xref: /openbmc/linux/kernel/time/posix-timers.c (revision e3d786a3)
1 /*
2  * linux/kernel/posix-timers.c
3  *
4  *
5  * 2002-10-15  Posix Clocks & timers
6  *                           by George Anzinger george@mvista.com
7  *
8  *			     Copyright (C) 2002 2003 by MontaVista Software.
9  *
10  * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11  *			     Copyright (C) 2004 Boris Hu
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or (at
16  * your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful, but
19  * WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21  * General Public License for more details.
22 
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26  *
27  * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28  */
29 
30 /* These are all the functions necessary to implement
31  * POSIX clocks & timers
32  */
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/slab.h>
36 #include <linux/time.h>
37 #include <linux/mutex.h>
38 #include <linux/sched/task.h>
39 
40 #include <linux/uaccess.h>
41 #include <linux/list.h>
42 #include <linux/init.h>
43 #include <linux/compiler.h>
44 #include <linux/hash.h>
45 #include <linux/posix-clock.h>
46 #include <linux/posix-timers.h>
47 #include <linux/syscalls.h>
48 #include <linux/wait.h>
49 #include <linux/workqueue.h>
50 #include <linux/export.h>
51 #include <linux/hashtable.h>
52 #include <linux/compat.h>
53 #include <linux/nospec.h>
54 
55 #include "timekeeping.h"
56 #include "posix-timers.h"
57 
58 /*
59  * Management arrays for POSIX timers. Timers are now kept in static hash table
60  * with 512 entries.
61  * Timer ids are allocated by local routine, which selects proper hash head by
62  * key, constructed from current->signal address and per signal struct counter.
63  * This keeps timer ids unique per process, but now they can intersect between
64  * processes.
65  */
66 
67 /*
68  * Lets keep our timers in a slab cache :-)
69  */
70 static struct kmem_cache *posix_timers_cache;
71 
72 static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
73 static DEFINE_SPINLOCK(hash_lock);
74 
75 static const struct k_clock * const posix_clocks[];
76 static const struct k_clock *clockid_to_kclock(const clockid_t id);
77 static const struct k_clock clock_realtime, clock_monotonic;
78 
79 /*
80  * we assume that the new SIGEV_THREAD_ID shares no bits with the other
81  * SIGEV values.  Here we put out an error if this assumption fails.
82  */
83 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
84                        ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
85 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
86 #endif
87 
88 /*
89  * The timer ID is turned into a timer address by idr_find().
90  * Verifying a valid ID consists of:
91  *
92  * a) checking that idr_find() returns other than -1.
93  * b) checking that the timer id matches the one in the timer itself.
94  * c) that the timer owner is in the callers thread group.
95  */
96 
97 /*
98  * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
99  *	    to implement others.  This structure defines the various
100  *	    clocks.
101  *
102  * RESOLUTION: Clock resolution is used to round up timer and interval
103  *	    times, NOT to report clock times, which are reported with as
104  *	    much resolution as the system can muster.  In some cases this
105  *	    resolution may depend on the underlying clock hardware and
106  *	    may not be quantifiable until run time, and only then is the
107  *	    necessary code is written.	The standard says we should say
108  *	    something about this issue in the documentation...
109  *
110  * FUNCTIONS: The CLOCKs structure defines possible functions to
111  *	    handle various clock functions.
112  *
113  *	    The standard POSIX timer management code assumes the
114  *	    following: 1.) The k_itimer struct (sched.h) is used for
115  *	    the timer.  2.) The list, it_lock, it_clock, it_id and
116  *	    it_pid fields are not modified by timer code.
117  *
118  * Permissions: It is assumed that the clock_settime() function defined
119  *	    for each clock will take care of permission checks.	 Some
120  *	    clocks may be set able by any user (i.e. local process
121  *	    clocks) others not.	 Currently the only set able clock we
122  *	    have is CLOCK_REALTIME and its high res counter part, both of
123  *	    which we beg off on and pass to do_sys_settimeofday().
124  */
125 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
126 
127 #define lock_timer(tid, flags)						   \
128 ({	struct k_itimer *__timr;					   \
129 	__cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags));  \
130 	__timr;								   \
131 })
132 
133 static int hash(struct signal_struct *sig, unsigned int nr)
134 {
135 	return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
136 }
137 
138 static struct k_itimer *__posix_timers_find(struct hlist_head *head,
139 					    struct signal_struct *sig,
140 					    timer_t id)
141 {
142 	struct k_itimer *timer;
143 
144 	hlist_for_each_entry_rcu(timer, head, t_hash) {
145 		if ((timer->it_signal == sig) && (timer->it_id == id))
146 			return timer;
147 	}
148 	return NULL;
149 }
150 
151 static struct k_itimer *posix_timer_by_id(timer_t id)
152 {
153 	struct signal_struct *sig = current->signal;
154 	struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
155 
156 	return __posix_timers_find(head, sig, id);
157 }
158 
159 static int posix_timer_add(struct k_itimer *timer)
160 {
161 	struct signal_struct *sig = current->signal;
162 	int first_free_id = sig->posix_timer_id;
163 	struct hlist_head *head;
164 	int ret = -ENOENT;
165 
166 	do {
167 		spin_lock(&hash_lock);
168 		head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
169 		if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
170 			hlist_add_head_rcu(&timer->t_hash, head);
171 			ret = sig->posix_timer_id;
172 		}
173 		if (++sig->posix_timer_id < 0)
174 			sig->posix_timer_id = 0;
175 		if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
176 			/* Loop over all possible ids completed */
177 			ret = -EAGAIN;
178 		spin_unlock(&hash_lock);
179 	} while (ret == -ENOENT);
180 	return ret;
181 }
182 
183 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
184 {
185 	spin_unlock_irqrestore(&timr->it_lock, flags);
186 }
187 
188 /* Get clock_realtime */
189 static int posix_clock_realtime_get(clockid_t which_clock, struct timespec64 *tp)
190 {
191 	ktime_get_real_ts64(tp);
192 	return 0;
193 }
194 
195 /* Set clock_realtime */
196 static int posix_clock_realtime_set(const clockid_t which_clock,
197 				    const struct timespec64 *tp)
198 {
199 	return do_sys_settimeofday64(tp, NULL);
200 }
201 
202 static int posix_clock_realtime_adj(const clockid_t which_clock,
203 				    struct timex *t)
204 {
205 	return do_adjtimex(t);
206 }
207 
208 /*
209  * Get monotonic time for posix timers
210  */
211 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec64 *tp)
212 {
213 	ktime_get_ts64(tp);
214 	return 0;
215 }
216 
217 /*
218  * Get monotonic-raw time for posix timers
219  */
220 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
221 {
222 	ktime_get_raw_ts64(tp);
223 	return 0;
224 }
225 
226 
227 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
228 {
229 	ktime_get_coarse_real_ts64(tp);
230 	return 0;
231 }
232 
233 static int posix_get_monotonic_coarse(clockid_t which_clock,
234 						struct timespec64 *tp)
235 {
236 	ktime_get_coarse_ts64(tp);
237 	return 0;
238 }
239 
240 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
241 {
242 	*tp = ktime_to_timespec64(KTIME_LOW_RES);
243 	return 0;
244 }
245 
246 static int posix_get_boottime(const clockid_t which_clock, struct timespec64 *tp)
247 {
248 	ktime_get_boottime_ts64(tp);
249 	return 0;
250 }
251 
252 static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp)
253 {
254 	ktime_get_clocktai_ts64(tp);
255 	return 0;
256 }
257 
258 static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
259 {
260 	tp->tv_sec = 0;
261 	tp->tv_nsec = hrtimer_resolution;
262 	return 0;
263 }
264 
265 /*
266  * Initialize everything, well, just everything in Posix clocks/timers ;)
267  */
268 static __init int init_posix_timers(void)
269 {
270 	posix_timers_cache = kmem_cache_create("posix_timers_cache",
271 					sizeof (struct k_itimer), 0, SLAB_PANIC,
272 					NULL);
273 	return 0;
274 }
275 __initcall(init_posix_timers);
276 
277 /*
278  * The siginfo si_overrun field and the return value of timer_getoverrun(2)
279  * are of type int. Clamp the overrun value to INT_MAX
280  */
281 static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval)
282 {
283 	s64 sum = timr->it_overrun_last + (s64)baseval;
284 
285 	return sum > (s64)INT_MAX ? INT_MAX : (int)sum;
286 }
287 
288 static void common_hrtimer_rearm(struct k_itimer *timr)
289 {
290 	struct hrtimer *timer = &timr->it.real.timer;
291 
292 	if (!timr->it_interval)
293 		return;
294 
295 	timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
296 					    timr->it_interval);
297 	hrtimer_restart(timer);
298 }
299 
300 /*
301  * This function is exported for use by the signal deliver code.  It is
302  * called just prior to the info block being released and passes that
303  * block to us.  It's function is to update the overrun entry AND to
304  * restart the timer.  It should only be called if the timer is to be
305  * restarted (i.e. we have flagged this in the sys_private entry of the
306  * info block).
307  *
308  * To protect against the timer going away while the interrupt is queued,
309  * we require that the it_requeue_pending flag be set.
310  */
311 void posixtimer_rearm(struct kernel_siginfo *info)
312 {
313 	struct k_itimer *timr;
314 	unsigned long flags;
315 
316 	timr = lock_timer(info->si_tid, &flags);
317 	if (!timr)
318 		return;
319 
320 	if (timr->it_requeue_pending == info->si_sys_private) {
321 		timr->kclock->timer_rearm(timr);
322 
323 		timr->it_active = 1;
324 		timr->it_overrun_last = timr->it_overrun;
325 		timr->it_overrun = -1LL;
326 		++timr->it_requeue_pending;
327 
328 		info->si_overrun = timer_overrun_to_int(timr, info->si_overrun);
329 	}
330 
331 	unlock_timer(timr, flags);
332 }
333 
334 int posix_timer_event(struct k_itimer *timr, int si_private)
335 {
336 	enum pid_type type;
337 	int ret = -1;
338 	/*
339 	 * FIXME: if ->sigq is queued we can race with
340 	 * dequeue_signal()->posixtimer_rearm().
341 	 *
342 	 * If dequeue_signal() sees the "right" value of
343 	 * si_sys_private it calls posixtimer_rearm().
344 	 * We re-queue ->sigq and drop ->it_lock().
345 	 * posixtimer_rearm() locks the timer
346 	 * and re-schedules it while ->sigq is pending.
347 	 * Not really bad, but not that we want.
348 	 */
349 	timr->sigq->info.si_sys_private = si_private;
350 
351 	type = !(timr->it_sigev_notify & SIGEV_THREAD_ID) ? PIDTYPE_TGID : PIDTYPE_PID;
352 	ret = send_sigqueue(timr->sigq, timr->it_pid, type);
353 	/* If we failed to send the signal the timer stops. */
354 	return ret > 0;
355 }
356 
357 /*
358  * This function gets called when a POSIX.1b interval timer expires.  It
359  * is used as a callback from the kernel internal timer.  The
360  * run_timer_list code ALWAYS calls with interrupts on.
361 
362  * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
363  */
364 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
365 {
366 	struct k_itimer *timr;
367 	unsigned long flags;
368 	int si_private = 0;
369 	enum hrtimer_restart ret = HRTIMER_NORESTART;
370 
371 	timr = container_of(timer, struct k_itimer, it.real.timer);
372 	spin_lock_irqsave(&timr->it_lock, flags);
373 
374 	timr->it_active = 0;
375 	if (timr->it_interval != 0)
376 		si_private = ++timr->it_requeue_pending;
377 
378 	if (posix_timer_event(timr, si_private)) {
379 		/*
380 		 * signal was not sent because of sig_ignor
381 		 * we will not get a call back to restart it AND
382 		 * it should be restarted.
383 		 */
384 		if (timr->it_interval != 0) {
385 			ktime_t now = hrtimer_cb_get_time(timer);
386 
387 			/*
388 			 * FIXME: What we really want, is to stop this
389 			 * timer completely and restart it in case the
390 			 * SIG_IGN is removed. This is a non trivial
391 			 * change which involves sighand locking
392 			 * (sigh !), which we don't want to do late in
393 			 * the release cycle.
394 			 *
395 			 * For now we just let timers with an interval
396 			 * less than a jiffie expire every jiffie to
397 			 * avoid softirq starvation in case of SIG_IGN
398 			 * and a very small interval, which would put
399 			 * the timer right back on the softirq pending
400 			 * list. By moving now ahead of time we trick
401 			 * hrtimer_forward() to expire the timer
402 			 * later, while we still maintain the overrun
403 			 * accuracy, but have some inconsistency in
404 			 * the timer_gettime() case. This is at least
405 			 * better than a starved softirq. A more
406 			 * complex fix which solves also another related
407 			 * inconsistency is already in the pipeline.
408 			 */
409 #ifdef CONFIG_HIGH_RES_TIMERS
410 			{
411 				ktime_t kj = NSEC_PER_SEC / HZ;
412 
413 				if (timr->it_interval < kj)
414 					now = ktime_add(now, kj);
415 			}
416 #endif
417 			timr->it_overrun += hrtimer_forward(timer, now,
418 							    timr->it_interval);
419 			ret = HRTIMER_RESTART;
420 			++timr->it_requeue_pending;
421 			timr->it_active = 1;
422 		}
423 	}
424 
425 	unlock_timer(timr, flags);
426 	return ret;
427 }
428 
429 static struct pid *good_sigevent(sigevent_t * event)
430 {
431 	struct pid *pid = task_tgid(current);
432 	struct task_struct *rtn;
433 
434 	switch (event->sigev_notify) {
435 	case SIGEV_SIGNAL | SIGEV_THREAD_ID:
436 		pid = find_vpid(event->sigev_notify_thread_id);
437 		rtn = pid_task(pid, PIDTYPE_PID);
438 		if (!rtn || !same_thread_group(rtn, current))
439 			return NULL;
440 		/* FALLTHRU */
441 	case SIGEV_SIGNAL:
442 	case SIGEV_THREAD:
443 		if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
444 			return NULL;
445 		/* FALLTHRU */
446 	case SIGEV_NONE:
447 		return pid;
448 	default:
449 		return NULL;
450 	}
451 }
452 
453 static struct k_itimer * alloc_posix_timer(void)
454 {
455 	struct k_itimer *tmr;
456 	tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
457 	if (!tmr)
458 		return tmr;
459 	if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
460 		kmem_cache_free(posix_timers_cache, tmr);
461 		return NULL;
462 	}
463 	clear_siginfo(&tmr->sigq->info);
464 	return tmr;
465 }
466 
467 static void k_itimer_rcu_free(struct rcu_head *head)
468 {
469 	struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);
470 
471 	kmem_cache_free(posix_timers_cache, tmr);
472 }
473 
474 #define IT_ID_SET	1
475 #define IT_ID_NOT_SET	0
476 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
477 {
478 	if (it_id_set) {
479 		unsigned long flags;
480 		spin_lock_irqsave(&hash_lock, flags);
481 		hlist_del_rcu(&tmr->t_hash);
482 		spin_unlock_irqrestore(&hash_lock, flags);
483 	}
484 	put_pid(tmr->it_pid);
485 	sigqueue_free(tmr->sigq);
486 	call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
487 }
488 
489 static int common_timer_create(struct k_itimer *new_timer)
490 {
491 	hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
492 	return 0;
493 }
494 
495 /* Create a POSIX.1b interval timer. */
496 static int do_timer_create(clockid_t which_clock, struct sigevent *event,
497 			   timer_t __user *created_timer_id)
498 {
499 	const struct k_clock *kc = clockid_to_kclock(which_clock);
500 	struct k_itimer *new_timer;
501 	int error, new_timer_id;
502 	int it_id_set = IT_ID_NOT_SET;
503 
504 	if (!kc)
505 		return -EINVAL;
506 	if (!kc->timer_create)
507 		return -EOPNOTSUPP;
508 
509 	new_timer = alloc_posix_timer();
510 	if (unlikely(!new_timer))
511 		return -EAGAIN;
512 
513 	spin_lock_init(&new_timer->it_lock);
514 	new_timer_id = posix_timer_add(new_timer);
515 	if (new_timer_id < 0) {
516 		error = new_timer_id;
517 		goto out;
518 	}
519 
520 	it_id_set = IT_ID_SET;
521 	new_timer->it_id = (timer_t) new_timer_id;
522 	new_timer->it_clock = which_clock;
523 	new_timer->kclock = kc;
524 	new_timer->it_overrun = -1LL;
525 
526 	if (event) {
527 		rcu_read_lock();
528 		new_timer->it_pid = get_pid(good_sigevent(event));
529 		rcu_read_unlock();
530 		if (!new_timer->it_pid) {
531 			error = -EINVAL;
532 			goto out;
533 		}
534 		new_timer->it_sigev_notify     = event->sigev_notify;
535 		new_timer->sigq->info.si_signo = event->sigev_signo;
536 		new_timer->sigq->info.si_value = event->sigev_value;
537 	} else {
538 		new_timer->it_sigev_notify     = SIGEV_SIGNAL;
539 		new_timer->sigq->info.si_signo = SIGALRM;
540 		memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
541 		new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
542 		new_timer->it_pid = get_pid(task_tgid(current));
543 	}
544 
545 	new_timer->sigq->info.si_tid   = new_timer->it_id;
546 	new_timer->sigq->info.si_code  = SI_TIMER;
547 
548 	if (copy_to_user(created_timer_id,
549 			 &new_timer_id, sizeof (new_timer_id))) {
550 		error = -EFAULT;
551 		goto out;
552 	}
553 
554 	error = kc->timer_create(new_timer);
555 	if (error)
556 		goto out;
557 
558 	spin_lock_irq(&current->sighand->siglock);
559 	new_timer->it_signal = current->signal;
560 	list_add(&new_timer->list, &current->signal->posix_timers);
561 	spin_unlock_irq(&current->sighand->siglock);
562 
563 	return 0;
564 	/*
565 	 * In the case of the timer belonging to another task, after
566 	 * the task is unlocked, the timer is owned by the other task
567 	 * and may cease to exist at any time.  Don't use or modify
568 	 * new_timer after the unlock call.
569 	 */
570 out:
571 	release_posix_timer(new_timer, it_id_set);
572 	return error;
573 }
574 
575 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
576 		struct sigevent __user *, timer_event_spec,
577 		timer_t __user *, created_timer_id)
578 {
579 	if (timer_event_spec) {
580 		sigevent_t event;
581 
582 		if (copy_from_user(&event, timer_event_spec, sizeof (event)))
583 			return -EFAULT;
584 		return do_timer_create(which_clock, &event, created_timer_id);
585 	}
586 	return do_timer_create(which_clock, NULL, created_timer_id);
587 }
588 
589 #ifdef CONFIG_COMPAT
590 COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
591 		       struct compat_sigevent __user *, timer_event_spec,
592 		       timer_t __user *, created_timer_id)
593 {
594 	if (timer_event_spec) {
595 		sigevent_t event;
596 
597 		if (get_compat_sigevent(&event, timer_event_spec))
598 			return -EFAULT;
599 		return do_timer_create(which_clock, &event, created_timer_id);
600 	}
601 	return do_timer_create(which_clock, NULL, created_timer_id);
602 }
603 #endif
604 
605 /*
606  * Locking issues: We need to protect the result of the id look up until
607  * we get the timer locked down so it is not deleted under us.  The
608  * removal is done under the idr spinlock so we use that here to bridge
609  * the find to the timer lock.  To avoid a dead lock, the timer id MUST
610  * be release with out holding the timer lock.
611  */
612 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
613 {
614 	struct k_itimer *timr;
615 
616 	/*
617 	 * timer_t could be any type >= int and we want to make sure any
618 	 * @timer_id outside positive int range fails lookup.
619 	 */
620 	if ((unsigned long long)timer_id > INT_MAX)
621 		return NULL;
622 
623 	rcu_read_lock();
624 	timr = posix_timer_by_id(timer_id);
625 	if (timr) {
626 		spin_lock_irqsave(&timr->it_lock, *flags);
627 		if (timr->it_signal == current->signal) {
628 			rcu_read_unlock();
629 			return timr;
630 		}
631 		spin_unlock_irqrestore(&timr->it_lock, *flags);
632 	}
633 	rcu_read_unlock();
634 
635 	return NULL;
636 }
637 
638 static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
639 {
640 	struct hrtimer *timer = &timr->it.real.timer;
641 
642 	return __hrtimer_expires_remaining_adjusted(timer, now);
643 }
644 
645 static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
646 {
647 	struct hrtimer *timer = &timr->it.real.timer;
648 
649 	return hrtimer_forward(timer, now, timr->it_interval);
650 }
651 
652 /*
653  * Get the time remaining on a POSIX.1b interval timer.  This function
654  * is ALWAYS called with spin_lock_irq on the timer, thus it must not
655  * mess with irq.
656  *
657  * We have a couple of messes to clean up here.  First there is the case
658  * of a timer that has a requeue pending.  These timers should appear to
659  * be in the timer list with an expiry as if we were to requeue them
660  * now.
661  *
662  * The second issue is the SIGEV_NONE timer which may be active but is
663  * not really ever put in the timer list (to save system resources).
664  * This timer may be expired, and if so, we will do it here.  Otherwise
665  * it is the same as a requeue pending timer WRT to what we should
666  * report.
667  */
668 void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
669 {
670 	const struct k_clock *kc = timr->kclock;
671 	ktime_t now, remaining, iv;
672 	struct timespec64 ts64;
673 	bool sig_none;
674 
675 	sig_none = timr->it_sigev_notify == SIGEV_NONE;
676 	iv = timr->it_interval;
677 
678 	/* interval timer ? */
679 	if (iv) {
680 		cur_setting->it_interval = ktime_to_timespec64(iv);
681 	} else if (!timr->it_active) {
682 		/*
683 		 * SIGEV_NONE oneshot timers are never queued. Check them
684 		 * below.
685 		 */
686 		if (!sig_none)
687 			return;
688 	}
689 
690 	/*
691 	 * The timespec64 based conversion is suboptimal, but it's not
692 	 * worth to implement yet another callback.
693 	 */
694 	kc->clock_get(timr->it_clock, &ts64);
695 	now = timespec64_to_ktime(ts64);
696 
697 	/*
698 	 * When a requeue is pending or this is a SIGEV_NONE timer move the
699 	 * expiry time forward by intervals, so expiry is > now.
700 	 */
701 	if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
702 		timr->it_overrun += kc->timer_forward(timr, now);
703 
704 	remaining = kc->timer_remaining(timr, now);
705 	/* Return 0 only, when the timer is expired and not pending */
706 	if (remaining <= 0) {
707 		/*
708 		 * A single shot SIGEV_NONE timer must return 0, when
709 		 * it is expired !
710 		 */
711 		if (!sig_none)
712 			cur_setting->it_value.tv_nsec = 1;
713 	} else {
714 		cur_setting->it_value = ktime_to_timespec64(remaining);
715 	}
716 }
717 
718 /* Get the time remaining on a POSIX.1b interval timer. */
719 static int do_timer_gettime(timer_t timer_id,  struct itimerspec64 *setting)
720 {
721 	struct k_itimer *timr;
722 	const struct k_clock *kc;
723 	unsigned long flags;
724 	int ret = 0;
725 
726 	timr = lock_timer(timer_id, &flags);
727 	if (!timr)
728 		return -EINVAL;
729 
730 	memset(setting, 0, sizeof(*setting));
731 	kc = timr->kclock;
732 	if (WARN_ON_ONCE(!kc || !kc->timer_get))
733 		ret = -EINVAL;
734 	else
735 		kc->timer_get(timr, setting);
736 
737 	unlock_timer(timr, flags);
738 	return ret;
739 }
740 
741 /* Get the time remaining on a POSIX.1b interval timer. */
742 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
743 		struct __kernel_itimerspec __user *, setting)
744 {
745 	struct itimerspec64 cur_setting;
746 
747 	int ret = do_timer_gettime(timer_id, &cur_setting);
748 	if (!ret) {
749 		if (put_itimerspec64(&cur_setting, setting))
750 			ret = -EFAULT;
751 	}
752 	return ret;
753 }
754 
755 #ifdef CONFIG_COMPAT_32BIT_TIME
756 
757 COMPAT_SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
758 		       struct old_itimerspec32 __user *, setting)
759 {
760 	struct itimerspec64 cur_setting;
761 
762 	int ret = do_timer_gettime(timer_id, &cur_setting);
763 	if (!ret) {
764 		if (put_old_itimerspec32(&cur_setting, setting))
765 			ret = -EFAULT;
766 	}
767 	return ret;
768 }
769 
770 #endif
771 
772 /*
773  * Get the number of overruns of a POSIX.1b interval timer.  This is to
774  * be the overrun of the timer last delivered.  At the same time we are
775  * accumulating overruns on the next timer.  The overrun is frozen when
776  * the signal is delivered, either at the notify time (if the info block
777  * is not queued) or at the actual delivery time (as we are informed by
778  * the call back to posixtimer_rearm().  So all we need to do is
779  * to pick up the frozen overrun.
780  */
781 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
782 {
783 	struct k_itimer *timr;
784 	int overrun;
785 	unsigned long flags;
786 
787 	timr = lock_timer(timer_id, &flags);
788 	if (!timr)
789 		return -EINVAL;
790 
791 	overrun = timer_overrun_to_int(timr, 0);
792 	unlock_timer(timr, flags);
793 
794 	return overrun;
795 }
796 
797 static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
798 			       bool absolute, bool sigev_none)
799 {
800 	struct hrtimer *timer = &timr->it.real.timer;
801 	enum hrtimer_mode mode;
802 
803 	mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
804 	/*
805 	 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
806 	 * clock modifications, so they become CLOCK_MONOTONIC based under the
807 	 * hood. See hrtimer_init(). Update timr->kclock, so the generic
808 	 * functions which use timr->kclock->clock_get() work.
809 	 *
810 	 * Note: it_clock stays unmodified, because the next timer_set() might
811 	 * use ABSTIME, so it needs to switch back.
812 	 */
813 	if (timr->it_clock == CLOCK_REALTIME)
814 		timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
815 
816 	hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
817 	timr->it.real.timer.function = posix_timer_fn;
818 
819 	if (!absolute)
820 		expires = ktime_add_safe(expires, timer->base->get_time());
821 	hrtimer_set_expires(timer, expires);
822 
823 	if (!sigev_none)
824 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
825 }
826 
827 static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
828 {
829 	return hrtimer_try_to_cancel(&timr->it.real.timer);
830 }
831 
832 /* Set a POSIX.1b interval timer. */
833 int common_timer_set(struct k_itimer *timr, int flags,
834 		     struct itimerspec64 *new_setting,
835 		     struct itimerspec64 *old_setting)
836 {
837 	const struct k_clock *kc = timr->kclock;
838 	bool sigev_none;
839 	ktime_t expires;
840 
841 	if (old_setting)
842 		common_timer_get(timr, old_setting);
843 
844 	/* Prevent rearming by clearing the interval */
845 	timr->it_interval = 0;
846 	/*
847 	 * Careful here. On SMP systems the timer expiry function could be
848 	 * active and spinning on timr->it_lock.
849 	 */
850 	if (kc->timer_try_to_cancel(timr) < 0)
851 		return TIMER_RETRY;
852 
853 	timr->it_active = 0;
854 	timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
855 		~REQUEUE_PENDING;
856 	timr->it_overrun_last = 0;
857 
858 	/* Switch off the timer when it_value is zero */
859 	if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
860 		return 0;
861 
862 	timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
863 	expires = timespec64_to_ktime(new_setting->it_value);
864 	sigev_none = timr->it_sigev_notify == SIGEV_NONE;
865 
866 	kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
867 	timr->it_active = !sigev_none;
868 	return 0;
869 }
870 
871 static int do_timer_settime(timer_t timer_id, int flags,
872 			    struct itimerspec64 *new_spec64,
873 			    struct itimerspec64 *old_spec64)
874 {
875 	const struct k_clock *kc;
876 	struct k_itimer *timr;
877 	unsigned long flag;
878 	int error = 0;
879 
880 	if (!timespec64_valid(&new_spec64->it_interval) ||
881 	    !timespec64_valid(&new_spec64->it_value))
882 		return -EINVAL;
883 
884 	if (old_spec64)
885 		memset(old_spec64, 0, sizeof(*old_spec64));
886 retry:
887 	timr = lock_timer(timer_id, &flag);
888 	if (!timr)
889 		return -EINVAL;
890 
891 	kc = timr->kclock;
892 	if (WARN_ON_ONCE(!kc || !kc->timer_set))
893 		error = -EINVAL;
894 	else
895 		error = kc->timer_set(timr, flags, new_spec64, old_spec64);
896 
897 	unlock_timer(timr, flag);
898 	if (error == TIMER_RETRY) {
899 		old_spec64 = NULL;	// We already got the old time...
900 		goto retry;
901 	}
902 
903 	return error;
904 }
905 
906 /* Set a POSIX.1b interval timer */
907 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
908 		const struct __kernel_itimerspec __user *, new_setting,
909 		struct __kernel_itimerspec __user *, old_setting)
910 {
911 	struct itimerspec64 new_spec, old_spec;
912 	struct itimerspec64 *rtn = old_setting ? &old_spec : NULL;
913 	int error = 0;
914 
915 	if (!new_setting)
916 		return -EINVAL;
917 
918 	if (get_itimerspec64(&new_spec, new_setting))
919 		return -EFAULT;
920 
921 	error = do_timer_settime(timer_id, flags, &new_spec, rtn);
922 	if (!error && old_setting) {
923 		if (put_itimerspec64(&old_spec, old_setting))
924 			error = -EFAULT;
925 	}
926 	return error;
927 }
928 
929 #ifdef CONFIG_COMPAT_32BIT_TIME
930 COMPAT_SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
931 		       struct old_itimerspec32 __user *, new,
932 		       struct old_itimerspec32 __user *, old)
933 {
934 	struct itimerspec64 new_spec, old_spec;
935 	struct itimerspec64 *rtn = old ? &old_spec : NULL;
936 	int error = 0;
937 
938 	if (!new)
939 		return -EINVAL;
940 	if (get_old_itimerspec32(&new_spec, new))
941 		return -EFAULT;
942 
943 	error = do_timer_settime(timer_id, flags, &new_spec, rtn);
944 	if (!error && old) {
945 		if (put_old_itimerspec32(&old_spec, old))
946 			error = -EFAULT;
947 	}
948 	return error;
949 }
950 #endif
951 
952 int common_timer_del(struct k_itimer *timer)
953 {
954 	const struct k_clock *kc = timer->kclock;
955 
956 	timer->it_interval = 0;
957 	if (kc->timer_try_to_cancel(timer) < 0)
958 		return TIMER_RETRY;
959 	timer->it_active = 0;
960 	return 0;
961 }
962 
963 static inline int timer_delete_hook(struct k_itimer *timer)
964 {
965 	const struct k_clock *kc = timer->kclock;
966 
967 	if (WARN_ON_ONCE(!kc || !kc->timer_del))
968 		return -EINVAL;
969 	return kc->timer_del(timer);
970 }
971 
972 /* Delete a POSIX.1b interval timer. */
973 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
974 {
975 	struct k_itimer *timer;
976 	unsigned long flags;
977 
978 retry_delete:
979 	timer = lock_timer(timer_id, &flags);
980 	if (!timer)
981 		return -EINVAL;
982 
983 	if (timer_delete_hook(timer) == TIMER_RETRY) {
984 		unlock_timer(timer, flags);
985 		goto retry_delete;
986 	}
987 
988 	spin_lock(&current->sighand->siglock);
989 	list_del(&timer->list);
990 	spin_unlock(&current->sighand->siglock);
991 	/*
992 	 * This keeps any tasks waiting on the spin lock from thinking
993 	 * they got something (see the lock code above).
994 	 */
995 	timer->it_signal = NULL;
996 
997 	unlock_timer(timer, flags);
998 	release_posix_timer(timer, IT_ID_SET);
999 	return 0;
1000 }
1001 
1002 /*
1003  * return timer owned by the process, used by exit_itimers
1004  */
1005 static void itimer_delete(struct k_itimer *timer)
1006 {
1007 	unsigned long flags;
1008 
1009 retry_delete:
1010 	spin_lock_irqsave(&timer->it_lock, flags);
1011 
1012 	if (timer_delete_hook(timer) == TIMER_RETRY) {
1013 		unlock_timer(timer, flags);
1014 		goto retry_delete;
1015 	}
1016 	list_del(&timer->list);
1017 	/*
1018 	 * This keeps any tasks waiting on the spin lock from thinking
1019 	 * they got something (see the lock code above).
1020 	 */
1021 	timer->it_signal = NULL;
1022 
1023 	unlock_timer(timer, flags);
1024 	release_posix_timer(timer, IT_ID_SET);
1025 }
1026 
1027 /*
1028  * This is called by do_exit or de_thread, only when there are no more
1029  * references to the shared signal_struct.
1030  */
1031 void exit_itimers(struct signal_struct *sig)
1032 {
1033 	struct k_itimer *tmr;
1034 
1035 	while (!list_empty(&sig->posix_timers)) {
1036 		tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
1037 		itimer_delete(tmr);
1038 	}
1039 }
1040 
1041 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1042 		const struct __kernel_timespec __user *, tp)
1043 {
1044 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1045 	struct timespec64 new_tp;
1046 
1047 	if (!kc || !kc->clock_set)
1048 		return -EINVAL;
1049 
1050 	if (get_timespec64(&new_tp, tp))
1051 		return -EFAULT;
1052 
1053 	return kc->clock_set(which_clock, &new_tp);
1054 }
1055 
1056 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1057 		struct __kernel_timespec __user *, tp)
1058 {
1059 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1060 	struct timespec64 kernel_tp;
1061 	int error;
1062 
1063 	if (!kc)
1064 		return -EINVAL;
1065 
1066 	error = kc->clock_get(which_clock, &kernel_tp);
1067 
1068 	if (!error && put_timespec64(&kernel_tp, tp))
1069 		error = -EFAULT;
1070 
1071 	return error;
1072 }
1073 
1074 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1075 		struct timex __user *, utx)
1076 {
1077 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1078 	struct timex ktx;
1079 	int err;
1080 
1081 	if (!kc)
1082 		return -EINVAL;
1083 	if (!kc->clock_adj)
1084 		return -EOPNOTSUPP;
1085 
1086 	if (copy_from_user(&ktx, utx, sizeof(ktx)))
1087 		return -EFAULT;
1088 
1089 	err = kc->clock_adj(which_clock, &ktx);
1090 
1091 	if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1092 		return -EFAULT;
1093 
1094 	return err;
1095 }
1096 
1097 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1098 		struct __kernel_timespec __user *, tp)
1099 {
1100 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1101 	struct timespec64 rtn_tp;
1102 	int error;
1103 
1104 	if (!kc)
1105 		return -EINVAL;
1106 
1107 	error = kc->clock_getres(which_clock, &rtn_tp);
1108 
1109 	if (!error && tp && put_timespec64(&rtn_tp, tp))
1110 		error = -EFAULT;
1111 
1112 	return error;
1113 }
1114 
1115 #ifdef CONFIG_COMPAT_32BIT_TIME
1116 
1117 COMPAT_SYSCALL_DEFINE2(clock_settime, clockid_t, which_clock,
1118 		       struct old_timespec32 __user *, tp)
1119 {
1120 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1121 	struct timespec64 ts;
1122 
1123 	if (!kc || !kc->clock_set)
1124 		return -EINVAL;
1125 
1126 	if (get_old_timespec32(&ts, tp))
1127 		return -EFAULT;
1128 
1129 	return kc->clock_set(which_clock, &ts);
1130 }
1131 
1132 COMPAT_SYSCALL_DEFINE2(clock_gettime, clockid_t, which_clock,
1133 		       struct old_timespec32 __user *, tp)
1134 {
1135 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1136 	struct timespec64 ts;
1137 	int err;
1138 
1139 	if (!kc)
1140 		return -EINVAL;
1141 
1142 	err = kc->clock_get(which_clock, &ts);
1143 
1144 	if (!err && put_old_timespec32(&ts, tp))
1145 		err = -EFAULT;
1146 
1147 	return err;
1148 }
1149 
1150 #endif
1151 
1152 #ifdef CONFIG_COMPAT
1153 
1154 COMPAT_SYSCALL_DEFINE2(clock_adjtime, clockid_t, which_clock,
1155 		       struct compat_timex __user *, utp)
1156 {
1157 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1158 	struct timex ktx;
1159 	int err;
1160 
1161 	if (!kc)
1162 		return -EINVAL;
1163 	if (!kc->clock_adj)
1164 		return -EOPNOTSUPP;
1165 
1166 	err = compat_get_timex(&ktx, utp);
1167 	if (err)
1168 		return err;
1169 
1170 	err = kc->clock_adj(which_clock, &ktx);
1171 
1172 	if (err >= 0)
1173 		err = compat_put_timex(utp, &ktx);
1174 
1175 	return err;
1176 }
1177 
1178 #endif
1179 
1180 #ifdef CONFIG_COMPAT_32BIT_TIME
1181 
1182 COMPAT_SYSCALL_DEFINE2(clock_getres, clockid_t, which_clock,
1183 		       struct old_timespec32 __user *, tp)
1184 {
1185 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1186 	struct timespec64 ts;
1187 	int err;
1188 
1189 	if (!kc)
1190 		return -EINVAL;
1191 
1192 	err = kc->clock_getres(which_clock, &ts);
1193 	if (!err && tp && put_old_timespec32(&ts, tp))
1194 		return -EFAULT;
1195 
1196 	return err;
1197 }
1198 
1199 #endif
1200 
1201 /*
1202  * nanosleep for monotonic and realtime clocks
1203  */
1204 static int common_nsleep(const clockid_t which_clock, int flags,
1205 			 const struct timespec64 *rqtp)
1206 {
1207 	return hrtimer_nanosleep(rqtp, flags & TIMER_ABSTIME ?
1208 				 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1209 				 which_clock);
1210 }
1211 
1212 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1213 		const struct __kernel_timespec __user *, rqtp,
1214 		struct __kernel_timespec __user *, rmtp)
1215 {
1216 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1217 	struct timespec64 t;
1218 
1219 	if (!kc)
1220 		return -EINVAL;
1221 	if (!kc->nsleep)
1222 		return -EOPNOTSUPP;
1223 
1224 	if (get_timespec64(&t, rqtp))
1225 		return -EFAULT;
1226 
1227 	if (!timespec64_valid(&t))
1228 		return -EINVAL;
1229 	if (flags & TIMER_ABSTIME)
1230 		rmtp = NULL;
1231 	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1232 	current->restart_block.nanosleep.rmtp = rmtp;
1233 
1234 	return kc->nsleep(which_clock, flags, &t);
1235 }
1236 
1237 #ifdef CONFIG_COMPAT_32BIT_TIME
1238 
1239 COMPAT_SYSCALL_DEFINE4(clock_nanosleep, clockid_t, which_clock, int, flags,
1240 		       struct old_timespec32 __user *, rqtp,
1241 		       struct old_timespec32 __user *, rmtp)
1242 {
1243 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1244 	struct timespec64 t;
1245 
1246 	if (!kc)
1247 		return -EINVAL;
1248 	if (!kc->nsleep)
1249 		return -EOPNOTSUPP;
1250 
1251 	if (get_old_timespec32(&t, rqtp))
1252 		return -EFAULT;
1253 
1254 	if (!timespec64_valid(&t))
1255 		return -EINVAL;
1256 	if (flags & TIMER_ABSTIME)
1257 		rmtp = NULL;
1258 	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1259 	current->restart_block.nanosleep.compat_rmtp = rmtp;
1260 
1261 	return kc->nsleep(which_clock, flags, &t);
1262 }
1263 
1264 #endif
1265 
1266 static const struct k_clock clock_realtime = {
1267 	.clock_getres		= posix_get_hrtimer_res,
1268 	.clock_get		= posix_clock_realtime_get,
1269 	.clock_set		= posix_clock_realtime_set,
1270 	.clock_adj		= posix_clock_realtime_adj,
1271 	.nsleep			= common_nsleep,
1272 	.timer_create		= common_timer_create,
1273 	.timer_set		= common_timer_set,
1274 	.timer_get		= common_timer_get,
1275 	.timer_del		= common_timer_del,
1276 	.timer_rearm		= common_hrtimer_rearm,
1277 	.timer_forward		= common_hrtimer_forward,
1278 	.timer_remaining	= common_hrtimer_remaining,
1279 	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1280 	.timer_arm		= common_hrtimer_arm,
1281 };
1282 
1283 static const struct k_clock clock_monotonic = {
1284 	.clock_getres		= posix_get_hrtimer_res,
1285 	.clock_get		= posix_ktime_get_ts,
1286 	.nsleep			= common_nsleep,
1287 	.timer_create		= common_timer_create,
1288 	.timer_set		= common_timer_set,
1289 	.timer_get		= common_timer_get,
1290 	.timer_del		= common_timer_del,
1291 	.timer_rearm		= common_hrtimer_rearm,
1292 	.timer_forward		= common_hrtimer_forward,
1293 	.timer_remaining	= common_hrtimer_remaining,
1294 	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1295 	.timer_arm		= common_hrtimer_arm,
1296 };
1297 
1298 static const struct k_clock clock_monotonic_raw = {
1299 	.clock_getres		= posix_get_hrtimer_res,
1300 	.clock_get		= posix_get_monotonic_raw,
1301 };
1302 
1303 static const struct k_clock clock_realtime_coarse = {
1304 	.clock_getres		= posix_get_coarse_res,
1305 	.clock_get		= posix_get_realtime_coarse,
1306 };
1307 
1308 static const struct k_clock clock_monotonic_coarse = {
1309 	.clock_getres		= posix_get_coarse_res,
1310 	.clock_get		= posix_get_monotonic_coarse,
1311 };
1312 
1313 static const struct k_clock clock_tai = {
1314 	.clock_getres		= posix_get_hrtimer_res,
1315 	.clock_get		= posix_get_tai,
1316 	.nsleep			= common_nsleep,
1317 	.timer_create		= common_timer_create,
1318 	.timer_set		= common_timer_set,
1319 	.timer_get		= common_timer_get,
1320 	.timer_del		= common_timer_del,
1321 	.timer_rearm		= common_hrtimer_rearm,
1322 	.timer_forward		= common_hrtimer_forward,
1323 	.timer_remaining	= common_hrtimer_remaining,
1324 	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1325 	.timer_arm		= common_hrtimer_arm,
1326 };
1327 
1328 static const struct k_clock clock_boottime = {
1329 	.clock_getres		= posix_get_hrtimer_res,
1330 	.clock_get		= posix_get_boottime,
1331 	.nsleep			= common_nsleep,
1332 	.timer_create		= common_timer_create,
1333 	.timer_set		= common_timer_set,
1334 	.timer_get		= common_timer_get,
1335 	.timer_del		= common_timer_del,
1336 	.timer_rearm		= common_hrtimer_rearm,
1337 	.timer_forward		= common_hrtimer_forward,
1338 	.timer_remaining	= common_hrtimer_remaining,
1339 	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1340 	.timer_arm		= common_hrtimer_arm,
1341 };
1342 
1343 static const struct k_clock * const posix_clocks[] = {
1344 	[CLOCK_REALTIME]		= &clock_realtime,
1345 	[CLOCK_MONOTONIC]		= &clock_monotonic,
1346 	[CLOCK_PROCESS_CPUTIME_ID]	= &clock_process,
1347 	[CLOCK_THREAD_CPUTIME_ID]	= &clock_thread,
1348 	[CLOCK_MONOTONIC_RAW]		= &clock_monotonic_raw,
1349 	[CLOCK_REALTIME_COARSE]		= &clock_realtime_coarse,
1350 	[CLOCK_MONOTONIC_COARSE]	= &clock_monotonic_coarse,
1351 	[CLOCK_BOOTTIME]		= &clock_boottime,
1352 	[CLOCK_REALTIME_ALARM]		= &alarm_clock,
1353 	[CLOCK_BOOTTIME_ALARM]		= &alarm_clock,
1354 	[CLOCK_TAI]			= &clock_tai,
1355 };
1356 
1357 static const struct k_clock *clockid_to_kclock(const clockid_t id)
1358 {
1359 	clockid_t idx = id;
1360 
1361 	if (id < 0) {
1362 		return (id & CLOCKFD_MASK) == CLOCKFD ?
1363 			&clock_posix_dynamic : &clock_posix_cpu;
1364 	}
1365 
1366 	if (id >= ARRAY_SIZE(posix_clocks))
1367 		return NULL;
1368 
1369 	return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
1370 }
1371