xref: /openbmc/linux/kernel/time/sched_clock.c (revision 5d0e4d78)
1 /*
2  * sched_clock.c: Generic sched_clock() support, to extend low level
3  *                hardware time counters to full 64-bit ns values.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  */
9 #include <linux/clocksource.h>
10 #include <linux/init.h>
11 #include <linux/jiffies.h>
12 #include <linux/ktime.h>
13 #include <linux/kernel.h>
14 #include <linux/moduleparam.h>
15 #include <linux/sched.h>
16 #include <linux/sched/clock.h>
17 #include <linux/syscore_ops.h>
18 #include <linux/hrtimer.h>
19 #include <linux/sched_clock.h>
20 #include <linux/seqlock.h>
21 #include <linux/bitops.h>
22 
23 /**
24  * struct clock_read_data - data required to read from sched_clock()
25  *
26  * @epoch_ns:		sched_clock() value at last update
27  * @epoch_cyc:		Clock cycle value at last update.
28  * @sched_clock_mask:   Bitmask for two's complement subtraction of non 64bit
29  *			clocks.
30  * @read_sched_clock:	Current clock source (or dummy source when suspended).
31  * @mult:		Multipler for scaled math conversion.
32  * @shift:		Shift value for scaled math conversion.
33  *
34  * Care must be taken when updating this structure; it is read by
35  * some very hot code paths. It occupies <=40 bytes and, when combined
36  * with the seqcount used to synchronize access, comfortably fits into
37  * a 64 byte cache line.
38  */
39 struct clock_read_data {
40 	u64 epoch_ns;
41 	u64 epoch_cyc;
42 	u64 sched_clock_mask;
43 	u64 (*read_sched_clock)(void);
44 	u32 mult;
45 	u32 shift;
46 };
47 
48 /**
49  * struct clock_data - all data needed for sched_clock() (including
50  *                     registration of a new clock source)
51  *
52  * @seq:		Sequence counter for protecting updates. The lowest
53  *			bit is the index for @read_data.
54  * @read_data:		Data required to read from sched_clock.
55  * @wrap_kt:		Duration for which clock can run before wrapping.
56  * @rate:		Tick rate of the registered clock.
57  * @actual_read_sched_clock: Registered hardware level clock read function.
58  *
59  * The ordering of this structure has been chosen to optimize cache
60  * performance. In particular 'seq' and 'read_data[0]' (combined) should fit
61  * into a single 64-byte cache line.
62  */
63 struct clock_data {
64 	seqcount_t		seq;
65 	struct clock_read_data	read_data[2];
66 	ktime_t			wrap_kt;
67 	unsigned long		rate;
68 
69 	u64 (*actual_read_sched_clock)(void);
70 };
71 
72 static struct hrtimer sched_clock_timer;
73 static int irqtime = -1;
74 
75 core_param(irqtime, irqtime, int, 0400);
76 
77 static u64 notrace jiffy_sched_clock_read(void)
78 {
79 	/*
80 	 * We don't need to use get_jiffies_64 on 32-bit arches here
81 	 * because we register with BITS_PER_LONG
82 	 */
83 	return (u64)(jiffies - INITIAL_JIFFIES);
84 }
85 
86 static struct clock_data cd ____cacheline_aligned = {
87 	.read_data[0] = { .mult = NSEC_PER_SEC / HZ,
88 			  .read_sched_clock = jiffy_sched_clock_read, },
89 	.actual_read_sched_clock = jiffy_sched_clock_read,
90 };
91 
92 static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
93 {
94 	return (cyc * mult) >> shift;
95 }
96 
97 unsigned long long notrace sched_clock(void)
98 {
99 	u64 cyc, res;
100 	unsigned long seq;
101 	struct clock_read_data *rd;
102 
103 	do {
104 		seq = raw_read_seqcount(&cd.seq);
105 		rd = cd.read_data + (seq & 1);
106 
107 		cyc = (rd->read_sched_clock() - rd->epoch_cyc) &
108 		      rd->sched_clock_mask;
109 		res = rd->epoch_ns + cyc_to_ns(cyc, rd->mult, rd->shift);
110 	} while (read_seqcount_retry(&cd.seq, seq));
111 
112 	return res;
113 }
114 
115 /*
116  * Updating the data required to read the clock.
117  *
118  * sched_clock() will never observe mis-matched data even if called from
119  * an NMI. We do this by maintaining an odd/even copy of the data and
120  * steering sched_clock() to one or the other using a sequence counter.
121  * In order to preserve the data cache profile of sched_clock() as much
122  * as possible the system reverts back to the even copy when the update
123  * completes; the odd copy is used *only* during an update.
124  */
125 static void update_clock_read_data(struct clock_read_data *rd)
126 {
127 	/* update the backup (odd) copy with the new data */
128 	cd.read_data[1] = *rd;
129 
130 	/* steer readers towards the odd copy */
131 	raw_write_seqcount_latch(&cd.seq);
132 
133 	/* now its safe for us to update the normal (even) copy */
134 	cd.read_data[0] = *rd;
135 
136 	/* switch readers back to the even copy */
137 	raw_write_seqcount_latch(&cd.seq);
138 }
139 
140 /*
141  * Atomically update the sched_clock() epoch.
142  */
143 static void update_sched_clock(void)
144 {
145 	u64 cyc;
146 	u64 ns;
147 	struct clock_read_data rd;
148 
149 	rd = cd.read_data[0];
150 
151 	cyc = cd.actual_read_sched_clock();
152 	ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
153 
154 	rd.epoch_ns = ns;
155 	rd.epoch_cyc = cyc;
156 
157 	update_clock_read_data(&rd);
158 }
159 
160 static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt)
161 {
162 	update_sched_clock();
163 	hrtimer_forward_now(hrt, cd.wrap_kt);
164 
165 	return HRTIMER_RESTART;
166 }
167 
168 void __init
169 sched_clock_register(u64 (*read)(void), int bits, unsigned long rate)
170 {
171 	u64 res, wrap, new_mask, new_epoch, cyc, ns;
172 	u32 new_mult, new_shift;
173 	unsigned long r;
174 	char r_unit;
175 	struct clock_read_data rd;
176 
177 	if (cd.rate > rate)
178 		return;
179 
180 	WARN_ON(!irqs_disabled());
181 
182 	/* Calculate the mult/shift to convert counter ticks to ns. */
183 	clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 3600);
184 
185 	new_mask = CLOCKSOURCE_MASK(bits);
186 	cd.rate = rate;
187 
188 	/* Calculate how many nanosecs until we risk wrapping */
189 	wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask, NULL);
190 	cd.wrap_kt = ns_to_ktime(wrap);
191 
192 	rd = cd.read_data[0];
193 
194 	/* Update epoch for new counter and update 'epoch_ns' from old counter*/
195 	new_epoch = read();
196 	cyc = cd.actual_read_sched_clock();
197 	ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
198 	cd.actual_read_sched_clock = read;
199 
200 	rd.read_sched_clock	= read;
201 	rd.sched_clock_mask	= new_mask;
202 	rd.mult			= new_mult;
203 	rd.shift		= new_shift;
204 	rd.epoch_cyc		= new_epoch;
205 	rd.epoch_ns		= ns;
206 
207 	update_clock_read_data(&rd);
208 
209 	if (sched_clock_timer.function != NULL) {
210 		/* update timeout for clock wrap */
211 		hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
212 	}
213 
214 	r = rate;
215 	if (r >= 4000000) {
216 		r /= 1000000;
217 		r_unit = 'M';
218 	} else {
219 		if (r >= 1000) {
220 			r /= 1000;
221 			r_unit = 'k';
222 		} else {
223 			r_unit = ' ';
224 		}
225 	}
226 
227 	/* Calculate the ns resolution of this counter */
228 	res = cyc_to_ns(1ULL, new_mult, new_shift);
229 
230 	pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n",
231 		bits, r, r_unit, res, wrap);
232 
233 	/* Enable IRQ time accounting if we have a fast enough sched_clock() */
234 	if (irqtime > 0 || (irqtime == -1 && rate >= 1000000))
235 		enable_sched_clock_irqtime();
236 
237 	pr_debug("Registered %pF as sched_clock source\n", read);
238 }
239 
240 void __init sched_clock_postinit(void)
241 {
242 	/*
243 	 * If no sched_clock() function has been provided at that point,
244 	 * make it the final one one.
245 	 */
246 	if (cd.actual_read_sched_clock == jiffy_sched_clock_read)
247 		sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ);
248 
249 	update_sched_clock();
250 
251 	/*
252 	 * Start the timer to keep sched_clock() properly updated and
253 	 * sets the initial epoch.
254 	 */
255 	hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
256 	sched_clock_timer.function = sched_clock_poll;
257 	hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
258 }
259 
260 /*
261  * Clock read function for use when the clock is suspended.
262  *
263  * This function makes it appear to sched_clock() as if the clock
264  * stopped counting at its last update.
265  *
266  * This function must only be called from the critical
267  * section in sched_clock(). It relies on the read_seqcount_retry()
268  * at the end of the critical section to be sure we observe the
269  * correct copy of 'epoch_cyc'.
270  */
271 static u64 notrace suspended_sched_clock_read(void)
272 {
273 	unsigned long seq = raw_read_seqcount(&cd.seq);
274 
275 	return cd.read_data[seq & 1].epoch_cyc;
276 }
277 
278 static int sched_clock_suspend(void)
279 {
280 	struct clock_read_data *rd = &cd.read_data[0];
281 
282 	update_sched_clock();
283 	hrtimer_cancel(&sched_clock_timer);
284 	rd->read_sched_clock = suspended_sched_clock_read;
285 
286 	return 0;
287 }
288 
289 static void sched_clock_resume(void)
290 {
291 	struct clock_read_data *rd = &cd.read_data[0];
292 
293 	rd->epoch_cyc = cd.actual_read_sched_clock();
294 	hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
295 	rd->read_sched_clock = cd.actual_read_sched_clock;
296 }
297 
298 static struct syscore_ops sched_clock_ops = {
299 	.suspend	= sched_clock_suspend,
300 	.resume		= sched_clock_resume,
301 };
302 
303 static int __init sched_clock_syscore_init(void)
304 {
305 	register_syscore_ops(&sched_clock_ops);
306 
307 	return 0;
308 }
309 device_initcall(sched_clock_syscore_init);
310