1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Generic sched_clock() support, to extend low level hardware time 4 * counters to full 64-bit ns values. 5 */ 6 #include <linux/clocksource.h> 7 #include <linux/init.h> 8 #include <linux/jiffies.h> 9 #include <linux/ktime.h> 10 #include <linux/kernel.h> 11 #include <linux/math.h> 12 #include <linux/moduleparam.h> 13 #include <linux/sched.h> 14 #include <linux/sched/clock.h> 15 #include <linux/syscore_ops.h> 16 #include <linux/hrtimer.h> 17 #include <linux/sched_clock.h> 18 #include <linux/seqlock.h> 19 #include <linux/bitops.h> 20 21 #include "timekeeping.h" 22 23 /** 24 * struct clock_data - all data needed for sched_clock() (including 25 * registration of a new clock source) 26 * 27 * @seq: Sequence counter for protecting updates. The lowest 28 * bit is the index for @read_data. 29 * @read_data: Data required to read from sched_clock. 30 * @wrap_kt: Duration for which clock can run before wrapping. 31 * @rate: Tick rate of the registered clock. 32 * @actual_read_sched_clock: Registered hardware level clock read function. 33 * 34 * The ordering of this structure has been chosen to optimize cache 35 * performance. In particular 'seq' and 'read_data[0]' (combined) should fit 36 * into a single 64-byte cache line. 37 */ 38 struct clock_data { 39 seqcount_latch_t seq; 40 struct clock_read_data read_data[2]; 41 ktime_t wrap_kt; 42 unsigned long rate; 43 44 u64 (*actual_read_sched_clock)(void); 45 }; 46 47 static struct hrtimer sched_clock_timer; 48 static int irqtime = -1; 49 50 core_param(irqtime, irqtime, int, 0400); 51 52 static u64 notrace jiffy_sched_clock_read(void) 53 { 54 /* 55 * We don't need to use get_jiffies_64 on 32-bit arches here 56 * because we register with BITS_PER_LONG 57 */ 58 return (u64)(jiffies - INITIAL_JIFFIES); 59 } 60 61 static struct clock_data cd ____cacheline_aligned = { 62 .read_data[0] = { .mult = NSEC_PER_SEC / HZ, 63 .read_sched_clock = jiffy_sched_clock_read, }, 64 .actual_read_sched_clock = jiffy_sched_clock_read, 65 }; 66 67 static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift) 68 { 69 return (cyc * mult) >> shift; 70 } 71 72 notrace struct clock_read_data *sched_clock_read_begin(unsigned int *seq) 73 { 74 *seq = raw_read_seqcount_latch(&cd.seq); 75 return cd.read_data + (*seq & 1); 76 } 77 78 notrace int sched_clock_read_retry(unsigned int seq) 79 { 80 return read_seqcount_latch_retry(&cd.seq, seq); 81 } 82 83 unsigned long long notrace sched_clock(void) 84 { 85 u64 cyc, res; 86 unsigned int seq; 87 struct clock_read_data *rd; 88 89 do { 90 rd = sched_clock_read_begin(&seq); 91 92 cyc = (rd->read_sched_clock() - rd->epoch_cyc) & 93 rd->sched_clock_mask; 94 res = rd->epoch_ns + cyc_to_ns(cyc, rd->mult, rd->shift); 95 } while (sched_clock_read_retry(seq)); 96 97 return res; 98 } 99 100 /* 101 * Updating the data required to read the clock. 102 * 103 * sched_clock() will never observe mis-matched data even if called from 104 * an NMI. We do this by maintaining an odd/even copy of the data and 105 * steering sched_clock() to one or the other using a sequence counter. 106 * In order to preserve the data cache profile of sched_clock() as much 107 * as possible the system reverts back to the even copy when the update 108 * completes; the odd copy is used *only* during an update. 109 */ 110 static void update_clock_read_data(struct clock_read_data *rd) 111 { 112 /* update the backup (odd) copy with the new data */ 113 cd.read_data[1] = *rd; 114 115 /* steer readers towards the odd copy */ 116 raw_write_seqcount_latch(&cd.seq); 117 118 /* now its safe for us to update the normal (even) copy */ 119 cd.read_data[0] = *rd; 120 121 /* switch readers back to the even copy */ 122 raw_write_seqcount_latch(&cd.seq); 123 } 124 125 /* 126 * Atomically update the sched_clock() epoch. 127 */ 128 static void update_sched_clock(void) 129 { 130 u64 cyc; 131 u64 ns; 132 struct clock_read_data rd; 133 134 rd = cd.read_data[0]; 135 136 cyc = cd.actual_read_sched_clock(); 137 ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift); 138 139 rd.epoch_ns = ns; 140 rd.epoch_cyc = cyc; 141 142 update_clock_read_data(&rd); 143 } 144 145 static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt) 146 { 147 update_sched_clock(); 148 hrtimer_forward_now(hrt, cd.wrap_kt); 149 150 return HRTIMER_RESTART; 151 } 152 153 void __init 154 sched_clock_register(u64 (*read)(void), int bits, unsigned long rate) 155 { 156 u64 res, wrap, new_mask, new_epoch, cyc, ns; 157 u32 new_mult, new_shift; 158 unsigned long r, flags; 159 char r_unit; 160 struct clock_read_data rd; 161 162 if (cd.rate > rate) 163 return; 164 165 /* Cannot register a sched_clock with interrupts on */ 166 local_irq_save(flags); 167 168 /* Calculate the mult/shift to convert counter ticks to ns. */ 169 clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 3600); 170 171 new_mask = CLOCKSOURCE_MASK(bits); 172 cd.rate = rate; 173 174 /* Calculate how many nanosecs until we risk wrapping */ 175 wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask, NULL); 176 cd.wrap_kt = ns_to_ktime(wrap); 177 178 rd = cd.read_data[0]; 179 180 /* Update epoch for new counter and update 'epoch_ns' from old counter*/ 181 new_epoch = read(); 182 cyc = cd.actual_read_sched_clock(); 183 ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift); 184 cd.actual_read_sched_clock = read; 185 186 rd.read_sched_clock = read; 187 rd.sched_clock_mask = new_mask; 188 rd.mult = new_mult; 189 rd.shift = new_shift; 190 rd.epoch_cyc = new_epoch; 191 rd.epoch_ns = ns; 192 193 update_clock_read_data(&rd); 194 195 if (sched_clock_timer.function != NULL) { 196 /* update timeout for clock wrap */ 197 hrtimer_start(&sched_clock_timer, cd.wrap_kt, 198 HRTIMER_MODE_REL_HARD); 199 } 200 201 r = rate; 202 if (r >= 4000000) { 203 r = DIV_ROUND_CLOSEST(r, 1000000); 204 r_unit = 'M'; 205 } else if (r >= 4000) { 206 r = DIV_ROUND_CLOSEST(r, 1000); 207 r_unit = 'k'; 208 } else { 209 r_unit = ' '; 210 } 211 212 /* Calculate the ns resolution of this counter */ 213 res = cyc_to_ns(1ULL, new_mult, new_shift); 214 215 pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n", 216 bits, r, r_unit, res, wrap); 217 218 /* Enable IRQ time accounting if we have a fast enough sched_clock() */ 219 if (irqtime > 0 || (irqtime == -1 && rate >= 1000000)) 220 enable_sched_clock_irqtime(); 221 222 local_irq_restore(flags); 223 224 pr_debug("Registered %pS as sched_clock source\n", read); 225 } 226 227 void __init generic_sched_clock_init(void) 228 { 229 /* 230 * If no sched_clock() function has been provided at that point, 231 * make it the final one. 232 */ 233 if (cd.actual_read_sched_clock == jiffy_sched_clock_read) 234 sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ); 235 236 update_sched_clock(); 237 238 /* 239 * Start the timer to keep sched_clock() properly updated and 240 * sets the initial epoch. 241 */ 242 hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 243 sched_clock_timer.function = sched_clock_poll; 244 hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL_HARD); 245 } 246 247 /* 248 * Clock read function for use when the clock is suspended. 249 * 250 * This function makes it appear to sched_clock() as if the clock 251 * stopped counting at its last update. 252 * 253 * This function must only be called from the critical 254 * section in sched_clock(). It relies on the read_seqcount_retry() 255 * at the end of the critical section to be sure we observe the 256 * correct copy of 'epoch_cyc'. 257 */ 258 static u64 notrace suspended_sched_clock_read(void) 259 { 260 unsigned int seq = raw_read_seqcount_latch(&cd.seq); 261 262 return cd.read_data[seq & 1].epoch_cyc; 263 } 264 265 int sched_clock_suspend(void) 266 { 267 struct clock_read_data *rd = &cd.read_data[0]; 268 269 update_sched_clock(); 270 hrtimer_cancel(&sched_clock_timer); 271 rd->read_sched_clock = suspended_sched_clock_read; 272 273 return 0; 274 } 275 276 void sched_clock_resume(void) 277 { 278 struct clock_read_data *rd = &cd.read_data[0]; 279 280 rd->epoch_cyc = cd.actual_read_sched_clock(); 281 hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL_HARD); 282 rd->read_sched_clock = cd.actual_read_sched_clock; 283 } 284 285 static struct syscore_ops sched_clock_ops = { 286 .suspend = sched_clock_suspend, 287 .resume = sched_clock_resume, 288 }; 289 290 static int __init sched_clock_syscore_init(void) 291 { 292 register_syscore_ops(&sched_clock_ops); 293 294 return 0; 295 } 296 device_initcall(sched_clock_syscore_init); 297