xref: /openbmc/linux/kernel/time/posix-timers.c (revision e33bbe69149b802c0c77bfb822685772f85388ca)
1 /*
2  * linux/kernel/posix-timers.c
3  *
4  *
5  * 2002-10-15  Posix Clocks & timers
6  *                           by George Anzinger george@mvista.com
7  *
8  *			     Copyright (C) 2002 2003 by MontaVista Software.
9  *
10  * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11  *			     Copyright (C) 2004 Boris Hu
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or (at
16  * your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful, but
19  * WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21  * General Public License for more details.
22 
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26  *
27  * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28  */
29 
30 /* These are all the functions necessary to implement
31  * POSIX clocks & timers
32  */
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/slab.h>
36 #include <linux/time.h>
37 #include <linux/mutex.h>
38 #include <linux/sched/task.h>
39 
40 #include <linux/uaccess.h>
41 #include <linux/list.h>
42 #include <linux/init.h>
43 #include <linux/compiler.h>
44 #include <linux/hash.h>
45 #include <linux/posix-clock.h>
46 #include <linux/posix-timers.h>
47 #include <linux/syscalls.h>
48 #include <linux/wait.h>
49 #include <linux/workqueue.h>
50 #include <linux/export.h>
51 #include <linux/hashtable.h>
52 #include <linux/compat.h>
53 #include <linux/nospec.h>
54 
55 #include "timekeeping.h"
56 #include "posix-timers.h"
57 
58 /*
59  * Management arrays for POSIX timers. Timers are now kept in static hash table
60  * with 512 entries.
61  * Timer ids are allocated by local routine, which selects proper hash head by
62  * key, constructed from current->signal address and per signal struct counter.
63  * This keeps timer ids unique per process, but now they can intersect between
64  * processes.
65  */
66 
67 /*
68  * Lets keep our timers in a slab cache :-)
69  */
70 static struct kmem_cache *posix_timers_cache;
71 
72 static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
73 static DEFINE_SPINLOCK(hash_lock);
74 
75 static const struct k_clock * const posix_clocks[];
76 static const struct k_clock *clockid_to_kclock(const clockid_t id);
77 static const struct k_clock clock_realtime, clock_monotonic;
78 
79 /*
80  * we assume that the new SIGEV_THREAD_ID shares no bits with the other
81  * SIGEV values.  Here we put out an error if this assumption fails.
82  */
83 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
84                        ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
85 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
86 #endif
87 
88 /*
89  * parisc wants ENOTSUP instead of EOPNOTSUPP
90  */
91 #ifndef ENOTSUP
92 # define ENANOSLEEP_NOTSUP EOPNOTSUPP
93 #else
94 # define ENANOSLEEP_NOTSUP ENOTSUP
95 #endif
96 
97 /*
98  * The timer ID is turned into a timer address by idr_find().
99  * Verifying a valid ID consists of:
100  *
101  * a) checking that idr_find() returns other than -1.
102  * b) checking that the timer id matches the one in the timer itself.
103  * c) that the timer owner is in the callers thread group.
104  */
105 
106 /*
107  * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
108  *	    to implement others.  This structure defines the various
109  *	    clocks.
110  *
111  * RESOLUTION: Clock resolution is used to round up timer and interval
112  *	    times, NOT to report clock times, which are reported with as
113  *	    much resolution as the system can muster.  In some cases this
114  *	    resolution may depend on the underlying clock hardware and
115  *	    may not be quantifiable until run time, and only then is the
116  *	    necessary code is written.	The standard says we should say
117  *	    something about this issue in the documentation...
118  *
119  * FUNCTIONS: The CLOCKs structure defines possible functions to
120  *	    handle various clock functions.
121  *
122  *	    The standard POSIX timer management code assumes the
123  *	    following: 1.) The k_itimer struct (sched.h) is used for
124  *	    the timer.  2.) The list, it_lock, it_clock, it_id and
125  *	    it_pid fields are not modified by timer code.
126  *
127  * Permissions: It is assumed that the clock_settime() function defined
128  *	    for each clock will take care of permission checks.	 Some
129  *	    clocks may be set able by any user (i.e. local process
130  *	    clocks) others not.	 Currently the only set able clock we
131  *	    have is CLOCK_REALTIME and its high res counter part, both of
132  *	    which we beg off on and pass to do_sys_settimeofday().
133  */
134 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
135 
136 #define lock_timer(tid, flags)						   \
137 ({	struct k_itimer *__timr;					   \
138 	__cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags));  \
139 	__timr;								   \
140 })
141 
142 static int hash(struct signal_struct *sig, unsigned int nr)
143 {
144 	return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
145 }
146 
147 static struct k_itimer *__posix_timers_find(struct hlist_head *head,
148 					    struct signal_struct *sig,
149 					    timer_t id)
150 {
151 	struct k_itimer *timer;
152 
153 	hlist_for_each_entry_rcu(timer, head, t_hash) {
154 		if ((timer->it_signal == sig) && (timer->it_id == id))
155 			return timer;
156 	}
157 	return NULL;
158 }
159 
160 static struct k_itimer *posix_timer_by_id(timer_t id)
161 {
162 	struct signal_struct *sig = current->signal;
163 	struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
164 
165 	return __posix_timers_find(head, sig, id);
166 }
167 
168 static int posix_timer_add(struct k_itimer *timer)
169 {
170 	struct signal_struct *sig = current->signal;
171 	int first_free_id = sig->posix_timer_id;
172 	struct hlist_head *head;
173 	int ret = -ENOENT;
174 
175 	do {
176 		spin_lock(&hash_lock);
177 		head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
178 		if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
179 			hlist_add_head_rcu(&timer->t_hash, head);
180 			ret = sig->posix_timer_id;
181 		}
182 		if (++sig->posix_timer_id < 0)
183 			sig->posix_timer_id = 0;
184 		if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
185 			/* Loop over all possible ids completed */
186 			ret = -EAGAIN;
187 		spin_unlock(&hash_lock);
188 	} while (ret == -ENOENT);
189 	return ret;
190 }
191 
192 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
193 {
194 	spin_unlock_irqrestore(&timr->it_lock, flags);
195 }
196 
197 /* Get clock_realtime */
198 static int posix_clock_realtime_get(clockid_t which_clock, struct timespec64 *tp)
199 {
200 	ktime_get_real_ts64(tp);
201 	return 0;
202 }
203 
204 /* Set clock_realtime */
205 static int posix_clock_realtime_set(const clockid_t which_clock,
206 				    const struct timespec64 *tp)
207 {
208 	return do_sys_settimeofday64(tp, NULL);
209 }
210 
211 static int posix_clock_realtime_adj(const clockid_t which_clock,
212 				    struct timex *t)
213 {
214 	return do_adjtimex(t);
215 }
216 
217 /*
218  * Get monotonic time for posix timers
219  */
220 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec64 *tp)
221 {
222 	ktime_get_ts64(tp);
223 	return 0;
224 }
225 
226 /*
227  * Get monotonic-raw time for posix timers
228  */
229 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
230 {
231 	getrawmonotonic64(tp);
232 	return 0;
233 }
234 
235 
236 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
237 {
238 	*tp = current_kernel_time64();
239 	return 0;
240 }
241 
242 static int posix_get_monotonic_coarse(clockid_t which_clock,
243 						struct timespec64 *tp)
244 {
245 	*tp = get_monotonic_coarse64();
246 	return 0;
247 }
248 
249 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
250 {
251 	*tp = ktime_to_timespec64(KTIME_LOW_RES);
252 	return 0;
253 }
254 
255 static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp)
256 {
257 	timekeeping_clocktai64(tp);
258 	return 0;
259 }
260 
261 static int posix_get_monotonic_active(clockid_t which_clock,
262 				      struct timespec64 *tp)
263 {
264 	ktime_get_active_ts64(tp);
265 	return 0;
266 }
267 
268 static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
269 {
270 	tp->tv_sec = 0;
271 	tp->tv_nsec = hrtimer_resolution;
272 	return 0;
273 }
274 
275 /*
276  * Initialize everything, well, just everything in Posix clocks/timers ;)
277  */
278 static __init int init_posix_timers(void)
279 {
280 	posix_timers_cache = kmem_cache_create("posix_timers_cache",
281 					sizeof (struct k_itimer), 0, SLAB_PANIC,
282 					NULL);
283 	return 0;
284 }
285 __initcall(init_posix_timers);
286 
287 static void common_hrtimer_rearm(struct k_itimer *timr)
288 {
289 	struct hrtimer *timer = &timr->it.real.timer;
290 
291 	if (!timr->it_interval)
292 		return;
293 
294 	timr->it_overrun += (unsigned int) hrtimer_forward(timer,
295 						timer->base->get_time(),
296 						timr->it_interval);
297 	hrtimer_restart(timer);
298 }
299 
300 /*
301  * This function is exported for use by the signal deliver code.  It is
302  * called just prior to the info block being released and passes that
303  * block to us.  It's function is to update the overrun entry AND to
304  * restart the timer.  It should only be called if the timer is to be
305  * restarted (i.e. we have flagged this in the sys_private entry of the
306  * info block).
307  *
308  * To protect against the timer going away while the interrupt is queued,
309  * we require that the it_requeue_pending flag be set.
310  */
311 void posixtimer_rearm(struct siginfo *info)
312 {
313 	struct k_itimer *timr;
314 	unsigned long flags;
315 
316 	timr = lock_timer(info->si_tid, &flags);
317 	if (!timr)
318 		return;
319 
320 	if (timr->it_requeue_pending == info->si_sys_private) {
321 		timr->kclock->timer_rearm(timr);
322 
323 		timr->it_active = 1;
324 		timr->it_overrun_last = timr->it_overrun;
325 		timr->it_overrun = -1;
326 		++timr->it_requeue_pending;
327 
328 		info->si_overrun += timr->it_overrun_last;
329 	}
330 
331 	unlock_timer(timr, flags);
332 }
333 
334 int posix_timer_event(struct k_itimer *timr, int si_private)
335 {
336 	struct task_struct *task;
337 	int shared, ret = -1;
338 	/*
339 	 * FIXME: if ->sigq is queued we can race with
340 	 * dequeue_signal()->posixtimer_rearm().
341 	 *
342 	 * If dequeue_signal() sees the "right" value of
343 	 * si_sys_private it calls posixtimer_rearm().
344 	 * We re-queue ->sigq and drop ->it_lock().
345 	 * posixtimer_rearm() locks the timer
346 	 * and re-schedules it while ->sigq is pending.
347 	 * Not really bad, but not that we want.
348 	 */
349 	timr->sigq->info.si_sys_private = si_private;
350 
351 	rcu_read_lock();
352 	task = pid_task(timr->it_pid, PIDTYPE_PID);
353 	if (task) {
354 		shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
355 		ret = send_sigqueue(timr->sigq, task, shared);
356 	}
357 	rcu_read_unlock();
358 	/* If we failed to send the signal the timer stops. */
359 	return ret > 0;
360 }
361 
362 /*
363  * This function gets called when a POSIX.1b interval timer expires.  It
364  * is used as a callback from the kernel internal timer.  The
365  * run_timer_list code ALWAYS calls with interrupts on.
366 
367  * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
368  */
369 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
370 {
371 	struct k_itimer *timr;
372 	unsigned long flags;
373 	int si_private = 0;
374 	enum hrtimer_restart ret = HRTIMER_NORESTART;
375 
376 	timr = container_of(timer, struct k_itimer, it.real.timer);
377 	spin_lock_irqsave(&timr->it_lock, flags);
378 
379 	timr->it_active = 0;
380 	if (timr->it_interval != 0)
381 		si_private = ++timr->it_requeue_pending;
382 
383 	if (posix_timer_event(timr, si_private)) {
384 		/*
385 		 * signal was not sent because of sig_ignor
386 		 * we will not get a call back to restart it AND
387 		 * it should be restarted.
388 		 */
389 		if (timr->it_interval != 0) {
390 			ktime_t now = hrtimer_cb_get_time(timer);
391 
392 			/*
393 			 * FIXME: What we really want, is to stop this
394 			 * timer completely and restart it in case the
395 			 * SIG_IGN is removed. This is a non trivial
396 			 * change which involves sighand locking
397 			 * (sigh !), which we don't want to do late in
398 			 * the release cycle.
399 			 *
400 			 * For now we just let timers with an interval
401 			 * less than a jiffie expire every jiffie to
402 			 * avoid softirq starvation in case of SIG_IGN
403 			 * and a very small interval, which would put
404 			 * the timer right back on the softirq pending
405 			 * list. By moving now ahead of time we trick
406 			 * hrtimer_forward() to expire the timer
407 			 * later, while we still maintain the overrun
408 			 * accuracy, but have some inconsistency in
409 			 * the timer_gettime() case. This is at least
410 			 * better than a starved softirq. A more
411 			 * complex fix which solves also another related
412 			 * inconsistency is already in the pipeline.
413 			 */
414 #ifdef CONFIG_HIGH_RES_TIMERS
415 			{
416 				ktime_t kj = NSEC_PER_SEC / HZ;
417 
418 				if (timr->it_interval < kj)
419 					now = ktime_add(now, kj);
420 			}
421 #endif
422 			timr->it_overrun += (unsigned int)
423 				hrtimer_forward(timer, now,
424 						timr->it_interval);
425 			ret = HRTIMER_RESTART;
426 			++timr->it_requeue_pending;
427 			timr->it_active = 1;
428 		}
429 	}
430 
431 	unlock_timer(timr, flags);
432 	return ret;
433 }
434 
435 static struct pid *good_sigevent(sigevent_t * event)
436 {
437 	struct task_struct *rtn = current->group_leader;
438 
439 	switch (event->sigev_notify) {
440 	case SIGEV_SIGNAL | SIGEV_THREAD_ID:
441 		rtn = find_task_by_vpid(event->sigev_notify_thread_id);
442 		if (!rtn || !same_thread_group(rtn, current))
443 			return NULL;
444 		/* FALLTHRU */
445 	case SIGEV_SIGNAL:
446 	case SIGEV_THREAD:
447 		if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
448 			return NULL;
449 		/* FALLTHRU */
450 	case SIGEV_NONE:
451 		return task_pid(rtn);
452 	default:
453 		return NULL;
454 	}
455 }
456 
457 static struct k_itimer * alloc_posix_timer(void)
458 {
459 	struct k_itimer *tmr;
460 	tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
461 	if (!tmr)
462 		return tmr;
463 	if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
464 		kmem_cache_free(posix_timers_cache, tmr);
465 		return NULL;
466 	}
467 	clear_siginfo(&tmr->sigq->info);
468 	return tmr;
469 }
470 
471 static void k_itimer_rcu_free(struct rcu_head *head)
472 {
473 	struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);
474 
475 	kmem_cache_free(posix_timers_cache, tmr);
476 }
477 
478 #define IT_ID_SET	1
479 #define IT_ID_NOT_SET	0
480 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
481 {
482 	if (it_id_set) {
483 		unsigned long flags;
484 		spin_lock_irqsave(&hash_lock, flags);
485 		hlist_del_rcu(&tmr->t_hash);
486 		spin_unlock_irqrestore(&hash_lock, flags);
487 	}
488 	put_pid(tmr->it_pid);
489 	sigqueue_free(tmr->sigq);
490 	call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
491 }
492 
493 static int common_timer_create(struct k_itimer *new_timer)
494 {
495 	hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
496 	return 0;
497 }
498 
499 /* Create a POSIX.1b interval timer. */
500 static int do_timer_create(clockid_t which_clock, struct sigevent *event,
501 			   timer_t __user *created_timer_id)
502 {
503 	const struct k_clock *kc = clockid_to_kclock(which_clock);
504 	struct k_itimer *new_timer;
505 	int error, new_timer_id;
506 	int it_id_set = IT_ID_NOT_SET;
507 
508 	if (!kc)
509 		return -EINVAL;
510 	if (!kc->timer_create)
511 		return -EOPNOTSUPP;
512 
513 	new_timer = alloc_posix_timer();
514 	if (unlikely(!new_timer))
515 		return -EAGAIN;
516 
517 	spin_lock_init(&new_timer->it_lock);
518 	new_timer_id = posix_timer_add(new_timer);
519 	if (new_timer_id < 0) {
520 		error = new_timer_id;
521 		goto out;
522 	}
523 
524 	it_id_set = IT_ID_SET;
525 	new_timer->it_id = (timer_t) new_timer_id;
526 	new_timer->it_clock = which_clock;
527 	new_timer->kclock = kc;
528 	new_timer->it_overrun = -1;
529 
530 	if (event) {
531 		rcu_read_lock();
532 		new_timer->it_pid = get_pid(good_sigevent(event));
533 		rcu_read_unlock();
534 		if (!new_timer->it_pid) {
535 			error = -EINVAL;
536 			goto out;
537 		}
538 		new_timer->it_sigev_notify     = event->sigev_notify;
539 		new_timer->sigq->info.si_signo = event->sigev_signo;
540 		new_timer->sigq->info.si_value = event->sigev_value;
541 	} else {
542 		new_timer->it_sigev_notify     = SIGEV_SIGNAL;
543 		new_timer->sigq->info.si_signo = SIGALRM;
544 		memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
545 		new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
546 		new_timer->it_pid = get_pid(task_tgid(current));
547 	}
548 
549 	new_timer->sigq->info.si_tid   = new_timer->it_id;
550 	new_timer->sigq->info.si_code  = SI_TIMER;
551 
552 	if (copy_to_user(created_timer_id,
553 			 &new_timer_id, sizeof (new_timer_id))) {
554 		error = -EFAULT;
555 		goto out;
556 	}
557 
558 	error = kc->timer_create(new_timer);
559 	if (error)
560 		goto out;
561 
562 	spin_lock_irq(&current->sighand->siglock);
563 	new_timer->it_signal = current->signal;
564 	list_add(&new_timer->list, &current->signal->posix_timers);
565 	spin_unlock_irq(&current->sighand->siglock);
566 
567 	return 0;
568 	/*
569 	 * In the case of the timer belonging to another task, after
570 	 * the task is unlocked, the timer is owned by the other task
571 	 * and may cease to exist at any time.  Don't use or modify
572 	 * new_timer after the unlock call.
573 	 */
574 out:
575 	release_posix_timer(new_timer, it_id_set);
576 	return error;
577 }
578 
579 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
580 		struct sigevent __user *, timer_event_spec,
581 		timer_t __user *, created_timer_id)
582 {
583 	if (timer_event_spec) {
584 		sigevent_t event;
585 
586 		if (copy_from_user(&event, timer_event_spec, sizeof (event)))
587 			return -EFAULT;
588 		return do_timer_create(which_clock, &event, created_timer_id);
589 	}
590 	return do_timer_create(which_clock, NULL, created_timer_id);
591 }
592 
593 #ifdef CONFIG_COMPAT
594 COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
595 		       struct compat_sigevent __user *, timer_event_spec,
596 		       timer_t __user *, created_timer_id)
597 {
598 	if (timer_event_spec) {
599 		sigevent_t event;
600 
601 		if (get_compat_sigevent(&event, timer_event_spec))
602 			return -EFAULT;
603 		return do_timer_create(which_clock, &event, created_timer_id);
604 	}
605 	return do_timer_create(which_clock, NULL, created_timer_id);
606 }
607 #endif
608 
609 /*
610  * Locking issues: We need to protect the result of the id look up until
611  * we get the timer locked down so it is not deleted under us.  The
612  * removal is done under the idr spinlock so we use that here to bridge
613  * the find to the timer lock.  To avoid a dead lock, the timer id MUST
614  * be release with out holding the timer lock.
615  */
616 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
617 {
618 	struct k_itimer *timr;
619 
620 	/*
621 	 * timer_t could be any type >= int and we want to make sure any
622 	 * @timer_id outside positive int range fails lookup.
623 	 */
624 	if ((unsigned long long)timer_id > INT_MAX)
625 		return NULL;
626 
627 	rcu_read_lock();
628 	timr = posix_timer_by_id(timer_id);
629 	if (timr) {
630 		spin_lock_irqsave(&timr->it_lock, *flags);
631 		if (timr->it_signal == current->signal) {
632 			rcu_read_unlock();
633 			return timr;
634 		}
635 		spin_unlock_irqrestore(&timr->it_lock, *flags);
636 	}
637 	rcu_read_unlock();
638 
639 	return NULL;
640 }
641 
642 static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
643 {
644 	struct hrtimer *timer = &timr->it.real.timer;
645 
646 	return __hrtimer_expires_remaining_adjusted(timer, now);
647 }
648 
649 static int common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
650 {
651 	struct hrtimer *timer = &timr->it.real.timer;
652 
653 	return (int)hrtimer_forward(timer, now, timr->it_interval);
654 }
655 
656 /*
657  * Get the time remaining on a POSIX.1b interval timer.  This function
658  * is ALWAYS called with spin_lock_irq on the timer, thus it must not
659  * mess with irq.
660  *
661  * We have a couple of messes to clean up here.  First there is the case
662  * of a timer that has a requeue pending.  These timers should appear to
663  * be in the timer list with an expiry as if we were to requeue them
664  * now.
665  *
666  * The second issue is the SIGEV_NONE timer which may be active but is
667  * not really ever put in the timer list (to save system resources).
668  * This timer may be expired, and if so, we will do it here.  Otherwise
669  * it is the same as a requeue pending timer WRT to what we should
670  * report.
671  */
672 void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
673 {
674 	const struct k_clock *kc = timr->kclock;
675 	ktime_t now, remaining, iv;
676 	struct timespec64 ts64;
677 	bool sig_none;
678 
679 	sig_none = timr->it_sigev_notify == SIGEV_NONE;
680 	iv = timr->it_interval;
681 
682 	/* interval timer ? */
683 	if (iv) {
684 		cur_setting->it_interval = ktime_to_timespec64(iv);
685 	} else if (!timr->it_active) {
686 		/*
687 		 * SIGEV_NONE oneshot timers are never queued. Check them
688 		 * below.
689 		 */
690 		if (!sig_none)
691 			return;
692 	}
693 
694 	/*
695 	 * The timespec64 based conversion is suboptimal, but it's not
696 	 * worth to implement yet another callback.
697 	 */
698 	kc->clock_get(timr->it_clock, &ts64);
699 	now = timespec64_to_ktime(ts64);
700 
701 	/*
702 	 * When a requeue is pending or this is a SIGEV_NONE timer move the
703 	 * expiry time forward by intervals, so expiry is > now.
704 	 */
705 	if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
706 		timr->it_overrun += kc->timer_forward(timr, now);
707 
708 	remaining = kc->timer_remaining(timr, now);
709 	/* Return 0 only, when the timer is expired and not pending */
710 	if (remaining <= 0) {
711 		/*
712 		 * A single shot SIGEV_NONE timer must return 0, when
713 		 * it is expired !
714 		 */
715 		if (!sig_none)
716 			cur_setting->it_value.tv_nsec = 1;
717 	} else {
718 		cur_setting->it_value = ktime_to_timespec64(remaining);
719 	}
720 }
721 
722 /* Get the time remaining on a POSIX.1b interval timer. */
723 static int do_timer_gettime(timer_t timer_id,  struct itimerspec64 *setting)
724 {
725 	struct k_itimer *timr;
726 	const struct k_clock *kc;
727 	unsigned long flags;
728 	int ret = 0;
729 
730 	timr = lock_timer(timer_id, &flags);
731 	if (!timr)
732 		return -EINVAL;
733 
734 	memset(setting, 0, sizeof(*setting));
735 	kc = timr->kclock;
736 	if (WARN_ON_ONCE(!kc || !kc->timer_get))
737 		ret = -EINVAL;
738 	else
739 		kc->timer_get(timr, setting);
740 
741 	unlock_timer(timr, flags);
742 	return ret;
743 }
744 
745 /* Get the time remaining on a POSIX.1b interval timer. */
746 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
747 		struct itimerspec __user *, setting)
748 {
749 	struct itimerspec64 cur_setting;
750 
751 	int ret = do_timer_gettime(timer_id, &cur_setting);
752 	if (!ret) {
753 		if (put_itimerspec64(&cur_setting, setting))
754 			ret = -EFAULT;
755 	}
756 	return ret;
757 }
758 
759 #ifdef CONFIG_COMPAT
760 COMPAT_SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
761 		       struct compat_itimerspec __user *, setting)
762 {
763 	struct itimerspec64 cur_setting;
764 
765 	int ret = do_timer_gettime(timer_id, &cur_setting);
766 	if (!ret) {
767 		if (put_compat_itimerspec64(&cur_setting, setting))
768 			ret = -EFAULT;
769 	}
770 	return ret;
771 }
772 #endif
773 
774 /*
775  * Get the number of overruns of a POSIX.1b interval timer.  This is to
776  * be the overrun of the timer last delivered.  At the same time we are
777  * accumulating overruns on the next timer.  The overrun is frozen when
778  * the signal is delivered, either at the notify time (if the info block
779  * is not queued) or at the actual delivery time (as we are informed by
780  * the call back to posixtimer_rearm().  So all we need to do is
781  * to pick up the frozen overrun.
782  */
783 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
784 {
785 	struct k_itimer *timr;
786 	int overrun;
787 	unsigned long flags;
788 
789 	timr = lock_timer(timer_id, &flags);
790 	if (!timr)
791 		return -EINVAL;
792 
793 	overrun = timr->it_overrun_last;
794 	unlock_timer(timr, flags);
795 
796 	return overrun;
797 }
798 
799 static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
800 			       bool absolute, bool sigev_none)
801 {
802 	struct hrtimer *timer = &timr->it.real.timer;
803 	enum hrtimer_mode mode;
804 
805 	mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
806 	/*
807 	 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
808 	 * clock modifications, so they become CLOCK_MONOTONIC based under the
809 	 * hood. See hrtimer_init(). Update timr->kclock, so the generic
810 	 * functions which use timr->kclock->clock_get() work.
811 	 *
812 	 * Note: it_clock stays unmodified, because the next timer_set() might
813 	 * use ABSTIME, so it needs to switch back.
814 	 */
815 	if (timr->it_clock == CLOCK_REALTIME)
816 		timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
817 
818 	hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
819 	timr->it.real.timer.function = posix_timer_fn;
820 
821 	if (!absolute)
822 		expires = ktime_add_safe(expires, timer->base->get_time());
823 	hrtimer_set_expires(timer, expires);
824 
825 	if (!sigev_none)
826 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
827 }
828 
829 static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
830 {
831 	return hrtimer_try_to_cancel(&timr->it.real.timer);
832 }
833 
834 /* Set a POSIX.1b interval timer. */
835 int common_timer_set(struct k_itimer *timr, int flags,
836 		     struct itimerspec64 *new_setting,
837 		     struct itimerspec64 *old_setting)
838 {
839 	const struct k_clock *kc = timr->kclock;
840 	bool sigev_none;
841 	ktime_t expires;
842 
843 	if (old_setting)
844 		common_timer_get(timr, old_setting);
845 
846 	/* Prevent rearming by clearing the interval */
847 	timr->it_interval = 0;
848 	/*
849 	 * Careful here. On SMP systems the timer expiry function could be
850 	 * active and spinning on timr->it_lock.
851 	 */
852 	if (kc->timer_try_to_cancel(timr) < 0)
853 		return TIMER_RETRY;
854 
855 	timr->it_active = 0;
856 	timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
857 		~REQUEUE_PENDING;
858 	timr->it_overrun_last = 0;
859 
860 	/* Switch off the timer when it_value is zero */
861 	if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
862 		return 0;
863 
864 	timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
865 	expires = timespec64_to_ktime(new_setting->it_value);
866 	sigev_none = timr->it_sigev_notify == SIGEV_NONE;
867 
868 	kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
869 	timr->it_active = !sigev_none;
870 	return 0;
871 }
872 
873 static int do_timer_settime(timer_t timer_id, int flags,
874 			    struct itimerspec64 *new_spec64,
875 			    struct itimerspec64 *old_spec64)
876 {
877 	const struct k_clock *kc;
878 	struct k_itimer *timr;
879 	unsigned long flag;
880 	int error = 0;
881 
882 	if (!timespec64_valid(&new_spec64->it_interval) ||
883 	    !timespec64_valid(&new_spec64->it_value))
884 		return -EINVAL;
885 
886 	if (old_spec64)
887 		memset(old_spec64, 0, sizeof(*old_spec64));
888 retry:
889 	timr = lock_timer(timer_id, &flag);
890 	if (!timr)
891 		return -EINVAL;
892 
893 	kc = timr->kclock;
894 	if (WARN_ON_ONCE(!kc || !kc->timer_set))
895 		error = -EINVAL;
896 	else
897 		error = kc->timer_set(timr, flags, new_spec64, old_spec64);
898 
899 	unlock_timer(timr, flag);
900 	if (error == TIMER_RETRY) {
901 		old_spec64 = NULL;	// We already got the old time...
902 		goto retry;
903 	}
904 
905 	return error;
906 }
907 
908 /* Set a POSIX.1b interval timer */
909 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
910 		const struct itimerspec __user *, new_setting,
911 		struct itimerspec __user *, old_setting)
912 {
913 	struct itimerspec64 new_spec, old_spec;
914 	struct itimerspec64 *rtn = old_setting ? &old_spec : NULL;
915 	int error = 0;
916 
917 	if (!new_setting)
918 		return -EINVAL;
919 
920 	if (get_itimerspec64(&new_spec, new_setting))
921 		return -EFAULT;
922 
923 	error = do_timer_settime(timer_id, flags, &new_spec, rtn);
924 	if (!error && old_setting) {
925 		if (put_itimerspec64(&old_spec, old_setting))
926 			error = -EFAULT;
927 	}
928 	return error;
929 }
930 
931 #ifdef CONFIG_COMPAT
932 COMPAT_SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
933 		       struct compat_itimerspec __user *, new,
934 		       struct compat_itimerspec __user *, old)
935 {
936 	struct itimerspec64 new_spec, old_spec;
937 	struct itimerspec64 *rtn = old ? &old_spec : NULL;
938 	int error = 0;
939 
940 	if (!new)
941 		return -EINVAL;
942 	if (get_compat_itimerspec64(&new_spec, new))
943 		return -EFAULT;
944 
945 	error = do_timer_settime(timer_id, flags, &new_spec, rtn);
946 	if (!error && old) {
947 		if (put_compat_itimerspec64(&old_spec, old))
948 			error = -EFAULT;
949 	}
950 	return error;
951 }
952 #endif
953 
954 int common_timer_del(struct k_itimer *timer)
955 {
956 	const struct k_clock *kc = timer->kclock;
957 
958 	timer->it_interval = 0;
959 	if (kc->timer_try_to_cancel(timer) < 0)
960 		return TIMER_RETRY;
961 	timer->it_active = 0;
962 	return 0;
963 }
964 
965 static inline int timer_delete_hook(struct k_itimer *timer)
966 {
967 	const struct k_clock *kc = timer->kclock;
968 
969 	if (WARN_ON_ONCE(!kc || !kc->timer_del))
970 		return -EINVAL;
971 	return kc->timer_del(timer);
972 }
973 
974 /* Delete a POSIX.1b interval timer. */
975 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
976 {
977 	struct k_itimer *timer;
978 	unsigned long flags;
979 
980 retry_delete:
981 	timer = lock_timer(timer_id, &flags);
982 	if (!timer)
983 		return -EINVAL;
984 
985 	if (timer_delete_hook(timer) == TIMER_RETRY) {
986 		unlock_timer(timer, flags);
987 		goto retry_delete;
988 	}
989 
990 	spin_lock(&current->sighand->siglock);
991 	list_del(&timer->list);
992 	spin_unlock(&current->sighand->siglock);
993 	/*
994 	 * This keeps any tasks waiting on the spin lock from thinking
995 	 * they got something (see the lock code above).
996 	 */
997 	timer->it_signal = NULL;
998 
999 	unlock_timer(timer, flags);
1000 	release_posix_timer(timer, IT_ID_SET);
1001 	return 0;
1002 }
1003 
1004 /*
1005  * return timer owned by the process, used by exit_itimers
1006  */
1007 static void itimer_delete(struct k_itimer *timer)
1008 {
1009 	unsigned long flags;
1010 
1011 retry_delete:
1012 	spin_lock_irqsave(&timer->it_lock, flags);
1013 
1014 	if (timer_delete_hook(timer) == TIMER_RETRY) {
1015 		unlock_timer(timer, flags);
1016 		goto retry_delete;
1017 	}
1018 	list_del(&timer->list);
1019 	/*
1020 	 * This keeps any tasks waiting on the spin lock from thinking
1021 	 * they got something (see the lock code above).
1022 	 */
1023 	timer->it_signal = NULL;
1024 
1025 	unlock_timer(timer, flags);
1026 	release_posix_timer(timer, IT_ID_SET);
1027 }
1028 
1029 /*
1030  * This is called by do_exit or de_thread, only when there are no more
1031  * references to the shared signal_struct.
1032  */
1033 void exit_itimers(struct signal_struct *sig)
1034 {
1035 	struct k_itimer *tmr;
1036 
1037 	while (!list_empty(&sig->posix_timers)) {
1038 		tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
1039 		itimer_delete(tmr);
1040 	}
1041 }
1042 
1043 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1044 		const struct timespec __user *, tp)
1045 {
1046 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1047 	struct timespec64 new_tp;
1048 
1049 	if (!kc || !kc->clock_set)
1050 		return -EINVAL;
1051 
1052 	if (get_timespec64(&new_tp, tp))
1053 		return -EFAULT;
1054 
1055 	return kc->clock_set(which_clock, &new_tp);
1056 }
1057 
1058 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1059 		struct timespec __user *,tp)
1060 {
1061 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1062 	struct timespec64 kernel_tp;
1063 	int error;
1064 
1065 	if (!kc)
1066 		return -EINVAL;
1067 
1068 	error = kc->clock_get(which_clock, &kernel_tp);
1069 
1070 	if (!error && put_timespec64(&kernel_tp, tp))
1071 		error = -EFAULT;
1072 
1073 	return error;
1074 }
1075 
1076 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1077 		struct timex __user *, utx)
1078 {
1079 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1080 	struct timex ktx;
1081 	int err;
1082 
1083 	if (!kc)
1084 		return -EINVAL;
1085 	if (!kc->clock_adj)
1086 		return -EOPNOTSUPP;
1087 
1088 	if (copy_from_user(&ktx, utx, sizeof(ktx)))
1089 		return -EFAULT;
1090 
1091 	err = kc->clock_adj(which_clock, &ktx);
1092 
1093 	if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1094 		return -EFAULT;
1095 
1096 	return err;
1097 }
1098 
1099 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1100 		struct timespec __user *, tp)
1101 {
1102 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1103 	struct timespec64 rtn_tp;
1104 	int error;
1105 
1106 	if (!kc)
1107 		return -EINVAL;
1108 
1109 	error = kc->clock_getres(which_clock, &rtn_tp);
1110 
1111 	if (!error && tp && put_timespec64(&rtn_tp, tp))
1112 		error = -EFAULT;
1113 
1114 	return error;
1115 }
1116 
1117 #ifdef CONFIG_COMPAT
1118 
1119 COMPAT_SYSCALL_DEFINE2(clock_settime, clockid_t, which_clock,
1120 		       struct compat_timespec __user *, tp)
1121 {
1122 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1123 	struct timespec64 ts;
1124 
1125 	if (!kc || !kc->clock_set)
1126 		return -EINVAL;
1127 
1128 	if (compat_get_timespec64(&ts, tp))
1129 		return -EFAULT;
1130 
1131 	return kc->clock_set(which_clock, &ts);
1132 }
1133 
1134 COMPAT_SYSCALL_DEFINE2(clock_gettime, clockid_t, which_clock,
1135 		       struct compat_timespec __user *, tp)
1136 {
1137 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1138 	struct timespec64 ts;
1139 	int err;
1140 
1141 	if (!kc)
1142 		return -EINVAL;
1143 
1144 	err = kc->clock_get(which_clock, &ts);
1145 
1146 	if (!err && compat_put_timespec64(&ts, tp))
1147 		err = -EFAULT;
1148 
1149 	return err;
1150 }
1151 
1152 COMPAT_SYSCALL_DEFINE2(clock_adjtime, clockid_t, which_clock,
1153 		       struct compat_timex __user *, utp)
1154 {
1155 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1156 	struct timex ktx;
1157 	int err;
1158 
1159 	if (!kc)
1160 		return -EINVAL;
1161 	if (!kc->clock_adj)
1162 		return -EOPNOTSUPP;
1163 
1164 	err = compat_get_timex(&ktx, utp);
1165 	if (err)
1166 		return err;
1167 
1168 	err = kc->clock_adj(which_clock, &ktx);
1169 
1170 	if (err >= 0)
1171 		err = compat_put_timex(utp, &ktx);
1172 
1173 	return err;
1174 }
1175 
1176 COMPAT_SYSCALL_DEFINE2(clock_getres, clockid_t, which_clock,
1177 		       struct compat_timespec __user *, tp)
1178 {
1179 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1180 	struct timespec64 ts;
1181 	int err;
1182 
1183 	if (!kc)
1184 		return -EINVAL;
1185 
1186 	err = kc->clock_getres(which_clock, &ts);
1187 	if (!err && tp && compat_put_timespec64(&ts, tp))
1188 		return -EFAULT;
1189 
1190 	return err;
1191 }
1192 
1193 #endif
1194 
1195 /*
1196  * nanosleep for monotonic and realtime clocks
1197  */
1198 static int common_nsleep(const clockid_t which_clock, int flags,
1199 			 const struct timespec64 *rqtp)
1200 {
1201 	return hrtimer_nanosleep(rqtp, flags & TIMER_ABSTIME ?
1202 				 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1203 				 which_clock);
1204 }
1205 
1206 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1207 		const struct timespec __user *, rqtp,
1208 		struct timespec __user *, rmtp)
1209 {
1210 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1211 	struct timespec64 t;
1212 
1213 	if (!kc)
1214 		return -EINVAL;
1215 	if (!kc->nsleep)
1216 		return -ENANOSLEEP_NOTSUP;
1217 
1218 	if (get_timespec64(&t, rqtp))
1219 		return -EFAULT;
1220 
1221 	if (!timespec64_valid(&t))
1222 		return -EINVAL;
1223 	if (flags & TIMER_ABSTIME)
1224 		rmtp = NULL;
1225 	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1226 	current->restart_block.nanosleep.rmtp = rmtp;
1227 
1228 	return kc->nsleep(which_clock, flags, &t);
1229 }
1230 
1231 #ifdef CONFIG_COMPAT
1232 COMPAT_SYSCALL_DEFINE4(clock_nanosleep, clockid_t, which_clock, int, flags,
1233 		       struct compat_timespec __user *, rqtp,
1234 		       struct compat_timespec __user *, rmtp)
1235 {
1236 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1237 	struct timespec64 t;
1238 
1239 	if (!kc)
1240 		return -EINVAL;
1241 	if (!kc->nsleep)
1242 		return -ENANOSLEEP_NOTSUP;
1243 
1244 	if (compat_get_timespec64(&t, rqtp))
1245 		return -EFAULT;
1246 
1247 	if (!timespec64_valid(&t))
1248 		return -EINVAL;
1249 	if (flags & TIMER_ABSTIME)
1250 		rmtp = NULL;
1251 	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1252 	current->restart_block.nanosleep.compat_rmtp = rmtp;
1253 
1254 	return kc->nsleep(which_clock, flags, &t);
1255 }
1256 #endif
1257 
1258 static const struct k_clock clock_realtime = {
1259 	.clock_getres		= posix_get_hrtimer_res,
1260 	.clock_get		= posix_clock_realtime_get,
1261 	.clock_set		= posix_clock_realtime_set,
1262 	.clock_adj		= posix_clock_realtime_adj,
1263 	.nsleep			= common_nsleep,
1264 	.timer_create		= common_timer_create,
1265 	.timer_set		= common_timer_set,
1266 	.timer_get		= common_timer_get,
1267 	.timer_del		= common_timer_del,
1268 	.timer_rearm		= common_hrtimer_rearm,
1269 	.timer_forward		= common_hrtimer_forward,
1270 	.timer_remaining	= common_hrtimer_remaining,
1271 	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1272 	.timer_arm		= common_hrtimer_arm,
1273 };
1274 
1275 static const struct k_clock clock_monotonic = {
1276 	.clock_getres		= posix_get_hrtimer_res,
1277 	.clock_get		= posix_ktime_get_ts,
1278 	.nsleep			= common_nsleep,
1279 	.timer_create		= common_timer_create,
1280 	.timer_set		= common_timer_set,
1281 	.timer_get		= common_timer_get,
1282 	.timer_del		= common_timer_del,
1283 	.timer_rearm		= common_hrtimer_rearm,
1284 	.timer_forward		= common_hrtimer_forward,
1285 	.timer_remaining	= common_hrtimer_remaining,
1286 	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1287 	.timer_arm		= common_hrtimer_arm,
1288 };
1289 
1290 static const struct k_clock clock_monotonic_raw = {
1291 	.clock_getres		= posix_get_hrtimer_res,
1292 	.clock_get		= posix_get_monotonic_raw,
1293 };
1294 
1295 static const struct k_clock clock_realtime_coarse = {
1296 	.clock_getres		= posix_get_coarse_res,
1297 	.clock_get		= posix_get_realtime_coarse,
1298 };
1299 
1300 static const struct k_clock clock_monotonic_coarse = {
1301 	.clock_getres		= posix_get_coarse_res,
1302 	.clock_get		= posix_get_monotonic_coarse,
1303 };
1304 
1305 static const struct k_clock clock_tai = {
1306 	.clock_getres		= posix_get_hrtimer_res,
1307 	.clock_get		= posix_get_tai,
1308 	.nsleep			= common_nsleep,
1309 	.timer_create		= common_timer_create,
1310 	.timer_set		= common_timer_set,
1311 	.timer_get		= common_timer_get,
1312 	.timer_del		= common_timer_del,
1313 	.timer_rearm		= common_hrtimer_rearm,
1314 	.timer_forward		= common_hrtimer_forward,
1315 	.timer_remaining	= common_hrtimer_remaining,
1316 	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1317 	.timer_arm		= common_hrtimer_arm,
1318 };
1319 
1320 static const struct k_clock clock_monotonic_active = {
1321 	.clock_getres		= posix_get_hrtimer_res,
1322 	.clock_get		= posix_get_monotonic_active,
1323 };
1324 
1325 static const struct k_clock * const posix_clocks[] = {
1326 	[CLOCK_REALTIME]		= &clock_realtime,
1327 	[CLOCK_MONOTONIC]		= &clock_monotonic,
1328 	[CLOCK_PROCESS_CPUTIME_ID]	= &clock_process,
1329 	[CLOCK_THREAD_CPUTIME_ID]	= &clock_thread,
1330 	[CLOCK_MONOTONIC_RAW]		= &clock_monotonic_raw,
1331 	[CLOCK_REALTIME_COARSE]		= &clock_realtime_coarse,
1332 	[CLOCK_MONOTONIC_COARSE]	= &clock_monotonic_coarse,
1333 	[CLOCK_BOOTTIME]		= &clock_monotonic,
1334 	[CLOCK_REALTIME_ALARM]		= &alarm_clock,
1335 	[CLOCK_BOOTTIME_ALARM]		= &alarm_clock,
1336 	[CLOCK_TAI]			= &clock_tai,
1337 	[CLOCK_MONOTONIC_ACTIVE]	= &clock_monotonic_active,
1338 };
1339 
1340 static const struct k_clock *clockid_to_kclock(const clockid_t id)
1341 {
1342 	clockid_t idx = id;
1343 
1344 	if (id < 0) {
1345 		return (id & CLOCKFD_MASK) == CLOCKFD ?
1346 			&clock_posix_dynamic : &clock_posix_cpu;
1347 	}
1348 
1349 	if (id >= ARRAY_SIZE(posix_clocks))
1350 		return NULL;
1351 
1352 	return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
1353 }
1354