1 /* 2 * linux/kernel/posix-timers.c 3 * 4 * 5 * 2002-10-15 Posix Clocks & timers 6 * by George Anzinger george@mvista.com 7 * 8 * Copyright (C) 2002 2003 by MontaVista Software. 9 * 10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug. 11 * Copyright (C) 2004 Boris Hu 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; either version 2 of the License, or (at 16 * your option) any later version. 17 * 18 * This program is distributed in the hope that it will be useful, but 19 * WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 21 * General Public License for more details. 22 23 * You should have received a copy of the GNU General Public License 24 * along with this program; if not, write to the Free Software 25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 26 * 27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA 28 */ 29 30 /* These are all the functions necessary to implement 31 * POSIX clocks & timers 32 */ 33 #include <linux/mm.h> 34 #include <linux/interrupt.h> 35 #include <linux/slab.h> 36 #include <linux/time.h> 37 #include <linux/mutex.h> 38 #include <linux/sched/task.h> 39 40 #include <linux/uaccess.h> 41 #include <linux/list.h> 42 #include <linux/init.h> 43 #include <linux/compiler.h> 44 #include <linux/hash.h> 45 #include <linux/posix-clock.h> 46 #include <linux/posix-timers.h> 47 #include <linux/syscalls.h> 48 #include <linux/wait.h> 49 #include <linux/workqueue.h> 50 #include <linux/export.h> 51 #include <linux/hashtable.h> 52 #include <linux/compat.h> 53 54 #include "timekeeping.h" 55 #include "posix-timers.h" 56 57 /* 58 * Management arrays for POSIX timers. Timers are now kept in static hash table 59 * with 512 entries. 60 * Timer ids are allocated by local routine, which selects proper hash head by 61 * key, constructed from current->signal address and per signal struct counter. 62 * This keeps timer ids unique per process, but now they can intersect between 63 * processes. 64 */ 65 66 /* 67 * Lets keep our timers in a slab cache :-) 68 */ 69 static struct kmem_cache *posix_timers_cache; 70 71 static DEFINE_HASHTABLE(posix_timers_hashtable, 9); 72 static DEFINE_SPINLOCK(hash_lock); 73 74 static const struct k_clock * const posix_clocks[]; 75 static const struct k_clock *clockid_to_kclock(const clockid_t id); 76 static const struct k_clock clock_realtime, clock_monotonic; 77 78 /* 79 * we assume that the new SIGEV_THREAD_ID shares no bits with the other 80 * SIGEV values. Here we put out an error if this assumption fails. 81 */ 82 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \ 83 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD)) 84 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!" 85 #endif 86 87 /* 88 * parisc wants ENOTSUP instead of EOPNOTSUPP 89 */ 90 #ifndef ENOTSUP 91 # define ENANOSLEEP_NOTSUP EOPNOTSUPP 92 #else 93 # define ENANOSLEEP_NOTSUP ENOTSUP 94 #endif 95 96 /* 97 * The timer ID is turned into a timer address by idr_find(). 98 * Verifying a valid ID consists of: 99 * 100 * a) checking that idr_find() returns other than -1. 101 * b) checking that the timer id matches the one in the timer itself. 102 * c) that the timer owner is in the callers thread group. 103 */ 104 105 /* 106 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us 107 * to implement others. This structure defines the various 108 * clocks. 109 * 110 * RESOLUTION: Clock resolution is used to round up timer and interval 111 * times, NOT to report clock times, which are reported with as 112 * much resolution as the system can muster. In some cases this 113 * resolution may depend on the underlying clock hardware and 114 * may not be quantifiable until run time, and only then is the 115 * necessary code is written. The standard says we should say 116 * something about this issue in the documentation... 117 * 118 * FUNCTIONS: The CLOCKs structure defines possible functions to 119 * handle various clock functions. 120 * 121 * The standard POSIX timer management code assumes the 122 * following: 1.) The k_itimer struct (sched.h) is used for 123 * the timer. 2.) The list, it_lock, it_clock, it_id and 124 * it_pid fields are not modified by timer code. 125 * 126 * Permissions: It is assumed that the clock_settime() function defined 127 * for each clock will take care of permission checks. Some 128 * clocks may be set able by any user (i.e. local process 129 * clocks) others not. Currently the only set able clock we 130 * have is CLOCK_REALTIME and its high res counter part, both of 131 * which we beg off on and pass to do_sys_settimeofday(). 132 */ 133 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags); 134 135 #define lock_timer(tid, flags) \ 136 ({ struct k_itimer *__timr; \ 137 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \ 138 __timr; \ 139 }) 140 141 static int hash(struct signal_struct *sig, unsigned int nr) 142 { 143 return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable)); 144 } 145 146 static struct k_itimer *__posix_timers_find(struct hlist_head *head, 147 struct signal_struct *sig, 148 timer_t id) 149 { 150 struct k_itimer *timer; 151 152 hlist_for_each_entry_rcu(timer, head, t_hash) { 153 if ((timer->it_signal == sig) && (timer->it_id == id)) 154 return timer; 155 } 156 return NULL; 157 } 158 159 static struct k_itimer *posix_timer_by_id(timer_t id) 160 { 161 struct signal_struct *sig = current->signal; 162 struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)]; 163 164 return __posix_timers_find(head, sig, id); 165 } 166 167 static int posix_timer_add(struct k_itimer *timer) 168 { 169 struct signal_struct *sig = current->signal; 170 int first_free_id = sig->posix_timer_id; 171 struct hlist_head *head; 172 int ret = -ENOENT; 173 174 do { 175 spin_lock(&hash_lock); 176 head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)]; 177 if (!__posix_timers_find(head, sig, sig->posix_timer_id)) { 178 hlist_add_head_rcu(&timer->t_hash, head); 179 ret = sig->posix_timer_id; 180 } 181 if (++sig->posix_timer_id < 0) 182 sig->posix_timer_id = 0; 183 if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT)) 184 /* Loop over all possible ids completed */ 185 ret = -EAGAIN; 186 spin_unlock(&hash_lock); 187 } while (ret == -ENOENT); 188 return ret; 189 } 190 191 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags) 192 { 193 spin_unlock_irqrestore(&timr->it_lock, flags); 194 } 195 196 /* Get clock_realtime */ 197 static int posix_clock_realtime_get(clockid_t which_clock, struct timespec64 *tp) 198 { 199 ktime_get_real_ts64(tp); 200 return 0; 201 } 202 203 /* Set clock_realtime */ 204 static int posix_clock_realtime_set(const clockid_t which_clock, 205 const struct timespec64 *tp) 206 { 207 return do_sys_settimeofday64(tp, NULL); 208 } 209 210 static int posix_clock_realtime_adj(const clockid_t which_clock, 211 struct timex *t) 212 { 213 return do_adjtimex(t); 214 } 215 216 /* 217 * Get monotonic time for posix timers 218 */ 219 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec64 *tp) 220 { 221 ktime_get_ts64(tp); 222 return 0; 223 } 224 225 /* 226 * Get monotonic-raw time for posix timers 227 */ 228 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp) 229 { 230 getrawmonotonic64(tp); 231 return 0; 232 } 233 234 235 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp) 236 { 237 *tp = current_kernel_time64(); 238 return 0; 239 } 240 241 static int posix_get_monotonic_coarse(clockid_t which_clock, 242 struct timespec64 *tp) 243 { 244 *tp = get_monotonic_coarse64(); 245 return 0; 246 } 247 248 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp) 249 { 250 *tp = ktime_to_timespec64(KTIME_LOW_RES); 251 return 0; 252 } 253 254 static int posix_get_boottime(const clockid_t which_clock, struct timespec64 *tp) 255 { 256 get_monotonic_boottime64(tp); 257 return 0; 258 } 259 260 static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp) 261 { 262 timekeeping_clocktai64(tp); 263 return 0; 264 } 265 266 static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp) 267 { 268 tp->tv_sec = 0; 269 tp->tv_nsec = hrtimer_resolution; 270 return 0; 271 } 272 273 /* 274 * Initialize everything, well, just everything in Posix clocks/timers ;) 275 */ 276 static __init int init_posix_timers(void) 277 { 278 posix_timers_cache = kmem_cache_create("posix_timers_cache", 279 sizeof (struct k_itimer), 0, SLAB_PANIC, 280 NULL); 281 return 0; 282 } 283 __initcall(init_posix_timers); 284 285 static void common_hrtimer_rearm(struct k_itimer *timr) 286 { 287 struct hrtimer *timer = &timr->it.real.timer; 288 289 if (!timr->it_interval) 290 return; 291 292 timr->it_overrun += (unsigned int) hrtimer_forward(timer, 293 timer->base->get_time(), 294 timr->it_interval); 295 hrtimer_restart(timer); 296 } 297 298 /* 299 * This function is exported for use by the signal deliver code. It is 300 * called just prior to the info block being released and passes that 301 * block to us. It's function is to update the overrun entry AND to 302 * restart the timer. It should only be called if the timer is to be 303 * restarted (i.e. we have flagged this in the sys_private entry of the 304 * info block). 305 * 306 * To protect against the timer going away while the interrupt is queued, 307 * we require that the it_requeue_pending flag be set. 308 */ 309 void posixtimer_rearm(struct siginfo *info) 310 { 311 struct k_itimer *timr; 312 unsigned long flags; 313 314 timr = lock_timer(info->si_tid, &flags); 315 if (!timr) 316 return; 317 318 if (timr->it_requeue_pending == info->si_sys_private) { 319 timr->kclock->timer_rearm(timr); 320 321 timr->it_active = 1; 322 timr->it_overrun_last = timr->it_overrun; 323 timr->it_overrun = -1; 324 ++timr->it_requeue_pending; 325 326 info->si_overrun += timr->it_overrun_last; 327 } 328 329 unlock_timer(timr, flags); 330 } 331 332 int posix_timer_event(struct k_itimer *timr, int si_private) 333 { 334 struct task_struct *task; 335 int shared, ret = -1; 336 /* 337 * FIXME: if ->sigq is queued we can race with 338 * dequeue_signal()->posixtimer_rearm(). 339 * 340 * If dequeue_signal() sees the "right" value of 341 * si_sys_private it calls posixtimer_rearm(). 342 * We re-queue ->sigq and drop ->it_lock(). 343 * posixtimer_rearm() locks the timer 344 * and re-schedules it while ->sigq is pending. 345 * Not really bad, but not that we want. 346 */ 347 timr->sigq->info.si_sys_private = si_private; 348 349 rcu_read_lock(); 350 task = pid_task(timr->it_pid, PIDTYPE_PID); 351 if (task) { 352 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID); 353 ret = send_sigqueue(timr->sigq, task, shared); 354 } 355 rcu_read_unlock(); 356 /* If we failed to send the signal the timer stops. */ 357 return ret > 0; 358 } 359 360 /* 361 * This function gets called when a POSIX.1b interval timer expires. It 362 * is used as a callback from the kernel internal timer. The 363 * run_timer_list code ALWAYS calls with interrupts on. 364 365 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers. 366 */ 367 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer) 368 { 369 struct k_itimer *timr; 370 unsigned long flags; 371 int si_private = 0; 372 enum hrtimer_restart ret = HRTIMER_NORESTART; 373 374 timr = container_of(timer, struct k_itimer, it.real.timer); 375 spin_lock_irqsave(&timr->it_lock, flags); 376 377 timr->it_active = 0; 378 if (timr->it_interval != 0) 379 si_private = ++timr->it_requeue_pending; 380 381 if (posix_timer_event(timr, si_private)) { 382 /* 383 * signal was not sent because of sig_ignor 384 * we will not get a call back to restart it AND 385 * it should be restarted. 386 */ 387 if (timr->it_interval != 0) { 388 ktime_t now = hrtimer_cb_get_time(timer); 389 390 /* 391 * FIXME: What we really want, is to stop this 392 * timer completely and restart it in case the 393 * SIG_IGN is removed. This is a non trivial 394 * change which involves sighand locking 395 * (sigh !), which we don't want to do late in 396 * the release cycle. 397 * 398 * For now we just let timers with an interval 399 * less than a jiffie expire every jiffie to 400 * avoid softirq starvation in case of SIG_IGN 401 * and a very small interval, which would put 402 * the timer right back on the softirq pending 403 * list. By moving now ahead of time we trick 404 * hrtimer_forward() to expire the timer 405 * later, while we still maintain the overrun 406 * accuracy, but have some inconsistency in 407 * the timer_gettime() case. This is at least 408 * better than a starved softirq. A more 409 * complex fix which solves also another related 410 * inconsistency is already in the pipeline. 411 */ 412 #ifdef CONFIG_HIGH_RES_TIMERS 413 { 414 ktime_t kj = NSEC_PER_SEC / HZ; 415 416 if (timr->it_interval < kj) 417 now = ktime_add(now, kj); 418 } 419 #endif 420 timr->it_overrun += (unsigned int) 421 hrtimer_forward(timer, now, 422 timr->it_interval); 423 ret = HRTIMER_RESTART; 424 ++timr->it_requeue_pending; 425 timr->it_active = 1; 426 } 427 } 428 429 unlock_timer(timr, flags); 430 return ret; 431 } 432 433 static struct pid *good_sigevent(sigevent_t * event) 434 { 435 struct task_struct *rtn = current->group_leader; 436 437 if ((event->sigev_notify & SIGEV_THREAD_ID ) && 438 (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) || 439 !same_thread_group(rtn, current) || 440 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL)) 441 return NULL; 442 443 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) && 444 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX))) 445 return NULL; 446 447 return task_pid(rtn); 448 } 449 450 static struct k_itimer * alloc_posix_timer(void) 451 { 452 struct k_itimer *tmr; 453 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL); 454 if (!tmr) 455 return tmr; 456 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) { 457 kmem_cache_free(posix_timers_cache, tmr); 458 return NULL; 459 } 460 memset(&tmr->sigq->info, 0, sizeof(siginfo_t)); 461 return tmr; 462 } 463 464 static void k_itimer_rcu_free(struct rcu_head *head) 465 { 466 struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu); 467 468 kmem_cache_free(posix_timers_cache, tmr); 469 } 470 471 #define IT_ID_SET 1 472 #define IT_ID_NOT_SET 0 473 static void release_posix_timer(struct k_itimer *tmr, int it_id_set) 474 { 475 if (it_id_set) { 476 unsigned long flags; 477 spin_lock_irqsave(&hash_lock, flags); 478 hlist_del_rcu(&tmr->t_hash); 479 spin_unlock_irqrestore(&hash_lock, flags); 480 } 481 put_pid(tmr->it_pid); 482 sigqueue_free(tmr->sigq); 483 call_rcu(&tmr->it.rcu, k_itimer_rcu_free); 484 } 485 486 static int common_timer_create(struct k_itimer *new_timer) 487 { 488 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0); 489 return 0; 490 } 491 492 /* Create a POSIX.1b interval timer. */ 493 static int do_timer_create(clockid_t which_clock, struct sigevent *event, 494 timer_t __user *created_timer_id) 495 { 496 const struct k_clock *kc = clockid_to_kclock(which_clock); 497 struct k_itimer *new_timer; 498 int error, new_timer_id; 499 int it_id_set = IT_ID_NOT_SET; 500 501 if (!kc) 502 return -EINVAL; 503 if (!kc->timer_create) 504 return -EOPNOTSUPP; 505 506 new_timer = alloc_posix_timer(); 507 if (unlikely(!new_timer)) 508 return -EAGAIN; 509 510 spin_lock_init(&new_timer->it_lock); 511 new_timer_id = posix_timer_add(new_timer); 512 if (new_timer_id < 0) { 513 error = new_timer_id; 514 goto out; 515 } 516 517 it_id_set = IT_ID_SET; 518 new_timer->it_id = (timer_t) new_timer_id; 519 new_timer->it_clock = which_clock; 520 new_timer->kclock = kc; 521 new_timer->it_overrun = -1; 522 523 if (event) { 524 rcu_read_lock(); 525 new_timer->it_pid = get_pid(good_sigevent(event)); 526 rcu_read_unlock(); 527 if (!new_timer->it_pid) { 528 error = -EINVAL; 529 goto out; 530 } 531 new_timer->it_sigev_notify = event->sigev_notify; 532 new_timer->sigq->info.si_signo = event->sigev_signo; 533 new_timer->sigq->info.si_value = event->sigev_value; 534 } else { 535 new_timer->it_sigev_notify = SIGEV_SIGNAL; 536 new_timer->sigq->info.si_signo = SIGALRM; 537 memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t)); 538 new_timer->sigq->info.si_value.sival_int = new_timer->it_id; 539 new_timer->it_pid = get_pid(task_tgid(current)); 540 } 541 542 new_timer->sigq->info.si_tid = new_timer->it_id; 543 new_timer->sigq->info.si_code = SI_TIMER; 544 545 if (copy_to_user(created_timer_id, 546 &new_timer_id, sizeof (new_timer_id))) { 547 error = -EFAULT; 548 goto out; 549 } 550 551 error = kc->timer_create(new_timer); 552 if (error) 553 goto out; 554 555 spin_lock_irq(¤t->sighand->siglock); 556 new_timer->it_signal = current->signal; 557 list_add(&new_timer->list, ¤t->signal->posix_timers); 558 spin_unlock_irq(¤t->sighand->siglock); 559 560 return 0; 561 /* 562 * In the case of the timer belonging to another task, after 563 * the task is unlocked, the timer is owned by the other task 564 * and may cease to exist at any time. Don't use or modify 565 * new_timer after the unlock call. 566 */ 567 out: 568 release_posix_timer(new_timer, it_id_set); 569 return error; 570 } 571 572 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock, 573 struct sigevent __user *, timer_event_spec, 574 timer_t __user *, created_timer_id) 575 { 576 if (timer_event_spec) { 577 sigevent_t event; 578 579 if (copy_from_user(&event, timer_event_spec, sizeof (event))) 580 return -EFAULT; 581 return do_timer_create(which_clock, &event, created_timer_id); 582 } 583 return do_timer_create(which_clock, NULL, created_timer_id); 584 } 585 586 #ifdef CONFIG_COMPAT 587 COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock, 588 struct compat_sigevent __user *, timer_event_spec, 589 timer_t __user *, created_timer_id) 590 { 591 if (timer_event_spec) { 592 sigevent_t event; 593 594 if (get_compat_sigevent(&event, timer_event_spec)) 595 return -EFAULT; 596 return do_timer_create(which_clock, &event, created_timer_id); 597 } 598 return do_timer_create(which_clock, NULL, created_timer_id); 599 } 600 #endif 601 602 /* 603 * Locking issues: We need to protect the result of the id look up until 604 * we get the timer locked down so it is not deleted under us. The 605 * removal is done under the idr spinlock so we use that here to bridge 606 * the find to the timer lock. To avoid a dead lock, the timer id MUST 607 * be release with out holding the timer lock. 608 */ 609 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags) 610 { 611 struct k_itimer *timr; 612 613 /* 614 * timer_t could be any type >= int and we want to make sure any 615 * @timer_id outside positive int range fails lookup. 616 */ 617 if ((unsigned long long)timer_id > INT_MAX) 618 return NULL; 619 620 rcu_read_lock(); 621 timr = posix_timer_by_id(timer_id); 622 if (timr) { 623 spin_lock_irqsave(&timr->it_lock, *flags); 624 if (timr->it_signal == current->signal) { 625 rcu_read_unlock(); 626 return timr; 627 } 628 spin_unlock_irqrestore(&timr->it_lock, *flags); 629 } 630 rcu_read_unlock(); 631 632 return NULL; 633 } 634 635 static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now) 636 { 637 struct hrtimer *timer = &timr->it.real.timer; 638 639 return __hrtimer_expires_remaining_adjusted(timer, now); 640 } 641 642 static int common_hrtimer_forward(struct k_itimer *timr, ktime_t now) 643 { 644 struct hrtimer *timer = &timr->it.real.timer; 645 646 return (int)hrtimer_forward(timer, now, timr->it_interval); 647 } 648 649 /* 650 * Get the time remaining on a POSIX.1b interval timer. This function 651 * is ALWAYS called with spin_lock_irq on the timer, thus it must not 652 * mess with irq. 653 * 654 * We have a couple of messes to clean up here. First there is the case 655 * of a timer that has a requeue pending. These timers should appear to 656 * be in the timer list with an expiry as if we were to requeue them 657 * now. 658 * 659 * The second issue is the SIGEV_NONE timer which may be active but is 660 * not really ever put in the timer list (to save system resources). 661 * This timer may be expired, and if so, we will do it here. Otherwise 662 * it is the same as a requeue pending timer WRT to what we should 663 * report. 664 */ 665 void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting) 666 { 667 const struct k_clock *kc = timr->kclock; 668 ktime_t now, remaining, iv; 669 struct timespec64 ts64; 670 bool sig_none; 671 672 sig_none = (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE; 673 iv = timr->it_interval; 674 675 /* interval timer ? */ 676 if (iv) { 677 cur_setting->it_interval = ktime_to_timespec64(iv); 678 } else if (!timr->it_active) { 679 /* 680 * SIGEV_NONE oneshot timers are never queued. Check them 681 * below. 682 */ 683 if (!sig_none) 684 return; 685 } 686 687 /* 688 * The timespec64 based conversion is suboptimal, but it's not 689 * worth to implement yet another callback. 690 */ 691 kc->clock_get(timr->it_clock, &ts64); 692 now = timespec64_to_ktime(ts64); 693 694 /* 695 * When a requeue is pending or this is a SIGEV_NONE timer move the 696 * expiry time forward by intervals, so expiry is > now. 697 */ 698 if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none)) 699 timr->it_overrun += kc->timer_forward(timr, now); 700 701 remaining = kc->timer_remaining(timr, now); 702 /* Return 0 only, when the timer is expired and not pending */ 703 if (remaining <= 0) { 704 /* 705 * A single shot SIGEV_NONE timer must return 0, when 706 * it is expired ! 707 */ 708 if (!sig_none) 709 cur_setting->it_value.tv_nsec = 1; 710 } else { 711 cur_setting->it_value = ktime_to_timespec64(remaining); 712 } 713 } 714 715 /* Get the time remaining on a POSIX.1b interval timer. */ 716 static int do_timer_gettime(timer_t timer_id, struct itimerspec64 *setting) 717 { 718 struct k_itimer *timr; 719 const struct k_clock *kc; 720 unsigned long flags; 721 int ret = 0; 722 723 timr = lock_timer(timer_id, &flags); 724 if (!timr) 725 return -EINVAL; 726 727 memset(setting, 0, sizeof(*setting)); 728 kc = timr->kclock; 729 if (WARN_ON_ONCE(!kc || !kc->timer_get)) 730 ret = -EINVAL; 731 else 732 kc->timer_get(timr, setting); 733 734 unlock_timer(timr, flags); 735 return ret; 736 } 737 738 /* Get the time remaining on a POSIX.1b interval timer. */ 739 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id, 740 struct itimerspec __user *, setting) 741 { 742 struct itimerspec64 cur_setting; 743 744 int ret = do_timer_gettime(timer_id, &cur_setting); 745 if (!ret) { 746 if (put_itimerspec64(&cur_setting, setting)) 747 ret = -EFAULT; 748 } 749 return ret; 750 } 751 752 #ifdef CONFIG_COMPAT 753 COMPAT_SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id, 754 struct compat_itimerspec __user *, setting) 755 { 756 struct itimerspec64 cur_setting; 757 758 int ret = do_timer_gettime(timer_id, &cur_setting); 759 if (!ret) { 760 if (put_compat_itimerspec64(&cur_setting, setting)) 761 ret = -EFAULT; 762 } 763 return ret; 764 } 765 #endif 766 767 /* 768 * Get the number of overruns of a POSIX.1b interval timer. This is to 769 * be the overrun of the timer last delivered. At the same time we are 770 * accumulating overruns on the next timer. The overrun is frozen when 771 * the signal is delivered, either at the notify time (if the info block 772 * is not queued) or at the actual delivery time (as we are informed by 773 * the call back to posixtimer_rearm(). So all we need to do is 774 * to pick up the frozen overrun. 775 */ 776 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id) 777 { 778 struct k_itimer *timr; 779 int overrun; 780 unsigned long flags; 781 782 timr = lock_timer(timer_id, &flags); 783 if (!timr) 784 return -EINVAL; 785 786 overrun = timr->it_overrun_last; 787 unlock_timer(timr, flags); 788 789 return overrun; 790 } 791 792 static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires, 793 bool absolute, bool sigev_none) 794 { 795 struct hrtimer *timer = &timr->it.real.timer; 796 enum hrtimer_mode mode; 797 798 mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL; 799 /* 800 * Posix magic: Relative CLOCK_REALTIME timers are not affected by 801 * clock modifications, so they become CLOCK_MONOTONIC based under the 802 * hood. See hrtimer_init(). Update timr->kclock, so the generic 803 * functions which use timr->kclock->clock_get() work. 804 * 805 * Note: it_clock stays unmodified, because the next timer_set() might 806 * use ABSTIME, so it needs to switch back. 807 */ 808 if (timr->it_clock == CLOCK_REALTIME) 809 timr->kclock = absolute ? &clock_realtime : &clock_monotonic; 810 811 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode); 812 timr->it.real.timer.function = posix_timer_fn; 813 814 if (!absolute) 815 expires = ktime_add_safe(expires, timer->base->get_time()); 816 hrtimer_set_expires(timer, expires); 817 818 if (!sigev_none) 819 hrtimer_start_expires(timer, HRTIMER_MODE_ABS); 820 } 821 822 static int common_hrtimer_try_to_cancel(struct k_itimer *timr) 823 { 824 return hrtimer_try_to_cancel(&timr->it.real.timer); 825 } 826 827 /* Set a POSIX.1b interval timer. */ 828 int common_timer_set(struct k_itimer *timr, int flags, 829 struct itimerspec64 *new_setting, 830 struct itimerspec64 *old_setting) 831 { 832 const struct k_clock *kc = timr->kclock; 833 bool sigev_none; 834 ktime_t expires; 835 836 if (old_setting) 837 common_timer_get(timr, old_setting); 838 839 /* Prevent rearming by clearing the interval */ 840 timr->it_interval = 0; 841 /* 842 * Careful here. On SMP systems the timer expiry function could be 843 * active and spinning on timr->it_lock. 844 */ 845 if (kc->timer_try_to_cancel(timr) < 0) 846 return TIMER_RETRY; 847 848 timr->it_active = 0; 849 timr->it_requeue_pending = (timr->it_requeue_pending + 2) & 850 ~REQUEUE_PENDING; 851 timr->it_overrun_last = 0; 852 853 /* Switch off the timer when it_value is zero */ 854 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) 855 return 0; 856 857 timr->it_interval = timespec64_to_ktime(new_setting->it_interval); 858 expires = timespec64_to_ktime(new_setting->it_value); 859 sigev_none = (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE; 860 861 kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none); 862 timr->it_active = !sigev_none; 863 return 0; 864 } 865 866 static int do_timer_settime(timer_t timer_id, int flags, 867 struct itimerspec64 *new_spec64, 868 struct itimerspec64 *old_spec64) 869 { 870 const struct k_clock *kc; 871 struct k_itimer *timr; 872 unsigned long flag; 873 int error = 0; 874 875 if (!timespec64_valid(&new_spec64->it_interval) || 876 !timespec64_valid(&new_spec64->it_value)) 877 return -EINVAL; 878 879 if (old_spec64) 880 memset(old_spec64, 0, sizeof(*old_spec64)); 881 retry: 882 timr = lock_timer(timer_id, &flag); 883 if (!timr) 884 return -EINVAL; 885 886 kc = timr->kclock; 887 if (WARN_ON_ONCE(!kc || !kc->timer_set)) 888 error = -EINVAL; 889 else 890 error = kc->timer_set(timr, flags, new_spec64, old_spec64); 891 892 unlock_timer(timr, flag); 893 if (error == TIMER_RETRY) { 894 old_spec64 = NULL; // We already got the old time... 895 goto retry; 896 } 897 898 return error; 899 } 900 901 /* Set a POSIX.1b interval timer */ 902 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags, 903 const struct itimerspec __user *, new_setting, 904 struct itimerspec __user *, old_setting) 905 { 906 struct itimerspec64 new_spec, old_spec; 907 struct itimerspec64 *rtn = old_setting ? &old_spec : NULL; 908 int error = 0; 909 910 if (!new_setting) 911 return -EINVAL; 912 913 if (get_itimerspec64(&new_spec, new_setting)) 914 return -EFAULT; 915 916 error = do_timer_settime(timer_id, flags, &new_spec, rtn); 917 if (!error && old_setting) { 918 if (put_itimerspec64(&old_spec, old_setting)) 919 error = -EFAULT; 920 } 921 return error; 922 } 923 924 #ifdef CONFIG_COMPAT 925 COMPAT_SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags, 926 struct compat_itimerspec __user *, new, 927 struct compat_itimerspec __user *, old) 928 { 929 struct itimerspec64 new_spec, old_spec; 930 struct itimerspec64 *rtn = old ? &old_spec : NULL; 931 int error = 0; 932 933 if (!new) 934 return -EINVAL; 935 if (get_compat_itimerspec64(&new_spec, new)) 936 return -EFAULT; 937 938 error = do_timer_settime(timer_id, flags, &new_spec, rtn); 939 if (!error && old) { 940 if (put_compat_itimerspec64(&old_spec, old)) 941 error = -EFAULT; 942 } 943 return error; 944 } 945 #endif 946 947 int common_timer_del(struct k_itimer *timer) 948 { 949 const struct k_clock *kc = timer->kclock; 950 951 timer->it_interval = 0; 952 if (kc->timer_try_to_cancel(timer) < 0) 953 return TIMER_RETRY; 954 timer->it_active = 0; 955 return 0; 956 } 957 958 static inline int timer_delete_hook(struct k_itimer *timer) 959 { 960 const struct k_clock *kc = timer->kclock; 961 962 if (WARN_ON_ONCE(!kc || !kc->timer_del)) 963 return -EINVAL; 964 return kc->timer_del(timer); 965 } 966 967 /* Delete a POSIX.1b interval timer. */ 968 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id) 969 { 970 struct k_itimer *timer; 971 unsigned long flags; 972 973 retry_delete: 974 timer = lock_timer(timer_id, &flags); 975 if (!timer) 976 return -EINVAL; 977 978 if (timer_delete_hook(timer) == TIMER_RETRY) { 979 unlock_timer(timer, flags); 980 goto retry_delete; 981 } 982 983 spin_lock(¤t->sighand->siglock); 984 list_del(&timer->list); 985 spin_unlock(¤t->sighand->siglock); 986 /* 987 * This keeps any tasks waiting on the spin lock from thinking 988 * they got something (see the lock code above). 989 */ 990 timer->it_signal = NULL; 991 992 unlock_timer(timer, flags); 993 release_posix_timer(timer, IT_ID_SET); 994 return 0; 995 } 996 997 /* 998 * return timer owned by the process, used by exit_itimers 999 */ 1000 static void itimer_delete(struct k_itimer *timer) 1001 { 1002 unsigned long flags; 1003 1004 retry_delete: 1005 spin_lock_irqsave(&timer->it_lock, flags); 1006 1007 if (timer_delete_hook(timer) == TIMER_RETRY) { 1008 unlock_timer(timer, flags); 1009 goto retry_delete; 1010 } 1011 list_del(&timer->list); 1012 /* 1013 * This keeps any tasks waiting on the spin lock from thinking 1014 * they got something (see the lock code above). 1015 */ 1016 timer->it_signal = NULL; 1017 1018 unlock_timer(timer, flags); 1019 release_posix_timer(timer, IT_ID_SET); 1020 } 1021 1022 /* 1023 * This is called by do_exit or de_thread, only when there are no more 1024 * references to the shared signal_struct. 1025 */ 1026 void exit_itimers(struct signal_struct *sig) 1027 { 1028 struct k_itimer *tmr; 1029 1030 while (!list_empty(&sig->posix_timers)) { 1031 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list); 1032 itimer_delete(tmr); 1033 } 1034 } 1035 1036 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock, 1037 const struct timespec __user *, tp) 1038 { 1039 const struct k_clock *kc = clockid_to_kclock(which_clock); 1040 struct timespec64 new_tp; 1041 1042 if (!kc || !kc->clock_set) 1043 return -EINVAL; 1044 1045 if (get_timespec64(&new_tp, tp)) 1046 return -EFAULT; 1047 1048 return kc->clock_set(which_clock, &new_tp); 1049 } 1050 1051 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock, 1052 struct timespec __user *,tp) 1053 { 1054 const struct k_clock *kc = clockid_to_kclock(which_clock); 1055 struct timespec64 kernel_tp; 1056 int error; 1057 1058 if (!kc) 1059 return -EINVAL; 1060 1061 error = kc->clock_get(which_clock, &kernel_tp); 1062 1063 if (!error && put_timespec64(&kernel_tp, tp)) 1064 error = -EFAULT; 1065 1066 return error; 1067 } 1068 1069 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock, 1070 struct timex __user *, utx) 1071 { 1072 const struct k_clock *kc = clockid_to_kclock(which_clock); 1073 struct timex ktx; 1074 int err; 1075 1076 if (!kc) 1077 return -EINVAL; 1078 if (!kc->clock_adj) 1079 return -EOPNOTSUPP; 1080 1081 if (copy_from_user(&ktx, utx, sizeof(ktx))) 1082 return -EFAULT; 1083 1084 err = kc->clock_adj(which_clock, &ktx); 1085 1086 if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx))) 1087 return -EFAULT; 1088 1089 return err; 1090 } 1091 1092 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock, 1093 struct timespec __user *, tp) 1094 { 1095 const struct k_clock *kc = clockid_to_kclock(which_clock); 1096 struct timespec64 rtn_tp; 1097 int error; 1098 1099 if (!kc) 1100 return -EINVAL; 1101 1102 error = kc->clock_getres(which_clock, &rtn_tp); 1103 1104 if (!error && tp && put_timespec64(&rtn_tp, tp)) 1105 error = -EFAULT; 1106 1107 return error; 1108 } 1109 1110 #ifdef CONFIG_COMPAT 1111 1112 COMPAT_SYSCALL_DEFINE2(clock_settime, clockid_t, which_clock, 1113 struct compat_timespec __user *, tp) 1114 { 1115 const struct k_clock *kc = clockid_to_kclock(which_clock); 1116 struct timespec64 ts; 1117 1118 if (!kc || !kc->clock_set) 1119 return -EINVAL; 1120 1121 if (compat_get_timespec64(&ts, tp)) 1122 return -EFAULT; 1123 1124 return kc->clock_set(which_clock, &ts); 1125 } 1126 1127 COMPAT_SYSCALL_DEFINE2(clock_gettime, clockid_t, which_clock, 1128 struct compat_timespec __user *, tp) 1129 { 1130 const struct k_clock *kc = clockid_to_kclock(which_clock); 1131 struct timespec64 ts; 1132 int err; 1133 1134 if (!kc) 1135 return -EINVAL; 1136 1137 err = kc->clock_get(which_clock, &ts); 1138 1139 if (!err && compat_put_timespec64(&ts, tp)) 1140 err = -EFAULT; 1141 1142 return err; 1143 } 1144 1145 COMPAT_SYSCALL_DEFINE2(clock_adjtime, clockid_t, which_clock, 1146 struct compat_timex __user *, utp) 1147 { 1148 const struct k_clock *kc = clockid_to_kclock(which_clock); 1149 struct timex ktx; 1150 int err; 1151 1152 if (!kc) 1153 return -EINVAL; 1154 if (!kc->clock_adj) 1155 return -EOPNOTSUPP; 1156 1157 err = compat_get_timex(&ktx, utp); 1158 if (err) 1159 return err; 1160 1161 err = kc->clock_adj(which_clock, &ktx); 1162 1163 if (err >= 0) 1164 err = compat_put_timex(utp, &ktx); 1165 1166 return err; 1167 } 1168 1169 COMPAT_SYSCALL_DEFINE2(clock_getres, clockid_t, which_clock, 1170 struct compat_timespec __user *, tp) 1171 { 1172 const struct k_clock *kc = clockid_to_kclock(which_clock); 1173 struct timespec64 ts; 1174 int err; 1175 1176 if (!kc) 1177 return -EINVAL; 1178 1179 err = kc->clock_getres(which_clock, &ts); 1180 if (!err && tp && compat_put_timespec64(&ts, tp)) 1181 return -EFAULT; 1182 1183 return err; 1184 } 1185 1186 #endif 1187 1188 /* 1189 * nanosleep for monotonic and realtime clocks 1190 */ 1191 static int common_nsleep(const clockid_t which_clock, int flags, 1192 const struct timespec64 *rqtp) 1193 { 1194 return hrtimer_nanosleep(rqtp, flags & TIMER_ABSTIME ? 1195 HRTIMER_MODE_ABS : HRTIMER_MODE_REL, 1196 which_clock); 1197 } 1198 1199 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags, 1200 const struct timespec __user *, rqtp, 1201 struct timespec __user *, rmtp) 1202 { 1203 const struct k_clock *kc = clockid_to_kclock(which_clock); 1204 struct timespec64 t; 1205 1206 if (!kc) 1207 return -EINVAL; 1208 if (!kc->nsleep) 1209 return -ENANOSLEEP_NOTSUP; 1210 1211 if (get_timespec64(&t, rqtp)) 1212 return -EFAULT; 1213 1214 if (!timespec64_valid(&t)) 1215 return -EINVAL; 1216 if (flags & TIMER_ABSTIME) 1217 rmtp = NULL; 1218 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; 1219 current->restart_block.nanosleep.rmtp = rmtp; 1220 1221 return kc->nsleep(which_clock, flags, &t); 1222 } 1223 1224 #ifdef CONFIG_COMPAT 1225 COMPAT_SYSCALL_DEFINE4(clock_nanosleep, clockid_t, which_clock, int, flags, 1226 struct compat_timespec __user *, rqtp, 1227 struct compat_timespec __user *, rmtp) 1228 { 1229 const struct k_clock *kc = clockid_to_kclock(which_clock); 1230 struct timespec64 t; 1231 1232 if (!kc) 1233 return -EINVAL; 1234 if (!kc->nsleep) 1235 return -ENANOSLEEP_NOTSUP; 1236 1237 if (compat_get_timespec64(&t, rqtp)) 1238 return -EFAULT; 1239 1240 if (!timespec64_valid(&t)) 1241 return -EINVAL; 1242 if (flags & TIMER_ABSTIME) 1243 rmtp = NULL; 1244 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; 1245 current->restart_block.nanosleep.compat_rmtp = rmtp; 1246 1247 return kc->nsleep(which_clock, flags, &t); 1248 } 1249 #endif 1250 1251 static const struct k_clock clock_realtime = { 1252 .clock_getres = posix_get_hrtimer_res, 1253 .clock_get = posix_clock_realtime_get, 1254 .clock_set = posix_clock_realtime_set, 1255 .clock_adj = posix_clock_realtime_adj, 1256 .nsleep = common_nsleep, 1257 .timer_create = common_timer_create, 1258 .timer_set = common_timer_set, 1259 .timer_get = common_timer_get, 1260 .timer_del = common_timer_del, 1261 .timer_rearm = common_hrtimer_rearm, 1262 .timer_forward = common_hrtimer_forward, 1263 .timer_remaining = common_hrtimer_remaining, 1264 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1265 .timer_arm = common_hrtimer_arm, 1266 }; 1267 1268 static const struct k_clock clock_monotonic = { 1269 .clock_getres = posix_get_hrtimer_res, 1270 .clock_get = posix_ktime_get_ts, 1271 .nsleep = common_nsleep, 1272 .timer_create = common_timer_create, 1273 .timer_set = common_timer_set, 1274 .timer_get = common_timer_get, 1275 .timer_del = common_timer_del, 1276 .timer_rearm = common_hrtimer_rearm, 1277 .timer_forward = common_hrtimer_forward, 1278 .timer_remaining = common_hrtimer_remaining, 1279 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1280 .timer_arm = common_hrtimer_arm, 1281 }; 1282 1283 static const struct k_clock clock_monotonic_raw = { 1284 .clock_getres = posix_get_hrtimer_res, 1285 .clock_get = posix_get_monotonic_raw, 1286 }; 1287 1288 static const struct k_clock clock_realtime_coarse = { 1289 .clock_getres = posix_get_coarse_res, 1290 .clock_get = posix_get_realtime_coarse, 1291 }; 1292 1293 static const struct k_clock clock_monotonic_coarse = { 1294 .clock_getres = posix_get_coarse_res, 1295 .clock_get = posix_get_monotonic_coarse, 1296 }; 1297 1298 static const struct k_clock clock_tai = { 1299 .clock_getres = posix_get_hrtimer_res, 1300 .clock_get = posix_get_tai, 1301 .nsleep = common_nsleep, 1302 .timer_create = common_timer_create, 1303 .timer_set = common_timer_set, 1304 .timer_get = common_timer_get, 1305 .timer_del = common_timer_del, 1306 .timer_rearm = common_hrtimer_rearm, 1307 .timer_forward = common_hrtimer_forward, 1308 .timer_remaining = common_hrtimer_remaining, 1309 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1310 .timer_arm = common_hrtimer_arm, 1311 }; 1312 1313 static const struct k_clock clock_boottime = { 1314 .clock_getres = posix_get_hrtimer_res, 1315 .clock_get = posix_get_boottime, 1316 .nsleep = common_nsleep, 1317 .timer_create = common_timer_create, 1318 .timer_set = common_timer_set, 1319 .timer_get = common_timer_get, 1320 .timer_del = common_timer_del, 1321 .timer_rearm = common_hrtimer_rearm, 1322 .timer_forward = common_hrtimer_forward, 1323 .timer_remaining = common_hrtimer_remaining, 1324 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1325 .timer_arm = common_hrtimer_arm, 1326 }; 1327 1328 static const struct k_clock * const posix_clocks[] = { 1329 [CLOCK_REALTIME] = &clock_realtime, 1330 [CLOCK_MONOTONIC] = &clock_monotonic, 1331 [CLOCK_PROCESS_CPUTIME_ID] = &clock_process, 1332 [CLOCK_THREAD_CPUTIME_ID] = &clock_thread, 1333 [CLOCK_MONOTONIC_RAW] = &clock_monotonic_raw, 1334 [CLOCK_REALTIME_COARSE] = &clock_realtime_coarse, 1335 [CLOCK_MONOTONIC_COARSE] = &clock_monotonic_coarse, 1336 [CLOCK_BOOTTIME] = &clock_boottime, 1337 [CLOCK_REALTIME_ALARM] = &alarm_clock, 1338 [CLOCK_BOOTTIME_ALARM] = &alarm_clock, 1339 [CLOCK_TAI] = &clock_tai, 1340 }; 1341 1342 static const struct k_clock *clockid_to_kclock(const clockid_t id) 1343 { 1344 if (id < 0) 1345 return (id & CLOCKFD_MASK) == CLOCKFD ? 1346 &clock_posix_dynamic : &clock_posix_cpu; 1347 1348 if (id >= ARRAY_SIZE(posix_clocks) || !posix_clocks[id]) 1349 return NULL; 1350 return posix_clocks[id]; 1351 } 1352