xref: /openbmc/linux/kernel/time/sched_clock.c (revision 15e3ae36)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic sched_clock() support, to extend low level hardware time
4  * counters to full 64-bit ns values.
5  */
6 #include <linux/clocksource.h>
7 #include <linux/init.h>
8 #include <linux/jiffies.h>
9 #include <linux/ktime.h>
10 #include <linux/kernel.h>
11 #include <linux/moduleparam.h>
12 #include <linux/sched.h>
13 #include <linux/sched/clock.h>
14 #include <linux/syscore_ops.h>
15 #include <linux/hrtimer.h>
16 #include <linux/sched_clock.h>
17 #include <linux/seqlock.h>
18 #include <linux/bitops.h>
19 
20 #include "timekeeping.h"
21 
22 /**
23  * struct clock_read_data - data required to read from sched_clock()
24  *
25  * @epoch_ns:		sched_clock() value at last update
26  * @epoch_cyc:		Clock cycle value at last update.
27  * @sched_clock_mask:   Bitmask for two's complement subtraction of non 64bit
28  *			clocks.
29  * @read_sched_clock:	Current clock source (or dummy source when suspended).
30  * @mult:		Multipler for scaled math conversion.
31  * @shift:		Shift value for scaled math conversion.
32  *
33  * Care must be taken when updating this structure; it is read by
34  * some very hot code paths. It occupies <=40 bytes and, when combined
35  * with the seqcount used to synchronize access, comfortably fits into
36  * a 64 byte cache line.
37  */
38 struct clock_read_data {
39 	u64 epoch_ns;
40 	u64 epoch_cyc;
41 	u64 sched_clock_mask;
42 	u64 (*read_sched_clock)(void);
43 	u32 mult;
44 	u32 shift;
45 };
46 
47 /**
48  * struct clock_data - all data needed for sched_clock() (including
49  *                     registration of a new clock source)
50  *
51  * @seq:		Sequence counter for protecting updates. The lowest
52  *			bit is the index for @read_data.
53  * @read_data:		Data required to read from sched_clock.
54  * @wrap_kt:		Duration for which clock can run before wrapping.
55  * @rate:		Tick rate of the registered clock.
56  * @actual_read_sched_clock: Registered hardware level clock read function.
57  *
58  * The ordering of this structure has been chosen to optimize cache
59  * performance. In particular 'seq' and 'read_data[0]' (combined) should fit
60  * into a single 64-byte cache line.
61  */
62 struct clock_data {
63 	seqcount_t		seq;
64 	struct clock_read_data	read_data[2];
65 	ktime_t			wrap_kt;
66 	unsigned long		rate;
67 
68 	u64 (*actual_read_sched_clock)(void);
69 };
70 
71 static struct hrtimer sched_clock_timer;
72 static int irqtime = -1;
73 
74 core_param(irqtime, irqtime, int, 0400);
75 
76 static u64 notrace jiffy_sched_clock_read(void)
77 {
78 	/*
79 	 * We don't need to use get_jiffies_64 on 32-bit arches here
80 	 * because we register with BITS_PER_LONG
81 	 */
82 	return (u64)(jiffies - INITIAL_JIFFIES);
83 }
84 
85 static struct clock_data cd ____cacheline_aligned = {
86 	.read_data[0] = { .mult = NSEC_PER_SEC / HZ,
87 			  .read_sched_clock = jiffy_sched_clock_read, },
88 	.actual_read_sched_clock = jiffy_sched_clock_read,
89 };
90 
91 static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
92 {
93 	return (cyc * mult) >> shift;
94 }
95 
96 unsigned long long notrace sched_clock(void)
97 {
98 	u64 cyc, res;
99 	unsigned int seq;
100 	struct clock_read_data *rd;
101 
102 	do {
103 		seq = raw_read_seqcount(&cd.seq);
104 		rd = cd.read_data + (seq & 1);
105 
106 		cyc = (rd->read_sched_clock() - rd->epoch_cyc) &
107 		      rd->sched_clock_mask;
108 		res = rd->epoch_ns + cyc_to_ns(cyc, rd->mult, rd->shift);
109 	} while (read_seqcount_retry(&cd.seq, seq));
110 
111 	return res;
112 }
113 
114 /*
115  * Updating the data required to read the clock.
116  *
117  * sched_clock() will never observe mis-matched data even if called from
118  * an NMI. We do this by maintaining an odd/even copy of the data and
119  * steering sched_clock() to one or the other using a sequence counter.
120  * In order to preserve the data cache profile of sched_clock() as much
121  * as possible the system reverts back to the even copy when the update
122  * completes; the odd copy is used *only* during an update.
123  */
124 static void update_clock_read_data(struct clock_read_data *rd)
125 {
126 	/* update the backup (odd) copy with the new data */
127 	cd.read_data[1] = *rd;
128 
129 	/* steer readers towards the odd copy */
130 	raw_write_seqcount_latch(&cd.seq);
131 
132 	/* now its safe for us to update the normal (even) copy */
133 	cd.read_data[0] = *rd;
134 
135 	/* switch readers back to the even copy */
136 	raw_write_seqcount_latch(&cd.seq);
137 }
138 
139 /*
140  * Atomically update the sched_clock() epoch.
141  */
142 static void update_sched_clock(void)
143 {
144 	u64 cyc;
145 	u64 ns;
146 	struct clock_read_data rd;
147 
148 	rd = cd.read_data[0];
149 
150 	cyc = cd.actual_read_sched_clock();
151 	ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
152 
153 	rd.epoch_ns = ns;
154 	rd.epoch_cyc = cyc;
155 
156 	update_clock_read_data(&rd);
157 }
158 
159 static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt)
160 {
161 	update_sched_clock();
162 	hrtimer_forward_now(hrt, cd.wrap_kt);
163 
164 	return HRTIMER_RESTART;
165 }
166 
167 void __init
168 sched_clock_register(u64 (*read)(void), int bits, unsigned long rate)
169 {
170 	u64 res, wrap, new_mask, new_epoch, cyc, ns;
171 	u32 new_mult, new_shift;
172 	unsigned long r, flags;
173 	char r_unit;
174 	struct clock_read_data rd;
175 
176 	if (cd.rate > rate)
177 		return;
178 
179 	/* Cannot register a sched_clock with interrupts on */
180 	local_irq_save(flags);
181 
182 	/* Calculate the mult/shift to convert counter ticks to ns. */
183 	clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 3600);
184 
185 	new_mask = CLOCKSOURCE_MASK(bits);
186 	cd.rate = rate;
187 
188 	/* Calculate how many nanosecs until we risk wrapping */
189 	wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask, NULL);
190 	cd.wrap_kt = ns_to_ktime(wrap);
191 
192 	rd = cd.read_data[0];
193 
194 	/* Update epoch for new counter and update 'epoch_ns' from old counter*/
195 	new_epoch = read();
196 	cyc = cd.actual_read_sched_clock();
197 	ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
198 	cd.actual_read_sched_clock = read;
199 
200 	rd.read_sched_clock	= read;
201 	rd.sched_clock_mask	= new_mask;
202 	rd.mult			= new_mult;
203 	rd.shift		= new_shift;
204 	rd.epoch_cyc		= new_epoch;
205 	rd.epoch_ns		= ns;
206 
207 	update_clock_read_data(&rd);
208 
209 	if (sched_clock_timer.function != NULL) {
210 		/* update timeout for clock wrap */
211 		hrtimer_start(&sched_clock_timer, cd.wrap_kt,
212 			      HRTIMER_MODE_REL_HARD);
213 	}
214 
215 	r = rate;
216 	if (r >= 4000000) {
217 		r /= 1000000;
218 		r_unit = 'M';
219 	} else {
220 		if (r >= 1000) {
221 			r /= 1000;
222 			r_unit = 'k';
223 		} else {
224 			r_unit = ' ';
225 		}
226 	}
227 
228 	/* Calculate the ns resolution of this counter */
229 	res = cyc_to_ns(1ULL, new_mult, new_shift);
230 
231 	pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n",
232 		bits, r, r_unit, res, wrap);
233 
234 	/* Enable IRQ time accounting if we have a fast enough sched_clock() */
235 	if (irqtime > 0 || (irqtime == -1 && rate >= 1000000))
236 		enable_sched_clock_irqtime();
237 
238 	local_irq_restore(flags);
239 
240 	pr_debug("Registered %pS as sched_clock source\n", read);
241 }
242 
243 void __init generic_sched_clock_init(void)
244 {
245 	/*
246 	 * If no sched_clock() function has been provided at that point,
247 	 * make it the final one one.
248 	 */
249 	if (cd.actual_read_sched_clock == jiffy_sched_clock_read)
250 		sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ);
251 
252 	update_sched_clock();
253 
254 	/*
255 	 * Start the timer to keep sched_clock() properly updated and
256 	 * sets the initial epoch.
257 	 */
258 	hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
259 	sched_clock_timer.function = sched_clock_poll;
260 	hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL_HARD);
261 }
262 
263 /*
264  * Clock read function for use when the clock is suspended.
265  *
266  * This function makes it appear to sched_clock() as if the clock
267  * stopped counting at its last update.
268  *
269  * This function must only be called from the critical
270  * section in sched_clock(). It relies on the read_seqcount_retry()
271  * at the end of the critical section to be sure we observe the
272  * correct copy of 'epoch_cyc'.
273  */
274 static u64 notrace suspended_sched_clock_read(void)
275 {
276 	unsigned int seq = raw_read_seqcount(&cd.seq);
277 
278 	return cd.read_data[seq & 1].epoch_cyc;
279 }
280 
281 int sched_clock_suspend(void)
282 {
283 	struct clock_read_data *rd = &cd.read_data[0];
284 
285 	update_sched_clock();
286 	hrtimer_cancel(&sched_clock_timer);
287 	rd->read_sched_clock = suspended_sched_clock_read;
288 
289 	return 0;
290 }
291 
292 void sched_clock_resume(void)
293 {
294 	struct clock_read_data *rd = &cd.read_data[0];
295 
296 	rd->epoch_cyc = cd.actual_read_sched_clock();
297 	hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL_HARD);
298 	rd->read_sched_clock = cd.actual_read_sched_clock;
299 }
300 
301 static struct syscore_ops sched_clock_ops = {
302 	.suspend	= sched_clock_suspend,
303 	.resume		= sched_clock_resume,
304 };
305 
306 static int __init sched_clock_syscore_init(void)
307 {
308 	register_syscore_ops(&sched_clock_ops);
309 
310 	return 0;
311 }
312 device_initcall(sched_clock_syscore_init);
313