1 /* 2 * linux/kernel/posix-timers.c 3 * 4 * 5 * 2002-10-15 Posix Clocks & timers 6 * by George Anzinger george@mvista.com 7 * 8 * Copyright (C) 2002 2003 by MontaVista Software. 9 * 10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug. 11 * Copyright (C) 2004 Boris Hu 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; either version 2 of the License, or (at 16 * your option) any later version. 17 * 18 * This program is distributed in the hope that it will be useful, but 19 * WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 21 * General Public License for more details. 22 23 * You should have received a copy of the GNU General Public License 24 * along with this program; if not, write to the Free Software 25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 26 * 27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA 28 */ 29 30 /* These are all the functions necessary to implement 31 * POSIX clocks & timers 32 */ 33 #include <linux/mm.h> 34 #include <linux/interrupt.h> 35 #include <linux/slab.h> 36 #include <linux/time.h> 37 #include <linux/mutex.h> 38 #include <linux/sched/task.h> 39 40 #include <linux/uaccess.h> 41 #include <linux/list.h> 42 #include <linux/init.h> 43 #include <linux/compiler.h> 44 #include <linux/hash.h> 45 #include <linux/posix-clock.h> 46 #include <linux/posix-timers.h> 47 #include <linux/syscalls.h> 48 #include <linux/wait.h> 49 #include <linux/workqueue.h> 50 #include <linux/export.h> 51 #include <linux/hashtable.h> 52 #include <linux/compat.h> 53 #include <linux/nospec.h> 54 55 #include "timekeeping.h" 56 #include "posix-timers.h" 57 58 /* 59 * Management arrays for POSIX timers. Timers are now kept in static hash table 60 * with 512 entries. 61 * Timer ids are allocated by local routine, which selects proper hash head by 62 * key, constructed from current->signal address and per signal struct counter. 63 * This keeps timer ids unique per process, but now they can intersect between 64 * processes. 65 */ 66 67 /* 68 * Lets keep our timers in a slab cache :-) 69 */ 70 static struct kmem_cache *posix_timers_cache; 71 72 static DEFINE_HASHTABLE(posix_timers_hashtable, 9); 73 static DEFINE_SPINLOCK(hash_lock); 74 75 static const struct k_clock * const posix_clocks[]; 76 static const struct k_clock *clockid_to_kclock(const clockid_t id); 77 static const struct k_clock clock_realtime, clock_monotonic; 78 79 /* 80 * we assume that the new SIGEV_THREAD_ID shares no bits with the other 81 * SIGEV values. Here we put out an error if this assumption fails. 82 */ 83 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \ 84 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD)) 85 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!" 86 #endif 87 88 /* 89 * parisc wants ENOTSUP instead of EOPNOTSUPP 90 */ 91 #ifndef ENOTSUP 92 # define ENANOSLEEP_NOTSUP EOPNOTSUPP 93 #else 94 # define ENANOSLEEP_NOTSUP ENOTSUP 95 #endif 96 97 /* 98 * The timer ID is turned into a timer address by idr_find(). 99 * Verifying a valid ID consists of: 100 * 101 * a) checking that idr_find() returns other than -1. 102 * b) checking that the timer id matches the one in the timer itself. 103 * c) that the timer owner is in the callers thread group. 104 */ 105 106 /* 107 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us 108 * to implement others. This structure defines the various 109 * clocks. 110 * 111 * RESOLUTION: Clock resolution is used to round up timer and interval 112 * times, NOT to report clock times, which are reported with as 113 * much resolution as the system can muster. In some cases this 114 * resolution may depend on the underlying clock hardware and 115 * may not be quantifiable until run time, and only then is the 116 * necessary code is written. The standard says we should say 117 * something about this issue in the documentation... 118 * 119 * FUNCTIONS: The CLOCKs structure defines possible functions to 120 * handle various clock functions. 121 * 122 * The standard POSIX timer management code assumes the 123 * following: 1.) The k_itimer struct (sched.h) is used for 124 * the timer. 2.) The list, it_lock, it_clock, it_id and 125 * it_pid fields are not modified by timer code. 126 * 127 * Permissions: It is assumed that the clock_settime() function defined 128 * for each clock will take care of permission checks. Some 129 * clocks may be set able by any user (i.e. local process 130 * clocks) others not. Currently the only set able clock we 131 * have is CLOCK_REALTIME and its high res counter part, both of 132 * which we beg off on and pass to do_sys_settimeofday(). 133 */ 134 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags); 135 136 #define lock_timer(tid, flags) \ 137 ({ struct k_itimer *__timr; \ 138 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \ 139 __timr; \ 140 }) 141 142 static int hash(struct signal_struct *sig, unsigned int nr) 143 { 144 return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable)); 145 } 146 147 static struct k_itimer *__posix_timers_find(struct hlist_head *head, 148 struct signal_struct *sig, 149 timer_t id) 150 { 151 struct k_itimer *timer; 152 153 hlist_for_each_entry_rcu(timer, head, t_hash) { 154 if ((timer->it_signal == sig) && (timer->it_id == id)) 155 return timer; 156 } 157 return NULL; 158 } 159 160 static struct k_itimer *posix_timer_by_id(timer_t id) 161 { 162 struct signal_struct *sig = current->signal; 163 struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)]; 164 165 return __posix_timers_find(head, sig, id); 166 } 167 168 static int posix_timer_add(struct k_itimer *timer) 169 { 170 struct signal_struct *sig = current->signal; 171 int first_free_id = sig->posix_timer_id; 172 struct hlist_head *head; 173 int ret = -ENOENT; 174 175 do { 176 spin_lock(&hash_lock); 177 head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)]; 178 if (!__posix_timers_find(head, sig, sig->posix_timer_id)) { 179 hlist_add_head_rcu(&timer->t_hash, head); 180 ret = sig->posix_timer_id; 181 } 182 if (++sig->posix_timer_id < 0) 183 sig->posix_timer_id = 0; 184 if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT)) 185 /* Loop over all possible ids completed */ 186 ret = -EAGAIN; 187 spin_unlock(&hash_lock); 188 } while (ret == -ENOENT); 189 return ret; 190 } 191 192 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags) 193 { 194 spin_unlock_irqrestore(&timr->it_lock, flags); 195 } 196 197 /* Get clock_realtime */ 198 static int posix_clock_realtime_get(clockid_t which_clock, struct timespec64 *tp) 199 { 200 ktime_get_real_ts64(tp); 201 return 0; 202 } 203 204 /* Set clock_realtime */ 205 static int posix_clock_realtime_set(const clockid_t which_clock, 206 const struct timespec64 *tp) 207 { 208 return do_sys_settimeofday64(tp, NULL); 209 } 210 211 static int posix_clock_realtime_adj(const clockid_t which_clock, 212 struct timex *t) 213 { 214 return do_adjtimex(t); 215 } 216 217 /* 218 * Get monotonic time for posix timers 219 */ 220 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec64 *tp) 221 { 222 ktime_get_ts64(tp); 223 return 0; 224 } 225 226 /* 227 * Get monotonic-raw time for posix timers 228 */ 229 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp) 230 { 231 getrawmonotonic64(tp); 232 return 0; 233 } 234 235 236 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp) 237 { 238 *tp = current_kernel_time64(); 239 return 0; 240 } 241 242 static int posix_get_monotonic_coarse(clockid_t which_clock, 243 struct timespec64 *tp) 244 { 245 *tp = get_monotonic_coarse64(); 246 return 0; 247 } 248 249 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp) 250 { 251 *tp = ktime_to_timespec64(KTIME_LOW_RES); 252 return 0; 253 } 254 255 static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp) 256 { 257 timekeeping_clocktai64(tp); 258 return 0; 259 } 260 261 static int posix_get_monotonic_active(clockid_t which_clock, 262 struct timespec64 *tp) 263 { 264 ktime_get_active_ts64(tp); 265 return 0; 266 } 267 268 static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp) 269 { 270 tp->tv_sec = 0; 271 tp->tv_nsec = hrtimer_resolution; 272 return 0; 273 } 274 275 /* 276 * Initialize everything, well, just everything in Posix clocks/timers ;) 277 */ 278 static __init int init_posix_timers(void) 279 { 280 posix_timers_cache = kmem_cache_create("posix_timers_cache", 281 sizeof (struct k_itimer), 0, SLAB_PANIC, 282 NULL); 283 return 0; 284 } 285 __initcall(init_posix_timers); 286 287 static void common_hrtimer_rearm(struct k_itimer *timr) 288 { 289 struct hrtimer *timer = &timr->it.real.timer; 290 291 if (!timr->it_interval) 292 return; 293 294 timr->it_overrun += (unsigned int) hrtimer_forward(timer, 295 timer->base->get_time(), 296 timr->it_interval); 297 hrtimer_restart(timer); 298 } 299 300 /* 301 * This function is exported for use by the signal deliver code. It is 302 * called just prior to the info block being released and passes that 303 * block to us. It's function is to update the overrun entry AND to 304 * restart the timer. It should only be called if the timer is to be 305 * restarted (i.e. we have flagged this in the sys_private entry of the 306 * info block). 307 * 308 * To protect against the timer going away while the interrupt is queued, 309 * we require that the it_requeue_pending flag be set. 310 */ 311 void posixtimer_rearm(struct siginfo *info) 312 { 313 struct k_itimer *timr; 314 unsigned long flags; 315 316 timr = lock_timer(info->si_tid, &flags); 317 if (!timr) 318 return; 319 320 if (timr->it_requeue_pending == info->si_sys_private) { 321 timr->kclock->timer_rearm(timr); 322 323 timr->it_active = 1; 324 timr->it_overrun_last = timr->it_overrun; 325 timr->it_overrun = -1; 326 ++timr->it_requeue_pending; 327 328 info->si_overrun += timr->it_overrun_last; 329 } 330 331 unlock_timer(timr, flags); 332 } 333 334 int posix_timer_event(struct k_itimer *timr, int si_private) 335 { 336 struct task_struct *task; 337 int shared, ret = -1; 338 /* 339 * FIXME: if ->sigq is queued we can race with 340 * dequeue_signal()->posixtimer_rearm(). 341 * 342 * If dequeue_signal() sees the "right" value of 343 * si_sys_private it calls posixtimer_rearm(). 344 * We re-queue ->sigq and drop ->it_lock(). 345 * posixtimer_rearm() locks the timer 346 * and re-schedules it while ->sigq is pending. 347 * Not really bad, but not that we want. 348 */ 349 timr->sigq->info.si_sys_private = si_private; 350 351 rcu_read_lock(); 352 task = pid_task(timr->it_pid, PIDTYPE_PID); 353 if (task) { 354 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID); 355 ret = send_sigqueue(timr->sigq, task, shared); 356 } 357 rcu_read_unlock(); 358 /* If we failed to send the signal the timer stops. */ 359 return ret > 0; 360 } 361 362 /* 363 * This function gets called when a POSIX.1b interval timer expires. It 364 * is used as a callback from the kernel internal timer. The 365 * run_timer_list code ALWAYS calls with interrupts on. 366 367 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers. 368 */ 369 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer) 370 { 371 struct k_itimer *timr; 372 unsigned long flags; 373 int si_private = 0; 374 enum hrtimer_restart ret = HRTIMER_NORESTART; 375 376 timr = container_of(timer, struct k_itimer, it.real.timer); 377 spin_lock_irqsave(&timr->it_lock, flags); 378 379 timr->it_active = 0; 380 if (timr->it_interval != 0) 381 si_private = ++timr->it_requeue_pending; 382 383 if (posix_timer_event(timr, si_private)) { 384 /* 385 * signal was not sent because of sig_ignor 386 * we will not get a call back to restart it AND 387 * it should be restarted. 388 */ 389 if (timr->it_interval != 0) { 390 ktime_t now = hrtimer_cb_get_time(timer); 391 392 /* 393 * FIXME: What we really want, is to stop this 394 * timer completely and restart it in case the 395 * SIG_IGN is removed. This is a non trivial 396 * change which involves sighand locking 397 * (sigh !), which we don't want to do late in 398 * the release cycle. 399 * 400 * For now we just let timers with an interval 401 * less than a jiffie expire every jiffie to 402 * avoid softirq starvation in case of SIG_IGN 403 * and a very small interval, which would put 404 * the timer right back on the softirq pending 405 * list. By moving now ahead of time we trick 406 * hrtimer_forward() to expire the timer 407 * later, while we still maintain the overrun 408 * accuracy, but have some inconsistency in 409 * the timer_gettime() case. This is at least 410 * better than a starved softirq. A more 411 * complex fix which solves also another related 412 * inconsistency is already in the pipeline. 413 */ 414 #ifdef CONFIG_HIGH_RES_TIMERS 415 { 416 ktime_t kj = NSEC_PER_SEC / HZ; 417 418 if (timr->it_interval < kj) 419 now = ktime_add(now, kj); 420 } 421 #endif 422 timr->it_overrun += (unsigned int) 423 hrtimer_forward(timer, now, 424 timr->it_interval); 425 ret = HRTIMER_RESTART; 426 ++timr->it_requeue_pending; 427 timr->it_active = 1; 428 } 429 } 430 431 unlock_timer(timr, flags); 432 return ret; 433 } 434 435 static struct pid *good_sigevent(sigevent_t * event) 436 { 437 struct task_struct *rtn = current->group_leader; 438 439 switch (event->sigev_notify) { 440 case SIGEV_SIGNAL | SIGEV_THREAD_ID: 441 rtn = find_task_by_vpid(event->sigev_notify_thread_id); 442 if (!rtn || !same_thread_group(rtn, current)) 443 return NULL; 444 /* FALLTHRU */ 445 case SIGEV_SIGNAL: 446 case SIGEV_THREAD: 447 if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX) 448 return NULL; 449 /* FALLTHRU */ 450 case SIGEV_NONE: 451 return task_pid(rtn); 452 default: 453 return NULL; 454 } 455 } 456 457 static struct k_itimer * alloc_posix_timer(void) 458 { 459 struct k_itimer *tmr; 460 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL); 461 if (!tmr) 462 return tmr; 463 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) { 464 kmem_cache_free(posix_timers_cache, tmr); 465 return NULL; 466 } 467 clear_siginfo(&tmr->sigq->info); 468 return tmr; 469 } 470 471 static void k_itimer_rcu_free(struct rcu_head *head) 472 { 473 struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu); 474 475 kmem_cache_free(posix_timers_cache, tmr); 476 } 477 478 #define IT_ID_SET 1 479 #define IT_ID_NOT_SET 0 480 static void release_posix_timer(struct k_itimer *tmr, int it_id_set) 481 { 482 if (it_id_set) { 483 unsigned long flags; 484 spin_lock_irqsave(&hash_lock, flags); 485 hlist_del_rcu(&tmr->t_hash); 486 spin_unlock_irqrestore(&hash_lock, flags); 487 } 488 put_pid(tmr->it_pid); 489 sigqueue_free(tmr->sigq); 490 call_rcu(&tmr->it.rcu, k_itimer_rcu_free); 491 } 492 493 static int common_timer_create(struct k_itimer *new_timer) 494 { 495 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0); 496 return 0; 497 } 498 499 /* Create a POSIX.1b interval timer. */ 500 static int do_timer_create(clockid_t which_clock, struct sigevent *event, 501 timer_t __user *created_timer_id) 502 { 503 const struct k_clock *kc = clockid_to_kclock(which_clock); 504 struct k_itimer *new_timer; 505 int error, new_timer_id; 506 int it_id_set = IT_ID_NOT_SET; 507 508 if (!kc) 509 return -EINVAL; 510 if (!kc->timer_create) 511 return -EOPNOTSUPP; 512 513 new_timer = alloc_posix_timer(); 514 if (unlikely(!new_timer)) 515 return -EAGAIN; 516 517 spin_lock_init(&new_timer->it_lock); 518 new_timer_id = posix_timer_add(new_timer); 519 if (new_timer_id < 0) { 520 error = new_timer_id; 521 goto out; 522 } 523 524 it_id_set = IT_ID_SET; 525 new_timer->it_id = (timer_t) new_timer_id; 526 new_timer->it_clock = which_clock; 527 new_timer->kclock = kc; 528 new_timer->it_overrun = -1; 529 530 if (event) { 531 rcu_read_lock(); 532 new_timer->it_pid = get_pid(good_sigevent(event)); 533 rcu_read_unlock(); 534 if (!new_timer->it_pid) { 535 error = -EINVAL; 536 goto out; 537 } 538 new_timer->it_sigev_notify = event->sigev_notify; 539 new_timer->sigq->info.si_signo = event->sigev_signo; 540 new_timer->sigq->info.si_value = event->sigev_value; 541 } else { 542 new_timer->it_sigev_notify = SIGEV_SIGNAL; 543 new_timer->sigq->info.si_signo = SIGALRM; 544 memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t)); 545 new_timer->sigq->info.si_value.sival_int = new_timer->it_id; 546 new_timer->it_pid = get_pid(task_tgid(current)); 547 } 548 549 new_timer->sigq->info.si_tid = new_timer->it_id; 550 new_timer->sigq->info.si_code = SI_TIMER; 551 552 if (copy_to_user(created_timer_id, 553 &new_timer_id, sizeof (new_timer_id))) { 554 error = -EFAULT; 555 goto out; 556 } 557 558 error = kc->timer_create(new_timer); 559 if (error) 560 goto out; 561 562 spin_lock_irq(¤t->sighand->siglock); 563 new_timer->it_signal = current->signal; 564 list_add(&new_timer->list, ¤t->signal->posix_timers); 565 spin_unlock_irq(¤t->sighand->siglock); 566 567 return 0; 568 /* 569 * In the case of the timer belonging to another task, after 570 * the task is unlocked, the timer is owned by the other task 571 * and may cease to exist at any time. Don't use or modify 572 * new_timer after the unlock call. 573 */ 574 out: 575 release_posix_timer(new_timer, it_id_set); 576 return error; 577 } 578 579 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock, 580 struct sigevent __user *, timer_event_spec, 581 timer_t __user *, created_timer_id) 582 { 583 if (timer_event_spec) { 584 sigevent_t event; 585 586 if (copy_from_user(&event, timer_event_spec, sizeof (event))) 587 return -EFAULT; 588 return do_timer_create(which_clock, &event, created_timer_id); 589 } 590 return do_timer_create(which_clock, NULL, created_timer_id); 591 } 592 593 #ifdef CONFIG_COMPAT 594 COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock, 595 struct compat_sigevent __user *, timer_event_spec, 596 timer_t __user *, created_timer_id) 597 { 598 if (timer_event_spec) { 599 sigevent_t event; 600 601 if (get_compat_sigevent(&event, timer_event_spec)) 602 return -EFAULT; 603 return do_timer_create(which_clock, &event, created_timer_id); 604 } 605 return do_timer_create(which_clock, NULL, created_timer_id); 606 } 607 #endif 608 609 /* 610 * Locking issues: We need to protect the result of the id look up until 611 * we get the timer locked down so it is not deleted under us. The 612 * removal is done under the idr spinlock so we use that here to bridge 613 * the find to the timer lock. To avoid a dead lock, the timer id MUST 614 * be release with out holding the timer lock. 615 */ 616 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags) 617 { 618 struct k_itimer *timr; 619 620 /* 621 * timer_t could be any type >= int and we want to make sure any 622 * @timer_id outside positive int range fails lookup. 623 */ 624 if ((unsigned long long)timer_id > INT_MAX) 625 return NULL; 626 627 rcu_read_lock(); 628 timr = posix_timer_by_id(timer_id); 629 if (timr) { 630 spin_lock_irqsave(&timr->it_lock, *flags); 631 if (timr->it_signal == current->signal) { 632 rcu_read_unlock(); 633 return timr; 634 } 635 spin_unlock_irqrestore(&timr->it_lock, *flags); 636 } 637 rcu_read_unlock(); 638 639 return NULL; 640 } 641 642 static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now) 643 { 644 struct hrtimer *timer = &timr->it.real.timer; 645 646 return __hrtimer_expires_remaining_adjusted(timer, now); 647 } 648 649 static int common_hrtimer_forward(struct k_itimer *timr, ktime_t now) 650 { 651 struct hrtimer *timer = &timr->it.real.timer; 652 653 return (int)hrtimer_forward(timer, now, timr->it_interval); 654 } 655 656 /* 657 * Get the time remaining on a POSIX.1b interval timer. This function 658 * is ALWAYS called with spin_lock_irq on the timer, thus it must not 659 * mess with irq. 660 * 661 * We have a couple of messes to clean up here. First there is the case 662 * of a timer that has a requeue pending. These timers should appear to 663 * be in the timer list with an expiry as if we were to requeue them 664 * now. 665 * 666 * The second issue is the SIGEV_NONE timer which may be active but is 667 * not really ever put in the timer list (to save system resources). 668 * This timer may be expired, and if so, we will do it here. Otherwise 669 * it is the same as a requeue pending timer WRT to what we should 670 * report. 671 */ 672 void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting) 673 { 674 const struct k_clock *kc = timr->kclock; 675 ktime_t now, remaining, iv; 676 struct timespec64 ts64; 677 bool sig_none; 678 679 sig_none = timr->it_sigev_notify == SIGEV_NONE; 680 iv = timr->it_interval; 681 682 /* interval timer ? */ 683 if (iv) { 684 cur_setting->it_interval = ktime_to_timespec64(iv); 685 } else if (!timr->it_active) { 686 /* 687 * SIGEV_NONE oneshot timers are never queued. Check them 688 * below. 689 */ 690 if (!sig_none) 691 return; 692 } 693 694 /* 695 * The timespec64 based conversion is suboptimal, but it's not 696 * worth to implement yet another callback. 697 */ 698 kc->clock_get(timr->it_clock, &ts64); 699 now = timespec64_to_ktime(ts64); 700 701 /* 702 * When a requeue is pending or this is a SIGEV_NONE timer move the 703 * expiry time forward by intervals, so expiry is > now. 704 */ 705 if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none)) 706 timr->it_overrun += kc->timer_forward(timr, now); 707 708 remaining = kc->timer_remaining(timr, now); 709 /* Return 0 only, when the timer is expired and not pending */ 710 if (remaining <= 0) { 711 /* 712 * A single shot SIGEV_NONE timer must return 0, when 713 * it is expired ! 714 */ 715 if (!sig_none) 716 cur_setting->it_value.tv_nsec = 1; 717 } else { 718 cur_setting->it_value = ktime_to_timespec64(remaining); 719 } 720 } 721 722 /* Get the time remaining on a POSIX.1b interval timer. */ 723 static int do_timer_gettime(timer_t timer_id, struct itimerspec64 *setting) 724 { 725 struct k_itimer *timr; 726 const struct k_clock *kc; 727 unsigned long flags; 728 int ret = 0; 729 730 timr = lock_timer(timer_id, &flags); 731 if (!timr) 732 return -EINVAL; 733 734 memset(setting, 0, sizeof(*setting)); 735 kc = timr->kclock; 736 if (WARN_ON_ONCE(!kc || !kc->timer_get)) 737 ret = -EINVAL; 738 else 739 kc->timer_get(timr, setting); 740 741 unlock_timer(timr, flags); 742 return ret; 743 } 744 745 /* Get the time remaining on a POSIX.1b interval timer. */ 746 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id, 747 struct itimerspec __user *, setting) 748 { 749 struct itimerspec64 cur_setting; 750 751 int ret = do_timer_gettime(timer_id, &cur_setting); 752 if (!ret) { 753 if (put_itimerspec64(&cur_setting, setting)) 754 ret = -EFAULT; 755 } 756 return ret; 757 } 758 759 #ifdef CONFIG_COMPAT 760 COMPAT_SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id, 761 struct compat_itimerspec __user *, setting) 762 { 763 struct itimerspec64 cur_setting; 764 765 int ret = do_timer_gettime(timer_id, &cur_setting); 766 if (!ret) { 767 if (put_compat_itimerspec64(&cur_setting, setting)) 768 ret = -EFAULT; 769 } 770 return ret; 771 } 772 #endif 773 774 /* 775 * Get the number of overruns of a POSIX.1b interval timer. This is to 776 * be the overrun of the timer last delivered. At the same time we are 777 * accumulating overruns on the next timer. The overrun is frozen when 778 * the signal is delivered, either at the notify time (if the info block 779 * is not queued) or at the actual delivery time (as we are informed by 780 * the call back to posixtimer_rearm(). So all we need to do is 781 * to pick up the frozen overrun. 782 */ 783 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id) 784 { 785 struct k_itimer *timr; 786 int overrun; 787 unsigned long flags; 788 789 timr = lock_timer(timer_id, &flags); 790 if (!timr) 791 return -EINVAL; 792 793 overrun = timr->it_overrun_last; 794 unlock_timer(timr, flags); 795 796 return overrun; 797 } 798 799 static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires, 800 bool absolute, bool sigev_none) 801 { 802 struct hrtimer *timer = &timr->it.real.timer; 803 enum hrtimer_mode mode; 804 805 mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL; 806 /* 807 * Posix magic: Relative CLOCK_REALTIME timers are not affected by 808 * clock modifications, so they become CLOCK_MONOTONIC based under the 809 * hood. See hrtimer_init(). Update timr->kclock, so the generic 810 * functions which use timr->kclock->clock_get() work. 811 * 812 * Note: it_clock stays unmodified, because the next timer_set() might 813 * use ABSTIME, so it needs to switch back. 814 */ 815 if (timr->it_clock == CLOCK_REALTIME) 816 timr->kclock = absolute ? &clock_realtime : &clock_monotonic; 817 818 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode); 819 timr->it.real.timer.function = posix_timer_fn; 820 821 if (!absolute) 822 expires = ktime_add_safe(expires, timer->base->get_time()); 823 hrtimer_set_expires(timer, expires); 824 825 if (!sigev_none) 826 hrtimer_start_expires(timer, HRTIMER_MODE_ABS); 827 } 828 829 static int common_hrtimer_try_to_cancel(struct k_itimer *timr) 830 { 831 return hrtimer_try_to_cancel(&timr->it.real.timer); 832 } 833 834 /* Set a POSIX.1b interval timer. */ 835 int common_timer_set(struct k_itimer *timr, int flags, 836 struct itimerspec64 *new_setting, 837 struct itimerspec64 *old_setting) 838 { 839 const struct k_clock *kc = timr->kclock; 840 bool sigev_none; 841 ktime_t expires; 842 843 if (old_setting) 844 common_timer_get(timr, old_setting); 845 846 /* Prevent rearming by clearing the interval */ 847 timr->it_interval = 0; 848 /* 849 * Careful here. On SMP systems the timer expiry function could be 850 * active and spinning on timr->it_lock. 851 */ 852 if (kc->timer_try_to_cancel(timr) < 0) 853 return TIMER_RETRY; 854 855 timr->it_active = 0; 856 timr->it_requeue_pending = (timr->it_requeue_pending + 2) & 857 ~REQUEUE_PENDING; 858 timr->it_overrun_last = 0; 859 860 /* Switch off the timer when it_value is zero */ 861 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) 862 return 0; 863 864 timr->it_interval = timespec64_to_ktime(new_setting->it_interval); 865 expires = timespec64_to_ktime(new_setting->it_value); 866 sigev_none = timr->it_sigev_notify == SIGEV_NONE; 867 868 kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none); 869 timr->it_active = !sigev_none; 870 return 0; 871 } 872 873 static int do_timer_settime(timer_t timer_id, int flags, 874 struct itimerspec64 *new_spec64, 875 struct itimerspec64 *old_spec64) 876 { 877 const struct k_clock *kc; 878 struct k_itimer *timr; 879 unsigned long flag; 880 int error = 0; 881 882 if (!timespec64_valid(&new_spec64->it_interval) || 883 !timespec64_valid(&new_spec64->it_value)) 884 return -EINVAL; 885 886 if (old_spec64) 887 memset(old_spec64, 0, sizeof(*old_spec64)); 888 retry: 889 timr = lock_timer(timer_id, &flag); 890 if (!timr) 891 return -EINVAL; 892 893 kc = timr->kclock; 894 if (WARN_ON_ONCE(!kc || !kc->timer_set)) 895 error = -EINVAL; 896 else 897 error = kc->timer_set(timr, flags, new_spec64, old_spec64); 898 899 unlock_timer(timr, flag); 900 if (error == TIMER_RETRY) { 901 old_spec64 = NULL; // We already got the old time... 902 goto retry; 903 } 904 905 return error; 906 } 907 908 /* Set a POSIX.1b interval timer */ 909 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags, 910 const struct itimerspec __user *, new_setting, 911 struct itimerspec __user *, old_setting) 912 { 913 struct itimerspec64 new_spec, old_spec; 914 struct itimerspec64 *rtn = old_setting ? &old_spec : NULL; 915 int error = 0; 916 917 if (!new_setting) 918 return -EINVAL; 919 920 if (get_itimerspec64(&new_spec, new_setting)) 921 return -EFAULT; 922 923 error = do_timer_settime(timer_id, flags, &new_spec, rtn); 924 if (!error && old_setting) { 925 if (put_itimerspec64(&old_spec, old_setting)) 926 error = -EFAULT; 927 } 928 return error; 929 } 930 931 #ifdef CONFIG_COMPAT 932 COMPAT_SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags, 933 struct compat_itimerspec __user *, new, 934 struct compat_itimerspec __user *, old) 935 { 936 struct itimerspec64 new_spec, old_spec; 937 struct itimerspec64 *rtn = old ? &old_spec : NULL; 938 int error = 0; 939 940 if (!new) 941 return -EINVAL; 942 if (get_compat_itimerspec64(&new_spec, new)) 943 return -EFAULT; 944 945 error = do_timer_settime(timer_id, flags, &new_spec, rtn); 946 if (!error && old) { 947 if (put_compat_itimerspec64(&old_spec, old)) 948 error = -EFAULT; 949 } 950 return error; 951 } 952 #endif 953 954 int common_timer_del(struct k_itimer *timer) 955 { 956 const struct k_clock *kc = timer->kclock; 957 958 timer->it_interval = 0; 959 if (kc->timer_try_to_cancel(timer) < 0) 960 return TIMER_RETRY; 961 timer->it_active = 0; 962 return 0; 963 } 964 965 static inline int timer_delete_hook(struct k_itimer *timer) 966 { 967 const struct k_clock *kc = timer->kclock; 968 969 if (WARN_ON_ONCE(!kc || !kc->timer_del)) 970 return -EINVAL; 971 return kc->timer_del(timer); 972 } 973 974 /* Delete a POSIX.1b interval timer. */ 975 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id) 976 { 977 struct k_itimer *timer; 978 unsigned long flags; 979 980 retry_delete: 981 timer = lock_timer(timer_id, &flags); 982 if (!timer) 983 return -EINVAL; 984 985 if (timer_delete_hook(timer) == TIMER_RETRY) { 986 unlock_timer(timer, flags); 987 goto retry_delete; 988 } 989 990 spin_lock(¤t->sighand->siglock); 991 list_del(&timer->list); 992 spin_unlock(¤t->sighand->siglock); 993 /* 994 * This keeps any tasks waiting on the spin lock from thinking 995 * they got something (see the lock code above). 996 */ 997 timer->it_signal = NULL; 998 999 unlock_timer(timer, flags); 1000 release_posix_timer(timer, IT_ID_SET); 1001 return 0; 1002 } 1003 1004 /* 1005 * return timer owned by the process, used by exit_itimers 1006 */ 1007 static void itimer_delete(struct k_itimer *timer) 1008 { 1009 unsigned long flags; 1010 1011 retry_delete: 1012 spin_lock_irqsave(&timer->it_lock, flags); 1013 1014 if (timer_delete_hook(timer) == TIMER_RETRY) { 1015 unlock_timer(timer, flags); 1016 goto retry_delete; 1017 } 1018 list_del(&timer->list); 1019 /* 1020 * This keeps any tasks waiting on the spin lock from thinking 1021 * they got something (see the lock code above). 1022 */ 1023 timer->it_signal = NULL; 1024 1025 unlock_timer(timer, flags); 1026 release_posix_timer(timer, IT_ID_SET); 1027 } 1028 1029 /* 1030 * This is called by do_exit or de_thread, only when there are no more 1031 * references to the shared signal_struct. 1032 */ 1033 void exit_itimers(struct signal_struct *sig) 1034 { 1035 struct k_itimer *tmr; 1036 1037 while (!list_empty(&sig->posix_timers)) { 1038 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list); 1039 itimer_delete(tmr); 1040 } 1041 } 1042 1043 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock, 1044 const struct timespec __user *, tp) 1045 { 1046 const struct k_clock *kc = clockid_to_kclock(which_clock); 1047 struct timespec64 new_tp; 1048 1049 if (!kc || !kc->clock_set) 1050 return -EINVAL; 1051 1052 if (get_timespec64(&new_tp, tp)) 1053 return -EFAULT; 1054 1055 return kc->clock_set(which_clock, &new_tp); 1056 } 1057 1058 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock, 1059 struct timespec __user *,tp) 1060 { 1061 const struct k_clock *kc = clockid_to_kclock(which_clock); 1062 struct timespec64 kernel_tp; 1063 int error; 1064 1065 if (!kc) 1066 return -EINVAL; 1067 1068 error = kc->clock_get(which_clock, &kernel_tp); 1069 1070 if (!error && put_timespec64(&kernel_tp, tp)) 1071 error = -EFAULT; 1072 1073 return error; 1074 } 1075 1076 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock, 1077 struct timex __user *, utx) 1078 { 1079 const struct k_clock *kc = clockid_to_kclock(which_clock); 1080 struct timex ktx; 1081 int err; 1082 1083 if (!kc) 1084 return -EINVAL; 1085 if (!kc->clock_adj) 1086 return -EOPNOTSUPP; 1087 1088 if (copy_from_user(&ktx, utx, sizeof(ktx))) 1089 return -EFAULT; 1090 1091 err = kc->clock_adj(which_clock, &ktx); 1092 1093 if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx))) 1094 return -EFAULT; 1095 1096 return err; 1097 } 1098 1099 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock, 1100 struct timespec __user *, tp) 1101 { 1102 const struct k_clock *kc = clockid_to_kclock(which_clock); 1103 struct timespec64 rtn_tp; 1104 int error; 1105 1106 if (!kc) 1107 return -EINVAL; 1108 1109 error = kc->clock_getres(which_clock, &rtn_tp); 1110 1111 if (!error && tp && put_timespec64(&rtn_tp, tp)) 1112 error = -EFAULT; 1113 1114 return error; 1115 } 1116 1117 #ifdef CONFIG_COMPAT 1118 1119 COMPAT_SYSCALL_DEFINE2(clock_settime, clockid_t, which_clock, 1120 struct compat_timespec __user *, tp) 1121 { 1122 const struct k_clock *kc = clockid_to_kclock(which_clock); 1123 struct timespec64 ts; 1124 1125 if (!kc || !kc->clock_set) 1126 return -EINVAL; 1127 1128 if (compat_get_timespec64(&ts, tp)) 1129 return -EFAULT; 1130 1131 return kc->clock_set(which_clock, &ts); 1132 } 1133 1134 COMPAT_SYSCALL_DEFINE2(clock_gettime, clockid_t, which_clock, 1135 struct compat_timespec __user *, tp) 1136 { 1137 const struct k_clock *kc = clockid_to_kclock(which_clock); 1138 struct timespec64 ts; 1139 int err; 1140 1141 if (!kc) 1142 return -EINVAL; 1143 1144 err = kc->clock_get(which_clock, &ts); 1145 1146 if (!err && compat_put_timespec64(&ts, tp)) 1147 err = -EFAULT; 1148 1149 return err; 1150 } 1151 1152 COMPAT_SYSCALL_DEFINE2(clock_adjtime, clockid_t, which_clock, 1153 struct compat_timex __user *, utp) 1154 { 1155 const struct k_clock *kc = clockid_to_kclock(which_clock); 1156 struct timex ktx; 1157 int err; 1158 1159 if (!kc) 1160 return -EINVAL; 1161 if (!kc->clock_adj) 1162 return -EOPNOTSUPP; 1163 1164 err = compat_get_timex(&ktx, utp); 1165 if (err) 1166 return err; 1167 1168 err = kc->clock_adj(which_clock, &ktx); 1169 1170 if (err >= 0) 1171 err = compat_put_timex(utp, &ktx); 1172 1173 return err; 1174 } 1175 1176 COMPAT_SYSCALL_DEFINE2(clock_getres, clockid_t, which_clock, 1177 struct compat_timespec __user *, tp) 1178 { 1179 const struct k_clock *kc = clockid_to_kclock(which_clock); 1180 struct timespec64 ts; 1181 int err; 1182 1183 if (!kc) 1184 return -EINVAL; 1185 1186 err = kc->clock_getres(which_clock, &ts); 1187 if (!err && tp && compat_put_timespec64(&ts, tp)) 1188 return -EFAULT; 1189 1190 return err; 1191 } 1192 1193 #endif 1194 1195 /* 1196 * nanosleep for monotonic and realtime clocks 1197 */ 1198 static int common_nsleep(const clockid_t which_clock, int flags, 1199 const struct timespec64 *rqtp) 1200 { 1201 return hrtimer_nanosleep(rqtp, flags & TIMER_ABSTIME ? 1202 HRTIMER_MODE_ABS : HRTIMER_MODE_REL, 1203 which_clock); 1204 } 1205 1206 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags, 1207 const struct timespec __user *, rqtp, 1208 struct timespec __user *, rmtp) 1209 { 1210 const struct k_clock *kc = clockid_to_kclock(which_clock); 1211 struct timespec64 t; 1212 1213 if (!kc) 1214 return -EINVAL; 1215 if (!kc->nsleep) 1216 return -ENANOSLEEP_NOTSUP; 1217 1218 if (get_timespec64(&t, rqtp)) 1219 return -EFAULT; 1220 1221 if (!timespec64_valid(&t)) 1222 return -EINVAL; 1223 if (flags & TIMER_ABSTIME) 1224 rmtp = NULL; 1225 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; 1226 current->restart_block.nanosleep.rmtp = rmtp; 1227 1228 return kc->nsleep(which_clock, flags, &t); 1229 } 1230 1231 #ifdef CONFIG_COMPAT 1232 COMPAT_SYSCALL_DEFINE4(clock_nanosleep, clockid_t, which_clock, int, flags, 1233 struct compat_timespec __user *, rqtp, 1234 struct compat_timespec __user *, rmtp) 1235 { 1236 const struct k_clock *kc = clockid_to_kclock(which_clock); 1237 struct timespec64 t; 1238 1239 if (!kc) 1240 return -EINVAL; 1241 if (!kc->nsleep) 1242 return -ENANOSLEEP_NOTSUP; 1243 1244 if (compat_get_timespec64(&t, rqtp)) 1245 return -EFAULT; 1246 1247 if (!timespec64_valid(&t)) 1248 return -EINVAL; 1249 if (flags & TIMER_ABSTIME) 1250 rmtp = NULL; 1251 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; 1252 current->restart_block.nanosleep.compat_rmtp = rmtp; 1253 1254 return kc->nsleep(which_clock, flags, &t); 1255 } 1256 #endif 1257 1258 static const struct k_clock clock_realtime = { 1259 .clock_getres = posix_get_hrtimer_res, 1260 .clock_get = posix_clock_realtime_get, 1261 .clock_set = posix_clock_realtime_set, 1262 .clock_adj = posix_clock_realtime_adj, 1263 .nsleep = common_nsleep, 1264 .timer_create = common_timer_create, 1265 .timer_set = common_timer_set, 1266 .timer_get = common_timer_get, 1267 .timer_del = common_timer_del, 1268 .timer_rearm = common_hrtimer_rearm, 1269 .timer_forward = common_hrtimer_forward, 1270 .timer_remaining = common_hrtimer_remaining, 1271 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1272 .timer_arm = common_hrtimer_arm, 1273 }; 1274 1275 static const struct k_clock clock_monotonic = { 1276 .clock_getres = posix_get_hrtimer_res, 1277 .clock_get = posix_ktime_get_ts, 1278 .nsleep = common_nsleep, 1279 .timer_create = common_timer_create, 1280 .timer_set = common_timer_set, 1281 .timer_get = common_timer_get, 1282 .timer_del = common_timer_del, 1283 .timer_rearm = common_hrtimer_rearm, 1284 .timer_forward = common_hrtimer_forward, 1285 .timer_remaining = common_hrtimer_remaining, 1286 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1287 .timer_arm = common_hrtimer_arm, 1288 }; 1289 1290 static const struct k_clock clock_monotonic_raw = { 1291 .clock_getres = posix_get_hrtimer_res, 1292 .clock_get = posix_get_monotonic_raw, 1293 }; 1294 1295 static const struct k_clock clock_realtime_coarse = { 1296 .clock_getres = posix_get_coarse_res, 1297 .clock_get = posix_get_realtime_coarse, 1298 }; 1299 1300 static const struct k_clock clock_monotonic_coarse = { 1301 .clock_getres = posix_get_coarse_res, 1302 .clock_get = posix_get_monotonic_coarse, 1303 }; 1304 1305 static const struct k_clock clock_tai = { 1306 .clock_getres = posix_get_hrtimer_res, 1307 .clock_get = posix_get_tai, 1308 .nsleep = common_nsleep, 1309 .timer_create = common_timer_create, 1310 .timer_set = common_timer_set, 1311 .timer_get = common_timer_get, 1312 .timer_del = common_timer_del, 1313 .timer_rearm = common_hrtimer_rearm, 1314 .timer_forward = common_hrtimer_forward, 1315 .timer_remaining = common_hrtimer_remaining, 1316 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1317 .timer_arm = common_hrtimer_arm, 1318 }; 1319 1320 static const struct k_clock clock_monotonic_active = { 1321 .clock_getres = posix_get_hrtimer_res, 1322 .clock_get = posix_get_monotonic_active, 1323 }; 1324 1325 static const struct k_clock * const posix_clocks[] = { 1326 [CLOCK_REALTIME] = &clock_realtime, 1327 [CLOCK_MONOTONIC] = &clock_monotonic, 1328 [CLOCK_PROCESS_CPUTIME_ID] = &clock_process, 1329 [CLOCK_THREAD_CPUTIME_ID] = &clock_thread, 1330 [CLOCK_MONOTONIC_RAW] = &clock_monotonic_raw, 1331 [CLOCK_REALTIME_COARSE] = &clock_realtime_coarse, 1332 [CLOCK_MONOTONIC_COARSE] = &clock_monotonic_coarse, 1333 [CLOCK_BOOTTIME] = &clock_monotonic, 1334 [CLOCK_REALTIME_ALARM] = &alarm_clock, 1335 [CLOCK_BOOTTIME_ALARM] = &alarm_clock, 1336 [CLOCK_TAI] = &clock_tai, 1337 [CLOCK_MONOTONIC_ACTIVE] = &clock_monotonic_active, 1338 }; 1339 1340 static const struct k_clock *clockid_to_kclock(const clockid_t id) 1341 { 1342 clockid_t idx = id; 1343 1344 if (id < 0) { 1345 return (id & CLOCKFD_MASK) == CLOCKFD ? 1346 &clock_posix_dynamic : &clock_posix_cpu; 1347 } 1348 1349 if (id >= ARRAY_SIZE(posix_clocks)) 1350 return NULL; 1351 1352 return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))]; 1353 } 1354