xref: /openbmc/linux/kernel/time/posix-timers.c (revision d236d361)
1 /*
2  * linux/kernel/posix-timers.c
3  *
4  *
5  * 2002-10-15  Posix Clocks & timers
6  *                           by George Anzinger george@mvista.com
7  *
8  *			     Copyright (C) 2002 2003 by MontaVista Software.
9  *
10  * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11  *			     Copyright (C) 2004 Boris Hu
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or (at
16  * your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful, but
19  * WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21  * General Public License for more details.
22 
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26  *
27  * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28  */
29 
30 /* These are all the functions necessary to implement
31  * POSIX clocks & timers
32  */
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/slab.h>
36 #include <linux/time.h>
37 #include <linux/mutex.h>
38 #include <linux/sched/task.h>
39 
40 #include <linux/uaccess.h>
41 #include <linux/list.h>
42 #include <linux/init.h>
43 #include <linux/compiler.h>
44 #include <linux/hash.h>
45 #include <linux/posix-clock.h>
46 #include <linux/posix-timers.h>
47 #include <linux/syscalls.h>
48 #include <linux/wait.h>
49 #include <linux/workqueue.h>
50 #include <linux/export.h>
51 #include <linux/hashtable.h>
52 
53 #include "timekeeping.h"
54 
55 /*
56  * Management arrays for POSIX timers. Timers are now kept in static hash table
57  * with 512 entries.
58  * Timer ids are allocated by local routine, which selects proper hash head by
59  * key, constructed from current->signal address and per signal struct counter.
60  * This keeps timer ids unique per process, but now they can intersect between
61  * processes.
62  */
63 
64 /*
65  * Lets keep our timers in a slab cache :-)
66  */
67 static struct kmem_cache *posix_timers_cache;
68 
69 static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
70 static DEFINE_SPINLOCK(hash_lock);
71 
72 /*
73  * we assume that the new SIGEV_THREAD_ID shares no bits with the other
74  * SIGEV values.  Here we put out an error if this assumption fails.
75  */
76 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
77                        ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
78 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
79 #endif
80 
81 /*
82  * parisc wants ENOTSUP instead of EOPNOTSUPP
83  */
84 #ifndef ENOTSUP
85 # define ENANOSLEEP_NOTSUP EOPNOTSUPP
86 #else
87 # define ENANOSLEEP_NOTSUP ENOTSUP
88 #endif
89 
90 /*
91  * The timer ID is turned into a timer address by idr_find().
92  * Verifying a valid ID consists of:
93  *
94  * a) checking that idr_find() returns other than -1.
95  * b) checking that the timer id matches the one in the timer itself.
96  * c) that the timer owner is in the callers thread group.
97  */
98 
99 /*
100  * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
101  *	    to implement others.  This structure defines the various
102  *	    clocks.
103  *
104  * RESOLUTION: Clock resolution is used to round up timer and interval
105  *	    times, NOT to report clock times, which are reported with as
106  *	    much resolution as the system can muster.  In some cases this
107  *	    resolution may depend on the underlying clock hardware and
108  *	    may not be quantifiable until run time, and only then is the
109  *	    necessary code is written.	The standard says we should say
110  *	    something about this issue in the documentation...
111  *
112  * FUNCTIONS: The CLOCKs structure defines possible functions to
113  *	    handle various clock functions.
114  *
115  *	    The standard POSIX timer management code assumes the
116  *	    following: 1.) The k_itimer struct (sched.h) is used for
117  *	    the timer.  2.) The list, it_lock, it_clock, it_id and
118  *	    it_pid fields are not modified by timer code.
119  *
120  * Permissions: It is assumed that the clock_settime() function defined
121  *	    for each clock will take care of permission checks.	 Some
122  *	    clocks may be set able by any user (i.e. local process
123  *	    clocks) others not.	 Currently the only set able clock we
124  *	    have is CLOCK_REALTIME and its high res counter part, both of
125  *	    which we beg off on and pass to do_sys_settimeofday().
126  */
127 
128 static struct k_clock posix_clocks[MAX_CLOCKS];
129 
130 /*
131  * These ones are defined below.
132  */
133 static int common_nsleep(const clockid_t, int flags, struct timespec64 *t,
134 			 struct timespec __user *rmtp);
135 static int common_timer_create(struct k_itimer *new_timer);
136 static void common_timer_get(struct k_itimer *, struct itimerspec64 *);
137 static int common_timer_set(struct k_itimer *, int,
138 			    struct itimerspec64 *, struct itimerspec64 *);
139 static int common_timer_del(struct k_itimer *timer);
140 
141 static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
142 
143 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
144 
145 #define lock_timer(tid, flags)						   \
146 ({	struct k_itimer *__timr;					   \
147 	__cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags));  \
148 	__timr;								   \
149 })
150 
151 static int hash(struct signal_struct *sig, unsigned int nr)
152 {
153 	return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
154 }
155 
156 static struct k_itimer *__posix_timers_find(struct hlist_head *head,
157 					    struct signal_struct *sig,
158 					    timer_t id)
159 {
160 	struct k_itimer *timer;
161 
162 	hlist_for_each_entry_rcu(timer, head, t_hash) {
163 		if ((timer->it_signal == sig) && (timer->it_id == id))
164 			return timer;
165 	}
166 	return NULL;
167 }
168 
169 static struct k_itimer *posix_timer_by_id(timer_t id)
170 {
171 	struct signal_struct *sig = current->signal;
172 	struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
173 
174 	return __posix_timers_find(head, sig, id);
175 }
176 
177 static int posix_timer_add(struct k_itimer *timer)
178 {
179 	struct signal_struct *sig = current->signal;
180 	int first_free_id = sig->posix_timer_id;
181 	struct hlist_head *head;
182 	int ret = -ENOENT;
183 
184 	do {
185 		spin_lock(&hash_lock);
186 		head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
187 		if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
188 			hlist_add_head_rcu(&timer->t_hash, head);
189 			ret = sig->posix_timer_id;
190 		}
191 		if (++sig->posix_timer_id < 0)
192 			sig->posix_timer_id = 0;
193 		if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
194 			/* Loop over all possible ids completed */
195 			ret = -EAGAIN;
196 		spin_unlock(&hash_lock);
197 	} while (ret == -ENOENT);
198 	return ret;
199 }
200 
201 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
202 {
203 	spin_unlock_irqrestore(&timr->it_lock, flags);
204 }
205 
206 /* Get clock_realtime */
207 static int posix_clock_realtime_get(clockid_t which_clock, struct timespec64 *tp)
208 {
209 	ktime_get_real_ts64(tp);
210 	return 0;
211 }
212 
213 /* Set clock_realtime */
214 static int posix_clock_realtime_set(const clockid_t which_clock,
215 				    const struct timespec64 *tp)
216 {
217 	return do_sys_settimeofday64(tp, NULL);
218 }
219 
220 static int posix_clock_realtime_adj(const clockid_t which_clock,
221 				    struct timex *t)
222 {
223 	return do_adjtimex(t);
224 }
225 
226 /*
227  * Get monotonic time for posix timers
228  */
229 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec64 *tp)
230 {
231 	ktime_get_ts64(tp);
232 	return 0;
233 }
234 
235 /*
236  * Get monotonic-raw time for posix timers
237  */
238 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
239 {
240 	getrawmonotonic64(tp);
241 	return 0;
242 }
243 
244 
245 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
246 {
247 	*tp = current_kernel_time64();
248 	return 0;
249 }
250 
251 static int posix_get_monotonic_coarse(clockid_t which_clock,
252 						struct timespec64 *tp)
253 {
254 	*tp = get_monotonic_coarse64();
255 	return 0;
256 }
257 
258 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
259 {
260 	*tp = ktime_to_timespec64(KTIME_LOW_RES);
261 	return 0;
262 }
263 
264 static int posix_get_boottime(const clockid_t which_clock, struct timespec64 *tp)
265 {
266 	get_monotonic_boottime64(tp);
267 	return 0;
268 }
269 
270 static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp)
271 {
272 	timekeeping_clocktai64(tp);
273 	return 0;
274 }
275 
276 static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
277 {
278 	tp->tv_sec = 0;
279 	tp->tv_nsec = hrtimer_resolution;
280 	return 0;
281 }
282 
283 /*
284  * Initialize everything, well, just everything in Posix clocks/timers ;)
285  */
286 static __init int init_posix_timers(void)
287 {
288 	struct k_clock clock_realtime = {
289 		.clock_getres	= posix_get_hrtimer_res,
290 		.clock_get	= posix_clock_realtime_get,
291 		.clock_set	= posix_clock_realtime_set,
292 		.clock_adj	= posix_clock_realtime_adj,
293 		.nsleep		= common_nsleep,
294 		.nsleep_restart	= hrtimer_nanosleep_restart,
295 		.timer_create	= common_timer_create,
296 		.timer_set	= common_timer_set,
297 		.timer_get	= common_timer_get,
298 		.timer_del	= common_timer_del,
299 	};
300 	struct k_clock clock_monotonic = {
301 		.clock_getres	= posix_get_hrtimer_res,
302 		.clock_get	= posix_ktime_get_ts,
303 		.nsleep		= common_nsleep,
304 		.nsleep_restart	= hrtimer_nanosleep_restart,
305 		.timer_create	= common_timer_create,
306 		.timer_set	= common_timer_set,
307 		.timer_get	= common_timer_get,
308 		.timer_del	= common_timer_del,
309 	};
310 	struct k_clock clock_monotonic_raw = {
311 		.clock_getres	= posix_get_hrtimer_res,
312 		.clock_get	= posix_get_monotonic_raw,
313 	};
314 	struct k_clock clock_realtime_coarse = {
315 		.clock_getres	= posix_get_coarse_res,
316 		.clock_get	= posix_get_realtime_coarse,
317 	};
318 	struct k_clock clock_monotonic_coarse = {
319 		.clock_getres	= posix_get_coarse_res,
320 		.clock_get	= posix_get_monotonic_coarse,
321 	};
322 	struct k_clock clock_tai = {
323 		.clock_getres	= posix_get_hrtimer_res,
324 		.clock_get	= posix_get_tai,
325 		.nsleep		= common_nsleep,
326 		.nsleep_restart	= hrtimer_nanosleep_restart,
327 		.timer_create	= common_timer_create,
328 		.timer_set	= common_timer_set,
329 		.timer_get	= common_timer_get,
330 		.timer_del	= common_timer_del,
331 	};
332 	struct k_clock clock_boottime = {
333 		.clock_getres	= posix_get_hrtimer_res,
334 		.clock_get	= posix_get_boottime,
335 		.nsleep		= common_nsleep,
336 		.nsleep_restart	= hrtimer_nanosleep_restart,
337 		.timer_create	= common_timer_create,
338 		.timer_set	= common_timer_set,
339 		.timer_get	= common_timer_get,
340 		.timer_del	= common_timer_del,
341 	};
342 
343 	posix_timers_register_clock(CLOCK_REALTIME, &clock_realtime);
344 	posix_timers_register_clock(CLOCK_MONOTONIC, &clock_monotonic);
345 	posix_timers_register_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
346 	posix_timers_register_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse);
347 	posix_timers_register_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse);
348 	posix_timers_register_clock(CLOCK_BOOTTIME, &clock_boottime);
349 	posix_timers_register_clock(CLOCK_TAI, &clock_tai);
350 
351 	posix_timers_cache = kmem_cache_create("posix_timers_cache",
352 					sizeof (struct k_itimer), 0, SLAB_PANIC,
353 					NULL);
354 	return 0;
355 }
356 
357 __initcall(init_posix_timers);
358 
359 static void schedule_next_timer(struct k_itimer *timr)
360 {
361 	struct hrtimer *timer = &timr->it.real.timer;
362 
363 	if (timr->it.real.interval == 0)
364 		return;
365 
366 	timr->it_overrun += (unsigned int) hrtimer_forward(timer,
367 						timer->base->get_time(),
368 						timr->it.real.interval);
369 
370 	timr->it_overrun_last = timr->it_overrun;
371 	timr->it_overrun = -1;
372 	++timr->it_requeue_pending;
373 	hrtimer_restart(timer);
374 }
375 
376 /*
377  * This function is exported for use by the signal deliver code.  It is
378  * called just prior to the info block being released and passes that
379  * block to us.  It's function is to update the overrun entry AND to
380  * restart the timer.  It should only be called if the timer is to be
381  * restarted (i.e. we have flagged this in the sys_private entry of the
382  * info block).
383  *
384  * To protect against the timer going away while the interrupt is queued,
385  * we require that the it_requeue_pending flag be set.
386  */
387 void do_schedule_next_timer(struct siginfo *info)
388 {
389 	struct k_itimer *timr;
390 	unsigned long flags;
391 
392 	timr = lock_timer(info->si_tid, &flags);
393 
394 	if (timr && timr->it_requeue_pending == info->si_sys_private) {
395 		if (timr->it_clock < 0)
396 			posix_cpu_timer_schedule(timr);
397 		else
398 			schedule_next_timer(timr);
399 
400 		info->si_overrun += timr->it_overrun_last;
401 	}
402 
403 	if (timr)
404 		unlock_timer(timr, flags);
405 }
406 
407 int posix_timer_event(struct k_itimer *timr, int si_private)
408 {
409 	struct task_struct *task;
410 	int shared, ret = -1;
411 	/*
412 	 * FIXME: if ->sigq is queued we can race with
413 	 * dequeue_signal()->do_schedule_next_timer().
414 	 *
415 	 * If dequeue_signal() sees the "right" value of
416 	 * si_sys_private it calls do_schedule_next_timer().
417 	 * We re-queue ->sigq and drop ->it_lock().
418 	 * do_schedule_next_timer() locks the timer
419 	 * and re-schedules it while ->sigq is pending.
420 	 * Not really bad, but not that we want.
421 	 */
422 	timr->sigq->info.si_sys_private = si_private;
423 
424 	rcu_read_lock();
425 	task = pid_task(timr->it_pid, PIDTYPE_PID);
426 	if (task) {
427 		shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
428 		ret = send_sigqueue(timr->sigq, task, shared);
429 	}
430 	rcu_read_unlock();
431 	/* If we failed to send the signal the timer stops. */
432 	return ret > 0;
433 }
434 EXPORT_SYMBOL_GPL(posix_timer_event);
435 
436 /*
437  * This function gets called when a POSIX.1b interval timer expires.  It
438  * is used as a callback from the kernel internal timer.  The
439  * run_timer_list code ALWAYS calls with interrupts on.
440 
441  * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
442  */
443 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
444 {
445 	struct k_itimer *timr;
446 	unsigned long flags;
447 	int si_private = 0;
448 	enum hrtimer_restart ret = HRTIMER_NORESTART;
449 
450 	timr = container_of(timer, struct k_itimer, it.real.timer);
451 	spin_lock_irqsave(&timr->it_lock, flags);
452 
453 	if (timr->it.real.interval != 0)
454 		si_private = ++timr->it_requeue_pending;
455 
456 	if (posix_timer_event(timr, si_private)) {
457 		/*
458 		 * signal was not sent because of sig_ignor
459 		 * we will not get a call back to restart it AND
460 		 * it should be restarted.
461 		 */
462 		if (timr->it.real.interval != 0) {
463 			ktime_t now = hrtimer_cb_get_time(timer);
464 
465 			/*
466 			 * FIXME: What we really want, is to stop this
467 			 * timer completely and restart it in case the
468 			 * SIG_IGN is removed. This is a non trivial
469 			 * change which involves sighand locking
470 			 * (sigh !), which we don't want to do late in
471 			 * the release cycle.
472 			 *
473 			 * For now we just let timers with an interval
474 			 * less than a jiffie expire every jiffie to
475 			 * avoid softirq starvation in case of SIG_IGN
476 			 * and a very small interval, which would put
477 			 * the timer right back on the softirq pending
478 			 * list. By moving now ahead of time we trick
479 			 * hrtimer_forward() to expire the timer
480 			 * later, while we still maintain the overrun
481 			 * accuracy, but have some inconsistency in
482 			 * the timer_gettime() case. This is at least
483 			 * better than a starved softirq. A more
484 			 * complex fix which solves also another related
485 			 * inconsistency is already in the pipeline.
486 			 */
487 #ifdef CONFIG_HIGH_RES_TIMERS
488 			{
489 				ktime_t kj = NSEC_PER_SEC / HZ;
490 
491 				if (timr->it.real.interval < kj)
492 					now = ktime_add(now, kj);
493 			}
494 #endif
495 			timr->it_overrun += (unsigned int)
496 				hrtimer_forward(timer, now,
497 						timr->it.real.interval);
498 			ret = HRTIMER_RESTART;
499 			++timr->it_requeue_pending;
500 		}
501 	}
502 
503 	unlock_timer(timr, flags);
504 	return ret;
505 }
506 
507 static struct pid *good_sigevent(sigevent_t * event)
508 {
509 	struct task_struct *rtn = current->group_leader;
510 
511 	if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
512 		(!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
513 		 !same_thread_group(rtn, current) ||
514 		 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
515 		return NULL;
516 
517 	if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
518 	    ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
519 		return NULL;
520 
521 	return task_pid(rtn);
522 }
523 
524 void posix_timers_register_clock(const clockid_t clock_id,
525 				 struct k_clock *new_clock)
526 {
527 	if ((unsigned) clock_id >= MAX_CLOCKS) {
528 		printk(KERN_WARNING "POSIX clock register failed for clock_id %d\n",
529 		       clock_id);
530 		return;
531 	}
532 
533 	if (!new_clock->clock_get) {
534 		printk(KERN_WARNING "POSIX clock id %d lacks clock_get()\n",
535 		       clock_id);
536 		return;
537 	}
538 	if (!new_clock->clock_getres) {
539 		printk(KERN_WARNING "POSIX clock id %d lacks clock_getres()\n",
540 		       clock_id);
541 		return;
542 	}
543 
544 	posix_clocks[clock_id] = *new_clock;
545 }
546 EXPORT_SYMBOL_GPL(posix_timers_register_clock);
547 
548 static struct k_itimer * alloc_posix_timer(void)
549 {
550 	struct k_itimer *tmr;
551 	tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
552 	if (!tmr)
553 		return tmr;
554 	if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
555 		kmem_cache_free(posix_timers_cache, tmr);
556 		return NULL;
557 	}
558 	memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
559 	return tmr;
560 }
561 
562 static void k_itimer_rcu_free(struct rcu_head *head)
563 {
564 	struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);
565 
566 	kmem_cache_free(posix_timers_cache, tmr);
567 }
568 
569 #define IT_ID_SET	1
570 #define IT_ID_NOT_SET	0
571 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
572 {
573 	if (it_id_set) {
574 		unsigned long flags;
575 		spin_lock_irqsave(&hash_lock, flags);
576 		hlist_del_rcu(&tmr->t_hash);
577 		spin_unlock_irqrestore(&hash_lock, flags);
578 	}
579 	put_pid(tmr->it_pid);
580 	sigqueue_free(tmr->sigq);
581 	call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
582 }
583 
584 static struct k_clock *clockid_to_kclock(const clockid_t id)
585 {
586 	if (id < 0)
587 		return (id & CLOCKFD_MASK) == CLOCKFD ?
588 			&clock_posix_dynamic : &clock_posix_cpu;
589 
590 	if (id >= MAX_CLOCKS || !posix_clocks[id].clock_getres)
591 		return NULL;
592 	return &posix_clocks[id];
593 }
594 
595 static int common_timer_create(struct k_itimer *new_timer)
596 {
597 	hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
598 	return 0;
599 }
600 
601 /* Create a POSIX.1b interval timer. */
602 
603 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
604 		struct sigevent __user *, timer_event_spec,
605 		timer_t __user *, created_timer_id)
606 {
607 	struct k_clock *kc = clockid_to_kclock(which_clock);
608 	struct k_itimer *new_timer;
609 	int error, new_timer_id;
610 	sigevent_t event;
611 	int it_id_set = IT_ID_NOT_SET;
612 
613 	if (!kc)
614 		return -EINVAL;
615 	if (!kc->timer_create)
616 		return -EOPNOTSUPP;
617 
618 	new_timer = alloc_posix_timer();
619 	if (unlikely(!new_timer))
620 		return -EAGAIN;
621 
622 	spin_lock_init(&new_timer->it_lock);
623 	new_timer_id = posix_timer_add(new_timer);
624 	if (new_timer_id < 0) {
625 		error = new_timer_id;
626 		goto out;
627 	}
628 
629 	it_id_set = IT_ID_SET;
630 	new_timer->it_id = (timer_t) new_timer_id;
631 	new_timer->it_clock = which_clock;
632 	new_timer->it_overrun = -1;
633 
634 	if (timer_event_spec) {
635 		if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
636 			error = -EFAULT;
637 			goto out;
638 		}
639 		rcu_read_lock();
640 		new_timer->it_pid = get_pid(good_sigevent(&event));
641 		rcu_read_unlock();
642 		if (!new_timer->it_pid) {
643 			error = -EINVAL;
644 			goto out;
645 		}
646 	} else {
647 		memset(&event.sigev_value, 0, sizeof(event.sigev_value));
648 		event.sigev_notify = SIGEV_SIGNAL;
649 		event.sigev_signo = SIGALRM;
650 		event.sigev_value.sival_int = new_timer->it_id;
651 		new_timer->it_pid = get_pid(task_tgid(current));
652 	}
653 
654 	new_timer->it_sigev_notify     = event.sigev_notify;
655 	new_timer->sigq->info.si_signo = event.sigev_signo;
656 	new_timer->sigq->info.si_value = event.sigev_value;
657 	new_timer->sigq->info.si_tid   = new_timer->it_id;
658 	new_timer->sigq->info.si_code  = SI_TIMER;
659 
660 	if (copy_to_user(created_timer_id,
661 			 &new_timer_id, sizeof (new_timer_id))) {
662 		error = -EFAULT;
663 		goto out;
664 	}
665 
666 	error = kc->timer_create(new_timer);
667 	if (error)
668 		goto out;
669 
670 	spin_lock_irq(&current->sighand->siglock);
671 	new_timer->it_signal = current->signal;
672 	list_add(&new_timer->list, &current->signal->posix_timers);
673 	spin_unlock_irq(&current->sighand->siglock);
674 
675 	return 0;
676 	/*
677 	 * In the case of the timer belonging to another task, after
678 	 * the task is unlocked, the timer is owned by the other task
679 	 * and may cease to exist at any time.  Don't use or modify
680 	 * new_timer after the unlock call.
681 	 */
682 out:
683 	release_posix_timer(new_timer, it_id_set);
684 	return error;
685 }
686 
687 /*
688  * Locking issues: We need to protect the result of the id look up until
689  * we get the timer locked down so it is not deleted under us.  The
690  * removal is done under the idr spinlock so we use that here to bridge
691  * the find to the timer lock.  To avoid a dead lock, the timer id MUST
692  * be release with out holding the timer lock.
693  */
694 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
695 {
696 	struct k_itimer *timr;
697 
698 	/*
699 	 * timer_t could be any type >= int and we want to make sure any
700 	 * @timer_id outside positive int range fails lookup.
701 	 */
702 	if ((unsigned long long)timer_id > INT_MAX)
703 		return NULL;
704 
705 	rcu_read_lock();
706 	timr = posix_timer_by_id(timer_id);
707 	if (timr) {
708 		spin_lock_irqsave(&timr->it_lock, *flags);
709 		if (timr->it_signal == current->signal) {
710 			rcu_read_unlock();
711 			return timr;
712 		}
713 		spin_unlock_irqrestore(&timr->it_lock, *flags);
714 	}
715 	rcu_read_unlock();
716 
717 	return NULL;
718 }
719 
720 /*
721  * Get the time remaining on a POSIX.1b interval timer.  This function
722  * is ALWAYS called with spin_lock_irq on the timer, thus it must not
723  * mess with irq.
724  *
725  * We have a couple of messes to clean up here.  First there is the case
726  * of a timer that has a requeue pending.  These timers should appear to
727  * be in the timer list with an expiry as if we were to requeue them
728  * now.
729  *
730  * The second issue is the SIGEV_NONE timer which may be active but is
731  * not really ever put in the timer list (to save system resources).
732  * This timer may be expired, and if so, we will do it here.  Otherwise
733  * it is the same as a requeue pending timer WRT to what we should
734  * report.
735  */
736 static void
737 common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
738 {
739 	ktime_t now, remaining, iv;
740 	struct hrtimer *timer = &timr->it.real.timer;
741 
742 	memset(cur_setting, 0, sizeof(*cur_setting));
743 
744 	iv = timr->it.real.interval;
745 
746 	/* interval timer ? */
747 	if (iv)
748 		cur_setting->it_interval = ktime_to_timespec64(iv);
749 	else if (!hrtimer_active(timer) &&
750 		 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
751 		return;
752 
753 	now = timer->base->get_time();
754 
755 	/*
756 	 * When a requeue is pending or this is a SIGEV_NONE
757 	 * timer move the expiry time forward by intervals, so
758 	 * expiry is > now.
759 	 */
760 	if (iv && (timr->it_requeue_pending & REQUEUE_PENDING ||
761 		   (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
762 		timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
763 
764 	remaining = __hrtimer_expires_remaining_adjusted(timer, now);
765 	/* Return 0 only, when the timer is expired and not pending */
766 	if (remaining <= 0) {
767 		/*
768 		 * A single shot SIGEV_NONE timer must return 0, when
769 		 * it is expired !
770 		 */
771 		if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
772 			cur_setting->it_value.tv_nsec = 1;
773 	} else
774 		cur_setting->it_value = ktime_to_timespec64(remaining);
775 }
776 
777 /* Get the time remaining on a POSIX.1b interval timer. */
778 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
779 		struct itimerspec __user *, setting)
780 {
781 	struct itimerspec64 cur_setting64;
782 	struct itimerspec cur_setting;
783 	struct k_itimer *timr;
784 	struct k_clock *kc;
785 	unsigned long flags;
786 	int ret = 0;
787 
788 	timr = lock_timer(timer_id, &flags);
789 	if (!timr)
790 		return -EINVAL;
791 
792 	kc = clockid_to_kclock(timr->it_clock);
793 	if (WARN_ON_ONCE(!kc || !kc->timer_get))
794 		ret = -EINVAL;
795 	else
796 		kc->timer_get(timr, &cur_setting64);
797 
798 	unlock_timer(timr, flags);
799 
800 	cur_setting = itimerspec64_to_itimerspec(&cur_setting64);
801 	if (!ret && copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
802 		return -EFAULT;
803 
804 	return ret;
805 }
806 
807 /*
808  * Get the number of overruns of a POSIX.1b interval timer.  This is to
809  * be the overrun of the timer last delivered.  At the same time we are
810  * accumulating overruns on the next timer.  The overrun is frozen when
811  * the signal is delivered, either at the notify time (if the info block
812  * is not queued) or at the actual delivery time (as we are informed by
813  * the call back to do_schedule_next_timer().  So all we need to do is
814  * to pick up the frozen overrun.
815  */
816 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
817 {
818 	struct k_itimer *timr;
819 	int overrun;
820 	unsigned long flags;
821 
822 	timr = lock_timer(timer_id, &flags);
823 	if (!timr)
824 		return -EINVAL;
825 
826 	overrun = timr->it_overrun_last;
827 	unlock_timer(timr, flags);
828 
829 	return overrun;
830 }
831 
832 /* Set a POSIX.1b interval timer. */
833 /* timr->it_lock is taken. */
834 static int
835 common_timer_set(struct k_itimer *timr, int flags,
836 		 struct itimerspec64 *new_setting, struct itimerspec64 *old_setting)
837 {
838 	struct hrtimer *timer = &timr->it.real.timer;
839 	enum hrtimer_mode mode;
840 
841 	if (old_setting)
842 		common_timer_get(timr, old_setting);
843 
844 	/* disable the timer */
845 	timr->it.real.interval = 0;
846 	/*
847 	 * careful here.  If smp we could be in the "fire" routine which will
848 	 * be spinning as we hold the lock.  But this is ONLY an SMP issue.
849 	 */
850 	if (hrtimer_try_to_cancel(timer) < 0)
851 		return TIMER_RETRY;
852 
853 	timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
854 		~REQUEUE_PENDING;
855 	timr->it_overrun_last = 0;
856 
857 	/* switch off the timer when it_value is zero */
858 	if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
859 		return 0;
860 
861 	mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
862 	hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
863 	timr->it.real.timer.function = posix_timer_fn;
864 
865 	hrtimer_set_expires(timer, timespec64_to_ktime(new_setting->it_value));
866 
867 	/* Convert interval */
868 	timr->it.real.interval = timespec64_to_ktime(new_setting->it_interval);
869 
870 	/* SIGEV_NONE timers are not queued ! See common_timer_get */
871 	if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
872 		/* Setup correct expiry time for relative timers */
873 		if (mode == HRTIMER_MODE_REL) {
874 			hrtimer_add_expires(timer, timer->base->get_time());
875 		}
876 		return 0;
877 	}
878 
879 	hrtimer_start_expires(timer, mode);
880 	return 0;
881 }
882 
883 /* Set a POSIX.1b interval timer */
884 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
885 		const struct itimerspec __user *, new_setting,
886 		struct itimerspec __user *, old_setting)
887 {
888 	struct itimerspec64 new_spec64, old_spec64;
889 	struct itimerspec64 *rtn = old_setting ? &old_spec64 : NULL;
890 	struct itimerspec new_spec, old_spec;
891 	struct k_itimer *timr;
892 	unsigned long flag;
893 	struct k_clock *kc;
894 	int error = 0;
895 
896 	if (!new_setting)
897 		return -EINVAL;
898 
899 	if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
900 		return -EFAULT;
901 	new_spec64 = itimerspec_to_itimerspec64(&new_spec);
902 
903 	if (!timespec64_valid(&new_spec64.it_interval) ||
904 	    !timespec64_valid(&new_spec64.it_value))
905 		return -EINVAL;
906 retry:
907 	timr = lock_timer(timer_id, &flag);
908 	if (!timr)
909 		return -EINVAL;
910 
911 	kc = clockid_to_kclock(timr->it_clock);
912 	if (WARN_ON_ONCE(!kc || !kc->timer_set))
913 		error = -EINVAL;
914 	else
915 		error = kc->timer_set(timr, flags, &new_spec64, rtn);
916 
917 	unlock_timer(timr, flag);
918 	if (error == TIMER_RETRY) {
919 		rtn = NULL;	// We already got the old time...
920 		goto retry;
921 	}
922 
923 	old_spec = itimerspec64_to_itimerspec(&old_spec64);
924 	if (old_setting && !error &&
925 	    copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
926 		error = -EFAULT;
927 
928 	return error;
929 }
930 
931 static int common_timer_del(struct k_itimer *timer)
932 {
933 	timer->it.real.interval = 0;
934 
935 	if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
936 		return TIMER_RETRY;
937 	return 0;
938 }
939 
940 static inline int timer_delete_hook(struct k_itimer *timer)
941 {
942 	struct k_clock *kc = clockid_to_kclock(timer->it_clock);
943 
944 	if (WARN_ON_ONCE(!kc || !kc->timer_del))
945 		return -EINVAL;
946 	return kc->timer_del(timer);
947 }
948 
949 /* Delete a POSIX.1b interval timer. */
950 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
951 {
952 	struct k_itimer *timer;
953 	unsigned long flags;
954 
955 retry_delete:
956 	timer = lock_timer(timer_id, &flags);
957 	if (!timer)
958 		return -EINVAL;
959 
960 	if (timer_delete_hook(timer) == TIMER_RETRY) {
961 		unlock_timer(timer, flags);
962 		goto retry_delete;
963 	}
964 
965 	spin_lock(&current->sighand->siglock);
966 	list_del(&timer->list);
967 	spin_unlock(&current->sighand->siglock);
968 	/*
969 	 * This keeps any tasks waiting on the spin lock from thinking
970 	 * they got something (see the lock code above).
971 	 */
972 	timer->it_signal = NULL;
973 
974 	unlock_timer(timer, flags);
975 	release_posix_timer(timer, IT_ID_SET);
976 	return 0;
977 }
978 
979 /*
980  * return timer owned by the process, used by exit_itimers
981  */
982 static void itimer_delete(struct k_itimer *timer)
983 {
984 	unsigned long flags;
985 
986 retry_delete:
987 	spin_lock_irqsave(&timer->it_lock, flags);
988 
989 	if (timer_delete_hook(timer) == TIMER_RETRY) {
990 		unlock_timer(timer, flags);
991 		goto retry_delete;
992 	}
993 	list_del(&timer->list);
994 	/*
995 	 * This keeps any tasks waiting on the spin lock from thinking
996 	 * they got something (see the lock code above).
997 	 */
998 	timer->it_signal = NULL;
999 
1000 	unlock_timer(timer, flags);
1001 	release_posix_timer(timer, IT_ID_SET);
1002 }
1003 
1004 /*
1005  * This is called by do_exit or de_thread, only when there are no more
1006  * references to the shared signal_struct.
1007  */
1008 void exit_itimers(struct signal_struct *sig)
1009 {
1010 	struct k_itimer *tmr;
1011 
1012 	while (!list_empty(&sig->posix_timers)) {
1013 		tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
1014 		itimer_delete(tmr);
1015 	}
1016 }
1017 
1018 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1019 		const struct timespec __user *, tp)
1020 {
1021 	struct k_clock *kc = clockid_to_kclock(which_clock);
1022 	struct timespec64 new_tp64;
1023 	struct timespec new_tp;
1024 
1025 	if (!kc || !kc->clock_set)
1026 		return -EINVAL;
1027 
1028 	if (copy_from_user(&new_tp, tp, sizeof (*tp)))
1029 		return -EFAULT;
1030 	new_tp64 = timespec_to_timespec64(new_tp);
1031 
1032 	return kc->clock_set(which_clock, &new_tp64);
1033 }
1034 
1035 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1036 		struct timespec __user *,tp)
1037 {
1038 	struct k_clock *kc = clockid_to_kclock(which_clock);
1039 	struct timespec64 kernel_tp64;
1040 	struct timespec kernel_tp;
1041 	int error;
1042 
1043 	if (!kc)
1044 		return -EINVAL;
1045 
1046 	error = kc->clock_get(which_clock, &kernel_tp64);
1047 	kernel_tp = timespec64_to_timespec(kernel_tp64);
1048 
1049 	if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
1050 		error = -EFAULT;
1051 
1052 	return error;
1053 }
1054 
1055 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1056 		struct timex __user *, utx)
1057 {
1058 	struct k_clock *kc = clockid_to_kclock(which_clock);
1059 	struct timex ktx;
1060 	int err;
1061 
1062 	if (!kc)
1063 		return -EINVAL;
1064 	if (!kc->clock_adj)
1065 		return -EOPNOTSUPP;
1066 
1067 	if (copy_from_user(&ktx, utx, sizeof(ktx)))
1068 		return -EFAULT;
1069 
1070 	err = kc->clock_adj(which_clock, &ktx);
1071 
1072 	if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1073 		return -EFAULT;
1074 
1075 	return err;
1076 }
1077 
1078 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1079 		struct timespec __user *, tp)
1080 {
1081 	struct k_clock *kc = clockid_to_kclock(which_clock);
1082 	struct timespec64 rtn_tp64;
1083 	struct timespec rtn_tp;
1084 	int error;
1085 
1086 	if (!kc)
1087 		return -EINVAL;
1088 
1089 	error = kc->clock_getres(which_clock, &rtn_tp64);
1090 	rtn_tp = timespec64_to_timespec(rtn_tp64);
1091 
1092 	if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp)))
1093 		error = -EFAULT;
1094 
1095 	return error;
1096 }
1097 
1098 /*
1099  * nanosleep for monotonic and realtime clocks
1100  */
1101 static int common_nsleep(const clockid_t which_clock, int flags,
1102 			 struct timespec64 *tsave, struct timespec __user *rmtp)
1103 {
1104 	return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
1105 				 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1106 				 which_clock);
1107 }
1108 
1109 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1110 		const struct timespec __user *, rqtp,
1111 		struct timespec __user *, rmtp)
1112 {
1113 	struct k_clock *kc = clockid_to_kclock(which_clock);
1114 	struct timespec64 t64;
1115 	struct timespec t;
1116 
1117 	if (!kc)
1118 		return -EINVAL;
1119 	if (!kc->nsleep)
1120 		return -ENANOSLEEP_NOTSUP;
1121 
1122 	if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1123 		return -EFAULT;
1124 
1125 	t64 = timespec_to_timespec64(t);
1126 	if (!timespec64_valid(&t64))
1127 		return -EINVAL;
1128 
1129 	return kc->nsleep(which_clock, flags, &t64, rmtp);
1130 }
1131 
1132 /*
1133  * This will restart clock_nanosleep. This is required only by
1134  * compat_clock_nanosleep_restart for now.
1135  */
1136 long clock_nanosleep_restart(struct restart_block *restart_block)
1137 {
1138 	clockid_t which_clock = restart_block->nanosleep.clockid;
1139 	struct k_clock *kc = clockid_to_kclock(which_clock);
1140 
1141 	if (WARN_ON_ONCE(!kc || !kc->nsleep_restart))
1142 		return -EINVAL;
1143 
1144 	return kc->nsleep_restart(restart_block);
1145 }
1146