1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * 2002-10-15 Posix Clocks & timers 4 * by George Anzinger george@mvista.com 5 * Copyright (C) 2002 2003 by MontaVista Software. 6 * 7 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug. 8 * Copyright (C) 2004 Boris Hu 9 * 10 * These are all the functions necessary to implement POSIX clocks & timers 11 */ 12 #include <linux/mm.h> 13 #include <linux/interrupt.h> 14 #include <linux/slab.h> 15 #include <linux/time.h> 16 #include <linux/mutex.h> 17 #include <linux/sched/task.h> 18 19 #include <linux/uaccess.h> 20 #include <linux/list.h> 21 #include <linux/init.h> 22 #include <linux/compiler.h> 23 #include <linux/hash.h> 24 #include <linux/posix-clock.h> 25 #include <linux/posix-timers.h> 26 #include <linux/syscalls.h> 27 #include <linux/wait.h> 28 #include <linux/workqueue.h> 29 #include <linux/export.h> 30 #include <linux/hashtable.h> 31 #include <linux/compat.h> 32 #include <linux/nospec.h> 33 #include <linux/time_namespace.h> 34 35 #include "timekeeping.h" 36 #include "posix-timers.h" 37 38 /* 39 * Management arrays for POSIX timers. Timers are now kept in static hash table 40 * with 512 entries. 41 * Timer ids are allocated by local routine, which selects proper hash head by 42 * key, constructed from current->signal address and per signal struct counter. 43 * This keeps timer ids unique per process, but now they can intersect between 44 * processes. 45 */ 46 47 /* 48 * Lets keep our timers in a slab cache :-) 49 */ 50 static struct kmem_cache *posix_timers_cache; 51 52 static DEFINE_HASHTABLE(posix_timers_hashtable, 9); 53 static DEFINE_SPINLOCK(hash_lock); 54 55 static const struct k_clock * const posix_clocks[]; 56 static const struct k_clock *clockid_to_kclock(const clockid_t id); 57 static const struct k_clock clock_realtime, clock_monotonic; 58 59 /* 60 * we assume that the new SIGEV_THREAD_ID shares no bits with the other 61 * SIGEV values. Here we put out an error if this assumption fails. 62 */ 63 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \ 64 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD)) 65 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!" 66 #endif 67 68 /* 69 * The timer ID is turned into a timer address by idr_find(). 70 * Verifying a valid ID consists of: 71 * 72 * a) checking that idr_find() returns other than -1. 73 * b) checking that the timer id matches the one in the timer itself. 74 * c) that the timer owner is in the callers thread group. 75 */ 76 77 /* 78 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us 79 * to implement others. This structure defines the various 80 * clocks. 81 * 82 * RESOLUTION: Clock resolution is used to round up timer and interval 83 * times, NOT to report clock times, which are reported with as 84 * much resolution as the system can muster. In some cases this 85 * resolution may depend on the underlying clock hardware and 86 * may not be quantifiable until run time, and only then is the 87 * necessary code is written. The standard says we should say 88 * something about this issue in the documentation... 89 * 90 * FUNCTIONS: The CLOCKs structure defines possible functions to 91 * handle various clock functions. 92 * 93 * The standard POSIX timer management code assumes the 94 * following: 1.) The k_itimer struct (sched.h) is used for 95 * the timer. 2.) The list, it_lock, it_clock, it_id and 96 * it_pid fields are not modified by timer code. 97 * 98 * Permissions: It is assumed that the clock_settime() function defined 99 * for each clock will take care of permission checks. Some 100 * clocks may be set able by any user (i.e. local process 101 * clocks) others not. Currently the only set able clock we 102 * have is CLOCK_REALTIME and its high res counter part, both of 103 * which we beg off on and pass to do_sys_settimeofday(). 104 */ 105 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags); 106 107 #define lock_timer(tid, flags) \ 108 ({ struct k_itimer *__timr; \ 109 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \ 110 __timr; \ 111 }) 112 113 static int hash(struct signal_struct *sig, unsigned int nr) 114 { 115 return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable)); 116 } 117 118 static struct k_itimer *__posix_timers_find(struct hlist_head *head, 119 struct signal_struct *sig, 120 timer_t id) 121 { 122 struct k_itimer *timer; 123 124 hlist_for_each_entry_rcu(timer, head, t_hash, 125 lockdep_is_held(&hash_lock)) { 126 if ((timer->it_signal == sig) && (timer->it_id == id)) 127 return timer; 128 } 129 return NULL; 130 } 131 132 static struct k_itimer *posix_timer_by_id(timer_t id) 133 { 134 struct signal_struct *sig = current->signal; 135 struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)]; 136 137 return __posix_timers_find(head, sig, id); 138 } 139 140 static int posix_timer_add(struct k_itimer *timer) 141 { 142 struct signal_struct *sig = current->signal; 143 int first_free_id = sig->posix_timer_id; 144 struct hlist_head *head; 145 int ret = -ENOENT; 146 147 do { 148 spin_lock(&hash_lock); 149 head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)]; 150 if (!__posix_timers_find(head, sig, sig->posix_timer_id)) { 151 hlist_add_head_rcu(&timer->t_hash, head); 152 ret = sig->posix_timer_id; 153 } 154 if (++sig->posix_timer_id < 0) 155 sig->posix_timer_id = 0; 156 if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT)) 157 /* Loop over all possible ids completed */ 158 ret = -EAGAIN; 159 spin_unlock(&hash_lock); 160 } while (ret == -ENOENT); 161 return ret; 162 } 163 164 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags) 165 { 166 spin_unlock_irqrestore(&timr->it_lock, flags); 167 } 168 169 /* Get clock_realtime */ 170 static int posix_get_realtime_timespec(clockid_t which_clock, struct timespec64 *tp) 171 { 172 ktime_get_real_ts64(tp); 173 return 0; 174 } 175 176 static ktime_t posix_get_realtime_ktime(clockid_t which_clock) 177 { 178 return ktime_get_real(); 179 } 180 181 /* Set clock_realtime */ 182 static int posix_clock_realtime_set(const clockid_t which_clock, 183 const struct timespec64 *tp) 184 { 185 return do_sys_settimeofday64(tp, NULL); 186 } 187 188 static int posix_clock_realtime_adj(const clockid_t which_clock, 189 struct __kernel_timex *t) 190 { 191 return do_adjtimex(t); 192 } 193 194 /* 195 * Get monotonic time for posix timers 196 */ 197 static int posix_get_monotonic_timespec(clockid_t which_clock, struct timespec64 *tp) 198 { 199 ktime_get_ts64(tp); 200 timens_add_monotonic(tp); 201 return 0; 202 } 203 204 static ktime_t posix_get_monotonic_ktime(clockid_t which_clock) 205 { 206 return ktime_get(); 207 } 208 209 /* 210 * Get monotonic-raw time for posix timers 211 */ 212 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp) 213 { 214 ktime_get_raw_ts64(tp); 215 timens_add_monotonic(tp); 216 return 0; 217 } 218 219 220 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp) 221 { 222 ktime_get_coarse_real_ts64(tp); 223 return 0; 224 } 225 226 static int posix_get_monotonic_coarse(clockid_t which_clock, 227 struct timespec64 *tp) 228 { 229 ktime_get_coarse_ts64(tp); 230 timens_add_monotonic(tp); 231 return 0; 232 } 233 234 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp) 235 { 236 *tp = ktime_to_timespec64(KTIME_LOW_RES); 237 return 0; 238 } 239 240 static int posix_get_boottime_timespec(const clockid_t which_clock, struct timespec64 *tp) 241 { 242 ktime_get_boottime_ts64(tp); 243 timens_add_boottime(tp); 244 return 0; 245 } 246 247 static ktime_t posix_get_boottime_ktime(const clockid_t which_clock) 248 { 249 return ktime_get_boottime(); 250 } 251 252 static int posix_get_tai_timespec(clockid_t which_clock, struct timespec64 *tp) 253 { 254 ktime_get_clocktai_ts64(tp); 255 return 0; 256 } 257 258 static ktime_t posix_get_tai_ktime(clockid_t which_clock) 259 { 260 return ktime_get_clocktai(); 261 } 262 263 static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp) 264 { 265 tp->tv_sec = 0; 266 tp->tv_nsec = hrtimer_resolution; 267 return 0; 268 } 269 270 /* 271 * Initialize everything, well, just everything in Posix clocks/timers ;) 272 */ 273 static __init int init_posix_timers(void) 274 { 275 posix_timers_cache = kmem_cache_create("posix_timers_cache", 276 sizeof(struct k_itimer), 0, 277 SLAB_PANIC | SLAB_ACCOUNT, NULL); 278 return 0; 279 } 280 __initcall(init_posix_timers); 281 282 /* 283 * The siginfo si_overrun field and the return value of timer_getoverrun(2) 284 * are of type int. Clamp the overrun value to INT_MAX 285 */ 286 static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval) 287 { 288 s64 sum = timr->it_overrun_last + (s64)baseval; 289 290 return sum > (s64)INT_MAX ? INT_MAX : (int)sum; 291 } 292 293 static void common_hrtimer_rearm(struct k_itimer *timr) 294 { 295 struct hrtimer *timer = &timr->it.real.timer; 296 297 timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(), 298 timr->it_interval); 299 hrtimer_restart(timer); 300 } 301 302 /* 303 * This function is exported for use by the signal deliver code. It is 304 * called just prior to the info block being released and passes that 305 * block to us. It's function is to update the overrun entry AND to 306 * restart the timer. It should only be called if the timer is to be 307 * restarted (i.e. we have flagged this in the sys_private entry of the 308 * info block). 309 * 310 * To protect against the timer going away while the interrupt is queued, 311 * we require that the it_requeue_pending flag be set. 312 */ 313 void posixtimer_rearm(struct kernel_siginfo *info) 314 { 315 struct k_itimer *timr; 316 unsigned long flags; 317 318 timr = lock_timer(info->si_tid, &flags); 319 if (!timr) 320 return; 321 322 if (timr->it_interval && timr->it_requeue_pending == info->si_sys_private) { 323 timr->kclock->timer_rearm(timr); 324 325 timr->it_active = 1; 326 timr->it_overrun_last = timr->it_overrun; 327 timr->it_overrun = -1LL; 328 ++timr->it_requeue_pending; 329 330 info->si_overrun = timer_overrun_to_int(timr, info->si_overrun); 331 } 332 333 unlock_timer(timr, flags); 334 } 335 336 int posix_timer_event(struct k_itimer *timr, int si_private) 337 { 338 enum pid_type type; 339 int ret; 340 /* 341 * FIXME: if ->sigq is queued we can race with 342 * dequeue_signal()->posixtimer_rearm(). 343 * 344 * If dequeue_signal() sees the "right" value of 345 * si_sys_private it calls posixtimer_rearm(). 346 * We re-queue ->sigq and drop ->it_lock(). 347 * posixtimer_rearm() locks the timer 348 * and re-schedules it while ->sigq is pending. 349 * Not really bad, but not that we want. 350 */ 351 timr->sigq->info.si_sys_private = si_private; 352 353 type = !(timr->it_sigev_notify & SIGEV_THREAD_ID) ? PIDTYPE_TGID : PIDTYPE_PID; 354 ret = send_sigqueue(timr->sigq, timr->it_pid, type); 355 /* If we failed to send the signal the timer stops. */ 356 return ret > 0; 357 } 358 359 /* 360 * This function gets called when a POSIX.1b interval timer expires. It 361 * is used as a callback from the kernel internal timer. The 362 * run_timer_list code ALWAYS calls with interrupts on. 363 364 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers. 365 */ 366 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer) 367 { 368 struct k_itimer *timr; 369 unsigned long flags; 370 int si_private = 0; 371 enum hrtimer_restart ret = HRTIMER_NORESTART; 372 373 timr = container_of(timer, struct k_itimer, it.real.timer); 374 spin_lock_irqsave(&timr->it_lock, flags); 375 376 timr->it_active = 0; 377 if (timr->it_interval != 0) 378 si_private = ++timr->it_requeue_pending; 379 380 if (posix_timer_event(timr, si_private)) { 381 /* 382 * signal was not sent because of sig_ignor 383 * we will not get a call back to restart it AND 384 * it should be restarted. 385 */ 386 if (timr->it_interval != 0) { 387 ktime_t now = hrtimer_cb_get_time(timer); 388 389 /* 390 * FIXME: What we really want, is to stop this 391 * timer completely and restart it in case the 392 * SIG_IGN is removed. This is a non trivial 393 * change which involves sighand locking 394 * (sigh !), which we don't want to do late in 395 * the release cycle. 396 * 397 * For now we just let timers with an interval 398 * less than a jiffie expire every jiffie to 399 * avoid softirq starvation in case of SIG_IGN 400 * and a very small interval, which would put 401 * the timer right back on the softirq pending 402 * list. By moving now ahead of time we trick 403 * hrtimer_forward() to expire the timer 404 * later, while we still maintain the overrun 405 * accuracy, but have some inconsistency in 406 * the timer_gettime() case. This is at least 407 * better than a starved softirq. A more 408 * complex fix which solves also another related 409 * inconsistency is already in the pipeline. 410 */ 411 #ifdef CONFIG_HIGH_RES_TIMERS 412 { 413 ktime_t kj = NSEC_PER_SEC / HZ; 414 415 if (timr->it_interval < kj) 416 now = ktime_add(now, kj); 417 } 418 #endif 419 timr->it_overrun += hrtimer_forward(timer, now, 420 timr->it_interval); 421 ret = HRTIMER_RESTART; 422 ++timr->it_requeue_pending; 423 timr->it_active = 1; 424 } 425 } 426 427 unlock_timer(timr, flags); 428 return ret; 429 } 430 431 static struct pid *good_sigevent(sigevent_t * event) 432 { 433 struct pid *pid = task_tgid(current); 434 struct task_struct *rtn; 435 436 switch (event->sigev_notify) { 437 case SIGEV_SIGNAL | SIGEV_THREAD_ID: 438 pid = find_vpid(event->sigev_notify_thread_id); 439 rtn = pid_task(pid, PIDTYPE_PID); 440 if (!rtn || !same_thread_group(rtn, current)) 441 return NULL; 442 fallthrough; 443 case SIGEV_SIGNAL: 444 case SIGEV_THREAD: 445 if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX) 446 return NULL; 447 fallthrough; 448 case SIGEV_NONE: 449 return pid; 450 default: 451 return NULL; 452 } 453 } 454 455 static struct k_itimer * alloc_posix_timer(void) 456 { 457 struct k_itimer *tmr; 458 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL); 459 if (!tmr) 460 return tmr; 461 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) { 462 kmem_cache_free(posix_timers_cache, tmr); 463 return NULL; 464 } 465 clear_siginfo(&tmr->sigq->info); 466 return tmr; 467 } 468 469 static void k_itimer_rcu_free(struct rcu_head *head) 470 { 471 struct k_itimer *tmr = container_of(head, struct k_itimer, rcu); 472 473 kmem_cache_free(posix_timers_cache, tmr); 474 } 475 476 #define IT_ID_SET 1 477 #define IT_ID_NOT_SET 0 478 static void release_posix_timer(struct k_itimer *tmr, int it_id_set) 479 { 480 if (it_id_set) { 481 unsigned long flags; 482 spin_lock_irqsave(&hash_lock, flags); 483 hlist_del_rcu(&tmr->t_hash); 484 spin_unlock_irqrestore(&hash_lock, flags); 485 } 486 put_pid(tmr->it_pid); 487 sigqueue_free(tmr->sigq); 488 call_rcu(&tmr->rcu, k_itimer_rcu_free); 489 } 490 491 static int common_timer_create(struct k_itimer *new_timer) 492 { 493 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0); 494 return 0; 495 } 496 497 /* Create a POSIX.1b interval timer. */ 498 static int do_timer_create(clockid_t which_clock, struct sigevent *event, 499 timer_t __user *created_timer_id) 500 { 501 const struct k_clock *kc = clockid_to_kclock(which_clock); 502 struct k_itimer *new_timer; 503 int error, new_timer_id; 504 int it_id_set = IT_ID_NOT_SET; 505 506 if (!kc) 507 return -EINVAL; 508 if (!kc->timer_create) 509 return -EOPNOTSUPP; 510 511 new_timer = alloc_posix_timer(); 512 if (unlikely(!new_timer)) 513 return -EAGAIN; 514 515 spin_lock_init(&new_timer->it_lock); 516 new_timer_id = posix_timer_add(new_timer); 517 if (new_timer_id < 0) { 518 error = new_timer_id; 519 goto out; 520 } 521 522 it_id_set = IT_ID_SET; 523 new_timer->it_id = (timer_t) new_timer_id; 524 new_timer->it_clock = which_clock; 525 new_timer->kclock = kc; 526 new_timer->it_overrun = -1LL; 527 528 if (event) { 529 rcu_read_lock(); 530 new_timer->it_pid = get_pid(good_sigevent(event)); 531 rcu_read_unlock(); 532 if (!new_timer->it_pid) { 533 error = -EINVAL; 534 goto out; 535 } 536 new_timer->it_sigev_notify = event->sigev_notify; 537 new_timer->sigq->info.si_signo = event->sigev_signo; 538 new_timer->sigq->info.si_value = event->sigev_value; 539 } else { 540 new_timer->it_sigev_notify = SIGEV_SIGNAL; 541 new_timer->sigq->info.si_signo = SIGALRM; 542 memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t)); 543 new_timer->sigq->info.si_value.sival_int = new_timer->it_id; 544 new_timer->it_pid = get_pid(task_tgid(current)); 545 } 546 547 new_timer->sigq->info.si_tid = new_timer->it_id; 548 new_timer->sigq->info.si_code = SI_TIMER; 549 550 if (copy_to_user(created_timer_id, 551 &new_timer_id, sizeof (new_timer_id))) { 552 error = -EFAULT; 553 goto out; 554 } 555 556 error = kc->timer_create(new_timer); 557 if (error) 558 goto out; 559 560 spin_lock_irq(¤t->sighand->siglock); 561 new_timer->it_signal = current->signal; 562 list_add(&new_timer->list, ¤t->signal->posix_timers); 563 spin_unlock_irq(¤t->sighand->siglock); 564 565 return 0; 566 /* 567 * In the case of the timer belonging to another task, after 568 * the task is unlocked, the timer is owned by the other task 569 * and may cease to exist at any time. Don't use or modify 570 * new_timer after the unlock call. 571 */ 572 out: 573 release_posix_timer(new_timer, it_id_set); 574 return error; 575 } 576 577 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock, 578 struct sigevent __user *, timer_event_spec, 579 timer_t __user *, created_timer_id) 580 { 581 if (timer_event_spec) { 582 sigevent_t event; 583 584 if (copy_from_user(&event, timer_event_spec, sizeof (event))) 585 return -EFAULT; 586 return do_timer_create(which_clock, &event, created_timer_id); 587 } 588 return do_timer_create(which_clock, NULL, created_timer_id); 589 } 590 591 #ifdef CONFIG_COMPAT 592 COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock, 593 struct compat_sigevent __user *, timer_event_spec, 594 timer_t __user *, created_timer_id) 595 { 596 if (timer_event_spec) { 597 sigevent_t event; 598 599 if (get_compat_sigevent(&event, timer_event_spec)) 600 return -EFAULT; 601 return do_timer_create(which_clock, &event, created_timer_id); 602 } 603 return do_timer_create(which_clock, NULL, created_timer_id); 604 } 605 #endif 606 607 /* 608 * Locking issues: We need to protect the result of the id look up until 609 * we get the timer locked down so it is not deleted under us. The 610 * removal is done under the idr spinlock so we use that here to bridge 611 * the find to the timer lock. To avoid a dead lock, the timer id MUST 612 * be release with out holding the timer lock. 613 */ 614 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags) 615 { 616 struct k_itimer *timr; 617 618 /* 619 * timer_t could be any type >= int and we want to make sure any 620 * @timer_id outside positive int range fails lookup. 621 */ 622 if ((unsigned long long)timer_id > INT_MAX) 623 return NULL; 624 625 rcu_read_lock(); 626 timr = posix_timer_by_id(timer_id); 627 if (timr) { 628 spin_lock_irqsave(&timr->it_lock, *flags); 629 if (timr->it_signal == current->signal) { 630 rcu_read_unlock(); 631 return timr; 632 } 633 spin_unlock_irqrestore(&timr->it_lock, *flags); 634 } 635 rcu_read_unlock(); 636 637 return NULL; 638 } 639 640 static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now) 641 { 642 struct hrtimer *timer = &timr->it.real.timer; 643 644 return __hrtimer_expires_remaining_adjusted(timer, now); 645 } 646 647 static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now) 648 { 649 struct hrtimer *timer = &timr->it.real.timer; 650 651 return hrtimer_forward(timer, now, timr->it_interval); 652 } 653 654 /* 655 * Get the time remaining on a POSIX.1b interval timer. This function 656 * is ALWAYS called with spin_lock_irq on the timer, thus it must not 657 * mess with irq. 658 * 659 * We have a couple of messes to clean up here. First there is the case 660 * of a timer that has a requeue pending. These timers should appear to 661 * be in the timer list with an expiry as if we were to requeue them 662 * now. 663 * 664 * The second issue is the SIGEV_NONE timer which may be active but is 665 * not really ever put in the timer list (to save system resources). 666 * This timer may be expired, and if so, we will do it here. Otherwise 667 * it is the same as a requeue pending timer WRT to what we should 668 * report. 669 */ 670 void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting) 671 { 672 const struct k_clock *kc = timr->kclock; 673 ktime_t now, remaining, iv; 674 bool sig_none; 675 676 sig_none = timr->it_sigev_notify == SIGEV_NONE; 677 iv = timr->it_interval; 678 679 /* interval timer ? */ 680 if (iv) { 681 cur_setting->it_interval = ktime_to_timespec64(iv); 682 } else if (!timr->it_active) { 683 /* 684 * SIGEV_NONE oneshot timers are never queued. Check them 685 * below. 686 */ 687 if (!sig_none) 688 return; 689 } 690 691 now = kc->clock_get_ktime(timr->it_clock); 692 693 /* 694 * When a requeue is pending or this is a SIGEV_NONE timer move the 695 * expiry time forward by intervals, so expiry is > now. 696 */ 697 if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none)) 698 timr->it_overrun += kc->timer_forward(timr, now); 699 700 remaining = kc->timer_remaining(timr, now); 701 /* Return 0 only, when the timer is expired and not pending */ 702 if (remaining <= 0) { 703 /* 704 * A single shot SIGEV_NONE timer must return 0, when 705 * it is expired ! 706 */ 707 if (!sig_none) 708 cur_setting->it_value.tv_nsec = 1; 709 } else { 710 cur_setting->it_value = ktime_to_timespec64(remaining); 711 } 712 } 713 714 /* Get the time remaining on a POSIX.1b interval timer. */ 715 static int do_timer_gettime(timer_t timer_id, struct itimerspec64 *setting) 716 { 717 struct k_itimer *timr; 718 const struct k_clock *kc; 719 unsigned long flags; 720 int ret = 0; 721 722 timr = lock_timer(timer_id, &flags); 723 if (!timr) 724 return -EINVAL; 725 726 memset(setting, 0, sizeof(*setting)); 727 kc = timr->kclock; 728 if (WARN_ON_ONCE(!kc || !kc->timer_get)) 729 ret = -EINVAL; 730 else 731 kc->timer_get(timr, setting); 732 733 unlock_timer(timr, flags); 734 return ret; 735 } 736 737 /* Get the time remaining on a POSIX.1b interval timer. */ 738 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id, 739 struct __kernel_itimerspec __user *, setting) 740 { 741 struct itimerspec64 cur_setting; 742 743 int ret = do_timer_gettime(timer_id, &cur_setting); 744 if (!ret) { 745 if (put_itimerspec64(&cur_setting, setting)) 746 ret = -EFAULT; 747 } 748 return ret; 749 } 750 751 #ifdef CONFIG_COMPAT_32BIT_TIME 752 753 SYSCALL_DEFINE2(timer_gettime32, timer_t, timer_id, 754 struct old_itimerspec32 __user *, setting) 755 { 756 struct itimerspec64 cur_setting; 757 758 int ret = do_timer_gettime(timer_id, &cur_setting); 759 if (!ret) { 760 if (put_old_itimerspec32(&cur_setting, setting)) 761 ret = -EFAULT; 762 } 763 return ret; 764 } 765 766 #endif 767 768 /* 769 * Get the number of overruns of a POSIX.1b interval timer. This is to 770 * be the overrun of the timer last delivered. At the same time we are 771 * accumulating overruns on the next timer. The overrun is frozen when 772 * the signal is delivered, either at the notify time (if the info block 773 * is not queued) or at the actual delivery time (as we are informed by 774 * the call back to posixtimer_rearm(). So all we need to do is 775 * to pick up the frozen overrun. 776 */ 777 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id) 778 { 779 struct k_itimer *timr; 780 int overrun; 781 unsigned long flags; 782 783 timr = lock_timer(timer_id, &flags); 784 if (!timr) 785 return -EINVAL; 786 787 overrun = timer_overrun_to_int(timr, 0); 788 unlock_timer(timr, flags); 789 790 return overrun; 791 } 792 793 static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires, 794 bool absolute, bool sigev_none) 795 { 796 struct hrtimer *timer = &timr->it.real.timer; 797 enum hrtimer_mode mode; 798 799 mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL; 800 /* 801 * Posix magic: Relative CLOCK_REALTIME timers are not affected by 802 * clock modifications, so they become CLOCK_MONOTONIC based under the 803 * hood. See hrtimer_init(). Update timr->kclock, so the generic 804 * functions which use timr->kclock->clock_get_*() work. 805 * 806 * Note: it_clock stays unmodified, because the next timer_set() might 807 * use ABSTIME, so it needs to switch back. 808 */ 809 if (timr->it_clock == CLOCK_REALTIME) 810 timr->kclock = absolute ? &clock_realtime : &clock_monotonic; 811 812 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode); 813 timr->it.real.timer.function = posix_timer_fn; 814 815 if (!absolute) 816 expires = ktime_add_safe(expires, timer->base->get_time()); 817 hrtimer_set_expires(timer, expires); 818 819 if (!sigev_none) 820 hrtimer_start_expires(timer, HRTIMER_MODE_ABS); 821 } 822 823 static int common_hrtimer_try_to_cancel(struct k_itimer *timr) 824 { 825 return hrtimer_try_to_cancel(&timr->it.real.timer); 826 } 827 828 static void common_timer_wait_running(struct k_itimer *timer) 829 { 830 hrtimer_cancel_wait_running(&timer->it.real.timer); 831 } 832 833 /* 834 * On PREEMPT_RT this prevent priority inversion against softirq kthread in 835 * case it gets preempted while executing a timer callback. See comments in 836 * hrtimer_cancel_wait_running. For PREEMPT_RT=n this just results in a 837 * cpu_relax(). 838 */ 839 static struct k_itimer *timer_wait_running(struct k_itimer *timer, 840 unsigned long *flags) 841 { 842 const struct k_clock *kc = READ_ONCE(timer->kclock); 843 timer_t timer_id = READ_ONCE(timer->it_id); 844 845 /* Prevent kfree(timer) after dropping the lock */ 846 rcu_read_lock(); 847 unlock_timer(timer, *flags); 848 849 if (!WARN_ON_ONCE(!kc->timer_wait_running)) 850 kc->timer_wait_running(timer); 851 852 rcu_read_unlock(); 853 /* Relock the timer. It might be not longer hashed. */ 854 return lock_timer(timer_id, flags); 855 } 856 857 /* Set a POSIX.1b interval timer. */ 858 int common_timer_set(struct k_itimer *timr, int flags, 859 struct itimerspec64 *new_setting, 860 struct itimerspec64 *old_setting) 861 { 862 const struct k_clock *kc = timr->kclock; 863 bool sigev_none; 864 ktime_t expires; 865 866 if (old_setting) 867 common_timer_get(timr, old_setting); 868 869 /* Prevent rearming by clearing the interval */ 870 timr->it_interval = 0; 871 /* 872 * Careful here. On SMP systems the timer expiry function could be 873 * active and spinning on timr->it_lock. 874 */ 875 if (kc->timer_try_to_cancel(timr) < 0) 876 return TIMER_RETRY; 877 878 timr->it_active = 0; 879 timr->it_requeue_pending = (timr->it_requeue_pending + 2) & 880 ~REQUEUE_PENDING; 881 timr->it_overrun_last = 0; 882 883 /* Switch off the timer when it_value is zero */ 884 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) 885 return 0; 886 887 timr->it_interval = timespec64_to_ktime(new_setting->it_interval); 888 expires = timespec64_to_ktime(new_setting->it_value); 889 if (flags & TIMER_ABSTIME) 890 expires = timens_ktime_to_host(timr->it_clock, expires); 891 sigev_none = timr->it_sigev_notify == SIGEV_NONE; 892 893 kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none); 894 timr->it_active = !sigev_none; 895 return 0; 896 } 897 898 static int do_timer_settime(timer_t timer_id, int tmr_flags, 899 struct itimerspec64 *new_spec64, 900 struct itimerspec64 *old_spec64) 901 { 902 const struct k_clock *kc; 903 struct k_itimer *timr; 904 unsigned long flags; 905 int error = 0; 906 907 if (!timespec64_valid(&new_spec64->it_interval) || 908 !timespec64_valid(&new_spec64->it_value)) 909 return -EINVAL; 910 911 if (old_spec64) 912 memset(old_spec64, 0, sizeof(*old_spec64)); 913 914 timr = lock_timer(timer_id, &flags); 915 retry: 916 if (!timr) 917 return -EINVAL; 918 919 kc = timr->kclock; 920 if (WARN_ON_ONCE(!kc || !kc->timer_set)) 921 error = -EINVAL; 922 else 923 error = kc->timer_set(timr, tmr_flags, new_spec64, old_spec64); 924 925 if (error == TIMER_RETRY) { 926 // We already got the old time... 927 old_spec64 = NULL; 928 /* Unlocks and relocks the timer if it still exists */ 929 timr = timer_wait_running(timr, &flags); 930 goto retry; 931 } 932 unlock_timer(timr, flags); 933 934 return error; 935 } 936 937 /* Set a POSIX.1b interval timer */ 938 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags, 939 const struct __kernel_itimerspec __user *, new_setting, 940 struct __kernel_itimerspec __user *, old_setting) 941 { 942 struct itimerspec64 new_spec, old_spec; 943 struct itimerspec64 *rtn = old_setting ? &old_spec : NULL; 944 int error = 0; 945 946 if (!new_setting) 947 return -EINVAL; 948 949 if (get_itimerspec64(&new_spec, new_setting)) 950 return -EFAULT; 951 952 error = do_timer_settime(timer_id, flags, &new_spec, rtn); 953 if (!error && old_setting) { 954 if (put_itimerspec64(&old_spec, old_setting)) 955 error = -EFAULT; 956 } 957 return error; 958 } 959 960 #ifdef CONFIG_COMPAT_32BIT_TIME 961 SYSCALL_DEFINE4(timer_settime32, timer_t, timer_id, int, flags, 962 struct old_itimerspec32 __user *, new, 963 struct old_itimerspec32 __user *, old) 964 { 965 struct itimerspec64 new_spec, old_spec; 966 struct itimerspec64 *rtn = old ? &old_spec : NULL; 967 int error = 0; 968 969 if (!new) 970 return -EINVAL; 971 if (get_old_itimerspec32(&new_spec, new)) 972 return -EFAULT; 973 974 error = do_timer_settime(timer_id, flags, &new_spec, rtn); 975 if (!error && old) { 976 if (put_old_itimerspec32(&old_spec, old)) 977 error = -EFAULT; 978 } 979 return error; 980 } 981 #endif 982 983 int common_timer_del(struct k_itimer *timer) 984 { 985 const struct k_clock *kc = timer->kclock; 986 987 timer->it_interval = 0; 988 if (kc->timer_try_to_cancel(timer) < 0) 989 return TIMER_RETRY; 990 timer->it_active = 0; 991 return 0; 992 } 993 994 static inline int timer_delete_hook(struct k_itimer *timer) 995 { 996 const struct k_clock *kc = timer->kclock; 997 998 if (WARN_ON_ONCE(!kc || !kc->timer_del)) 999 return -EINVAL; 1000 return kc->timer_del(timer); 1001 } 1002 1003 /* Delete a POSIX.1b interval timer. */ 1004 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id) 1005 { 1006 struct k_itimer *timer; 1007 unsigned long flags; 1008 1009 timer = lock_timer(timer_id, &flags); 1010 1011 retry_delete: 1012 if (!timer) 1013 return -EINVAL; 1014 1015 if (unlikely(timer_delete_hook(timer) == TIMER_RETRY)) { 1016 /* Unlocks and relocks the timer if it still exists */ 1017 timer = timer_wait_running(timer, &flags); 1018 goto retry_delete; 1019 } 1020 1021 spin_lock(¤t->sighand->siglock); 1022 list_del(&timer->list); 1023 spin_unlock(¤t->sighand->siglock); 1024 /* 1025 * This keeps any tasks waiting on the spin lock from thinking 1026 * they got something (see the lock code above). 1027 */ 1028 timer->it_signal = NULL; 1029 1030 unlock_timer(timer, flags); 1031 release_posix_timer(timer, IT_ID_SET); 1032 return 0; 1033 } 1034 1035 /* 1036 * return timer owned by the process, used by exit_itimers 1037 */ 1038 static void itimer_delete(struct k_itimer *timer) 1039 { 1040 retry_delete: 1041 spin_lock_irq(&timer->it_lock); 1042 1043 if (timer_delete_hook(timer) == TIMER_RETRY) { 1044 spin_unlock_irq(&timer->it_lock); 1045 goto retry_delete; 1046 } 1047 list_del(&timer->list); 1048 1049 spin_unlock_irq(&timer->it_lock); 1050 release_posix_timer(timer, IT_ID_SET); 1051 } 1052 1053 /* 1054 * This is called by do_exit or de_thread, only when nobody else can 1055 * modify the signal->posix_timers list. Yet we need sighand->siglock 1056 * to prevent the race with /proc/pid/timers. 1057 */ 1058 void exit_itimers(struct task_struct *tsk) 1059 { 1060 struct list_head timers; 1061 struct k_itimer *tmr; 1062 1063 if (list_empty(&tsk->signal->posix_timers)) 1064 return; 1065 1066 spin_lock_irq(&tsk->sighand->siglock); 1067 list_replace_init(&tsk->signal->posix_timers, &timers); 1068 spin_unlock_irq(&tsk->sighand->siglock); 1069 1070 while (!list_empty(&timers)) { 1071 tmr = list_first_entry(&timers, struct k_itimer, list); 1072 itimer_delete(tmr); 1073 } 1074 } 1075 1076 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock, 1077 const struct __kernel_timespec __user *, tp) 1078 { 1079 const struct k_clock *kc = clockid_to_kclock(which_clock); 1080 struct timespec64 new_tp; 1081 1082 if (!kc || !kc->clock_set) 1083 return -EINVAL; 1084 1085 if (get_timespec64(&new_tp, tp)) 1086 return -EFAULT; 1087 1088 return kc->clock_set(which_clock, &new_tp); 1089 } 1090 1091 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock, 1092 struct __kernel_timespec __user *, tp) 1093 { 1094 const struct k_clock *kc = clockid_to_kclock(which_clock); 1095 struct timespec64 kernel_tp; 1096 int error; 1097 1098 if (!kc) 1099 return -EINVAL; 1100 1101 error = kc->clock_get_timespec(which_clock, &kernel_tp); 1102 1103 if (!error && put_timespec64(&kernel_tp, tp)) 1104 error = -EFAULT; 1105 1106 return error; 1107 } 1108 1109 int do_clock_adjtime(const clockid_t which_clock, struct __kernel_timex * ktx) 1110 { 1111 const struct k_clock *kc = clockid_to_kclock(which_clock); 1112 1113 if (!kc) 1114 return -EINVAL; 1115 if (!kc->clock_adj) 1116 return -EOPNOTSUPP; 1117 1118 return kc->clock_adj(which_clock, ktx); 1119 } 1120 1121 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock, 1122 struct __kernel_timex __user *, utx) 1123 { 1124 struct __kernel_timex ktx; 1125 int err; 1126 1127 if (copy_from_user(&ktx, utx, sizeof(ktx))) 1128 return -EFAULT; 1129 1130 err = do_clock_adjtime(which_clock, &ktx); 1131 1132 if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx))) 1133 return -EFAULT; 1134 1135 return err; 1136 } 1137 1138 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock, 1139 struct __kernel_timespec __user *, tp) 1140 { 1141 const struct k_clock *kc = clockid_to_kclock(which_clock); 1142 struct timespec64 rtn_tp; 1143 int error; 1144 1145 if (!kc) 1146 return -EINVAL; 1147 1148 error = kc->clock_getres(which_clock, &rtn_tp); 1149 1150 if (!error && tp && put_timespec64(&rtn_tp, tp)) 1151 error = -EFAULT; 1152 1153 return error; 1154 } 1155 1156 #ifdef CONFIG_COMPAT_32BIT_TIME 1157 1158 SYSCALL_DEFINE2(clock_settime32, clockid_t, which_clock, 1159 struct old_timespec32 __user *, tp) 1160 { 1161 const struct k_clock *kc = clockid_to_kclock(which_clock); 1162 struct timespec64 ts; 1163 1164 if (!kc || !kc->clock_set) 1165 return -EINVAL; 1166 1167 if (get_old_timespec32(&ts, tp)) 1168 return -EFAULT; 1169 1170 return kc->clock_set(which_clock, &ts); 1171 } 1172 1173 SYSCALL_DEFINE2(clock_gettime32, clockid_t, which_clock, 1174 struct old_timespec32 __user *, tp) 1175 { 1176 const struct k_clock *kc = clockid_to_kclock(which_clock); 1177 struct timespec64 ts; 1178 int err; 1179 1180 if (!kc) 1181 return -EINVAL; 1182 1183 err = kc->clock_get_timespec(which_clock, &ts); 1184 1185 if (!err && put_old_timespec32(&ts, tp)) 1186 err = -EFAULT; 1187 1188 return err; 1189 } 1190 1191 SYSCALL_DEFINE2(clock_adjtime32, clockid_t, which_clock, 1192 struct old_timex32 __user *, utp) 1193 { 1194 struct __kernel_timex ktx; 1195 int err; 1196 1197 err = get_old_timex32(&ktx, utp); 1198 if (err) 1199 return err; 1200 1201 err = do_clock_adjtime(which_clock, &ktx); 1202 1203 if (err >= 0 && put_old_timex32(utp, &ktx)) 1204 return -EFAULT; 1205 1206 return err; 1207 } 1208 1209 SYSCALL_DEFINE2(clock_getres_time32, clockid_t, which_clock, 1210 struct old_timespec32 __user *, tp) 1211 { 1212 const struct k_clock *kc = clockid_to_kclock(which_clock); 1213 struct timespec64 ts; 1214 int err; 1215 1216 if (!kc) 1217 return -EINVAL; 1218 1219 err = kc->clock_getres(which_clock, &ts); 1220 if (!err && tp && put_old_timespec32(&ts, tp)) 1221 return -EFAULT; 1222 1223 return err; 1224 } 1225 1226 #endif 1227 1228 /* 1229 * nanosleep for monotonic and realtime clocks 1230 */ 1231 static int common_nsleep(const clockid_t which_clock, int flags, 1232 const struct timespec64 *rqtp) 1233 { 1234 ktime_t texp = timespec64_to_ktime(*rqtp); 1235 1236 return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ? 1237 HRTIMER_MODE_ABS : HRTIMER_MODE_REL, 1238 which_clock); 1239 } 1240 1241 static int common_nsleep_timens(const clockid_t which_clock, int flags, 1242 const struct timespec64 *rqtp) 1243 { 1244 ktime_t texp = timespec64_to_ktime(*rqtp); 1245 1246 if (flags & TIMER_ABSTIME) 1247 texp = timens_ktime_to_host(which_clock, texp); 1248 1249 return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ? 1250 HRTIMER_MODE_ABS : HRTIMER_MODE_REL, 1251 which_clock); 1252 } 1253 1254 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags, 1255 const struct __kernel_timespec __user *, rqtp, 1256 struct __kernel_timespec __user *, rmtp) 1257 { 1258 const struct k_clock *kc = clockid_to_kclock(which_clock); 1259 struct timespec64 t; 1260 1261 if (!kc) 1262 return -EINVAL; 1263 if (!kc->nsleep) 1264 return -EOPNOTSUPP; 1265 1266 if (get_timespec64(&t, rqtp)) 1267 return -EFAULT; 1268 1269 if (!timespec64_valid(&t)) 1270 return -EINVAL; 1271 if (flags & TIMER_ABSTIME) 1272 rmtp = NULL; 1273 current->restart_block.fn = do_no_restart_syscall; 1274 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; 1275 current->restart_block.nanosleep.rmtp = rmtp; 1276 1277 return kc->nsleep(which_clock, flags, &t); 1278 } 1279 1280 #ifdef CONFIG_COMPAT_32BIT_TIME 1281 1282 SYSCALL_DEFINE4(clock_nanosleep_time32, clockid_t, which_clock, int, flags, 1283 struct old_timespec32 __user *, rqtp, 1284 struct old_timespec32 __user *, rmtp) 1285 { 1286 const struct k_clock *kc = clockid_to_kclock(which_clock); 1287 struct timespec64 t; 1288 1289 if (!kc) 1290 return -EINVAL; 1291 if (!kc->nsleep) 1292 return -EOPNOTSUPP; 1293 1294 if (get_old_timespec32(&t, rqtp)) 1295 return -EFAULT; 1296 1297 if (!timespec64_valid(&t)) 1298 return -EINVAL; 1299 if (flags & TIMER_ABSTIME) 1300 rmtp = NULL; 1301 current->restart_block.fn = do_no_restart_syscall; 1302 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; 1303 current->restart_block.nanosleep.compat_rmtp = rmtp; 1304 1305 return kc->nsleep(which_clock, flags, &t); 1306 } 1307 1308 #endif 1309 1310 static const struct k_clock clock_realtime = { 1311 .clock_getres = posix_get_hrtimer_res, 1312 .clock_get_timespec = posix_get_realtime_timespec, 1313 .clock_get_ktime = posix_get_realtime_ktime, 1314 .clock_set = posix_clock_realtime_set, 1315 .clock_adj = posix_clock_realtime_adj, 1316 .nsleep = common_nsleep, 1317 .timer_create = common_timer_create, 1318 .timer_set = common_timer_set, 1319 .timer_get = common_timer_get, 1320 .timer_del = common_timer_del, 1321 .timer_rearm = common_hrtimer_rearm, 1322 .timer_forward = common_hrtimer_forward, 1323 .timer_remaining = common_hrtimer_remaining, 1324 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1325 .timer_wait_running = common_timer_wait_running, 1326 .timer_arm = common_hrtimer_arm, 1327 }; 1328 1329 static const struct k_clock clock_monotonic = { 1330 .clock_getres = posix_get_hrtimer_res, 1331 .clock_get_timespec = posix_get_monotonic_timespec, 1332 .clock_get_ktime = posix_get_monotonic_ktime, 1333 .nsleep = common_nsleep_timens, 1334 .timer_create = common_timer_create, 1335 .timer_set = common_timer_set, 1336 .timer_get = common_timer_get, 1337 .timer_del = common_timer_del, 1338 .timer_rearm = common_hrtimer_rearm, 1339 .timer_forward = common_hrtimer_forward, 1340 .timer_remaining = common_hrtimer_remaining, 1341 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1342 .timer_wait_running = common_timer_wait_running, 1343 .timer_arm = common_hrtimer_arm, 1344 }; 1345 1346 static const struct k_clock clock_monotonic_raw = { 1347 .clock_getres = posix_get_hrtimer_res, 1348 .clock_get_timespec = posix_get_monotonic_raw, 1349 }; 1350 1351 static const struct k_clock clock_realtime_coarse = { 1352 .clock_getres = posix_get_coarse_res, 1353 .clock_get_timespec = posix_get_realtime_coarse, 1354 }; 1355 1356 static const struct k_clock clock_monotonic_coarse = { 1357 .clock_getres = posix_get_coarse_res, 1358 .clock_get_timespec = posix_get_monotonic_coarse, 1359 }; 1360 1361 static const struct k_clock clock_tai = { 1362 .clock_getres = posix_get_hrtimer_res, 1363 .clock_get_ktime = posix_get_tai_ktime, 1364 .clock_get_timespec = posix_get_tai_timespec, 1365 .nsleep = common_nsleep, 1366 .timer_create = common_timer_create, 1367 .timer_set = common_timer_set, 1368 .timer_get = common_timer_get, 1369 .timer_del = common_timer_del, 1370 .timer_rearm = common_hrtimer_rearm, 1371 .timer_forward = common_hrtimer_forward, 1372 .timer_remaining = common_hrtimer_remaining, 1373 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1374 .timer_wait_running = common_timer_wait_running, 1375 .timer_arm = common_hrtimer_arm, 1376 }; 1377 1378 static const struct k_clock clock_boottime = { 1379 .clock_getres = posix_get_hrtimer_res, 1380 .clock_get_ktime = posix_get_boottime_ktime, 1381 .clock_get_timespec = posix_get_boottime_timespec, 1382 .nsleep = common_nsleep_timens, 1383 .timer_create = common_timer_create, 1384 .timer_set = common_timer_set, 1385 .timer_get = common_timer_get, 1386 .timer_del = common_timer_del, 1387 .timer_rearm = common_hrtimer_rearm, 1388 .timer_forward = common_hrtimer_forward, 1389 .timer_remaining = common_hrtimer_remaining, 1390 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1391 .timer_wait_running = common_timer_wait_running, 1392 .timer_arm = common_hrtimer_arm, 1393 }; 1394 1395 static const struct k_clock * const posix_clocks[] = { 1396 [CLOCK_REALTIME] = &clock_realtime, 1397 [CLOCK_MONOTONIC] = &clock_monotonic, 1398 [CLOCK_PROCESS_CPUTIME_ID] = &clock_process, 1399 [CLOCK_THREAD_CPUTIME_ID] = &clock_thread, 1400 [CLOCK_MONOTONIC_RAW] = &clock_monotonic_raw, 1401 [CLOCK_REALTIME_COARSE] = &clock_realtime_coarse, 1402 [CLOCK_MONOTONIC_COARSE] = &clock_monotonic_coarse, 1403 [CLOCK_BOOTTIME] = &clock_boottime, 1404 [CLOCK_REALTIME_ALARM] = &alarm_clock, 1405 [CLOCK_BOOTTIME_ALARM] = &alarm_clock, 1406 [CLOCK_TAI] = &clock_tai, 1407 }; 1408 1409 static const struct k_clock *clockid_to_kclock(const clockid_t id) 1410 { 1411 clockid_t idx = id; 1412 1413 if (id < 0) { 1414 return (id & CLOCKFD_MASK) == CLOCKFD ? 1415 &clock_posix_dynamic : &clock_posix_cpu; 1416 } 1417 1418 if (id >= ARRAY_SIZE(posix_clocks)) 1419 return NULL; 1420 1421 return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))]; 1422 } 1423