_write_seqcount_latch(&cd.seq); 133 } 134 135 /* 136 * Atomically update the sched_clock() epoch. 137 */ 138 static void update_sched_clock(void) 139 { 140 u64 cyc; 141 u64 ns; 142 struct clock_read_data rd; 143 144 rd = cd.read_data[0]; 145 146 cyc = cd.actual_read_sched_clock(); 147 ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift); 148 149 rd.epoch_ns = ns; 150 rd.epoch_cyc = cyc; 151 152 update_clock_read_data(&rd); 153 } 154 155 static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt) 156 { 157 update_sched_clock(); 158 hrtimer_forward_now(hrt, cd.wrap_kt); 159 160 return HRTIMER_RESTART; 161 } 162 163 void __init 164 sched_clock_register(u64 (*read)(void), int bits, unsigned long rate) 165 { 166 u64 res, wrap, new_mask, new_epoch, cyc, ns; 167 u32 new_mult, new_shift; 168 unsigned long r, flags; 169 char r_unit; 170 struct clock_read_data rd; 171 172 if (cd.rate > rate) 173 return; 174 175 /* Cannot register a sched_clock with interrupts on */ 176 local_irq_save(flags); 177 178 /* Calculate the mult/shift to convert counter ticks to ns. */ 179 clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 3600); 180 181 new_mask = CLOCKSOURCE_MASK(bits); 182 cd.rate = rate; 183 184 /* Calculate how many nanosecs until we risk wrapping */ 185 wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask, NULL); 186 cd.wrap_kt = ns_to_ktime(wrap); 187 188 rd = cd.read_data[0]; 189 190 /* Update epoch for new counter and update 'epoch_ns' from old counter*/ 191 new_epoch = read(); 192 cyc = cd.actual_read_sched_clock(); 193 ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift); 194 cd.actual_read_sched_clock = read; 195 196 rd.read_sched_clock = read; 197 rd.sched_clock_mask = new_mask; 198 rd.mult = new_mult; 199 rd.shift = new_shift; 200 rd.epoch_cyc = new_epoch; 201 rd.epoch_ns = ns; 202 203 update_clock_read_data(&rd); 204 205 if (sched_clock_timer.function != NULL) { 206 /* update timeout for clock wrap */ 207 hrtimer_start(&sched_clock_timer, cd.wrap_kt, 208 HRTIMER_MODE_REL_HARD); 209 } 210 211 r = rate; 212 if (r >= 4000000) { 213 r = DIV_ROUND_CLOSEST(r, 1000000); 214 r_unit = 'M'; 215 } else if (r >= 4000) { 216 r = DIV_ROUND_CLOSEST(r, 1000); 217 r_unit = 'k'; 218 } else { 219 r_unit = ' '; 220 } 221 222 /* Calculate the ns resolution of this counter */ 223 res = cyc_to_ns(1ULL, new_mult, new_shift); 224 225 pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n", 226 bits, r, r_unit, res, wrap); 227 228 /* Enable IRQ time accounting if we have a fast enough sched_clock() */ 229 if (irqtime > 0 || (irqtime == -1 && rate >= 1000000)) 230 enable_sched_clock_irqtime(); 231 232 local_irq_restore(flags); 233 234 pr_debug("Registered %pS as sched_clock source\n", read); 235 } 236 237 void __init generic_sched_clock_init(void) 238 { 239 /* 240 * If no sched_clock() function has been provided at that point, 241 * make it the final one. 242 */ 243 if (cd.actual_read_sched_clock == jiffy_sched_clock_read) 244 sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ); 245 246 update_sched_clock(); 247 248 /* 249 * Start the timer to keep sched_clock() properly updated and 250 * sets the initial epoch. 251 */ 252 hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 253 sched_clock_timer.function = sched_clock_poll; 254 hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL_HARD); 255 } 256 257 /* 258 * Clock read function for use when the clock is suspended. 259 * 260 * This function makes it appear to sched_clock() as if the clock 261 * stopped counting at its last update. 262 * 263 * This function must only be called from the critical 264 * section in sched_clock(). It relies on the read_seqcount_retry() 265 * at the end of the critical section to be sure we observe the 266 * correct copy of 'epoch_cyc'. 267 */ 268 static u64 notrace suspended_sched_clock_read(void) 269 { 270 unsigned int seq = raw_read_seqcount_latch(&cd.seq); 271 272 return cd.read_data[seq & 1].epoch_cyc; 273 } 274 275 int sched_clock_suspend(void) 276 { 277 struct clock_read_data *rd = &cd.read_data[0]; 278 279 update_sched_clock(); 280 hrtimer_cancel(&sched_clock_timer); 281 rd->read_sched_clock = suspended_sched_clock_read; 282 283 return 0; 284 } 285 286 void sched_clock_resume(void) 287 { 288 struct clock_read_data *rd = &cd.read_data[0]; 289 290 rd->epoch_cyc = cd.actual_read_sched_clock(); 291 hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL_HARD); 292 rd->read_sched_clock = cd.actual_read_sched_clock; 293 } 294 295 static struct syscore_ops sched_clock_ops = { 296 .suspend = sched_clock_suspend, 297 .resume = sched_clock_resume, 298 }; 299 300 static int __init sched_clock_syscore_init(void) 301 { 302 register_syscore_ops(&sched_clock_ops); 303 304 return 0; 305 } 306 device_initcall(sched_clock_syscore_init); 307