xref: /openbmc/linux/kernel/time/posix-timers.c (revision 87fcfa7b7fe6bf819033fe827a27f710e38639b5)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * 2002-10-15  Posix Clocks & timers
4  *                           by George Anzinger george@mvista.com
5  *			     Copyright (C) 2002 2003 by MontaVista Software.
6  *
7  * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
8  *			     Copyright (C) 2004 Boris Hu
9  *
10  * These are all the functions necessary to implement POSIX clocks & timers
11  */
12 #include <linux/mm.h>
13 #include <linux/interrupt.h>
14 #include <linux/slab.h>
15 #include <linux/time.h>
16 #include <linux/mutex.h>
17 #include <linux/sched/task.h>
18 
19 #include <linux/uaccess.h>
20 #include <linux/list.h>
21 #include <linux/init.h>
22 #include <linux/compiler.h>
23 #include <linux/hash.h>
24 #include <linux/posix-clock.h>
25 #include <linux/posix-timers.h>
26 #include <linux/syscalls.h>
27 #include <linux/wait.h>
28 #include <linux/workqueue.h>
29 #include <linux/export.h>
30 #include <linux/hashtable.h>
31 #include <linux/compat.h>
32 #include <linux/nospec.h>
33 #include <linux/time_namespace.h>
34 
35 #include "timekeeping.h"
36 #include "posix-timers.h"
37 
38 /*
39  * Management arrays for POSIX timers. Timers are now kept in static hash table
40  * with 512 entries.
41  * Timer ids are allocated by local routine, which selects proper hash head by
42  * key, constructed from current->signal address and per signal struct counter.
43  * This keeps timer ids unique per process, but now they can intersect between
44  * processes.
45  */
46 
47 /*
48  * Lets keep our timers in a slab cache :-)
49  */
50 static struct kmem_cache *posix_timers_cache;
51 
52 static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
53 static DEFINE_SPINLOCK(hash_lock);
54 
55 static const struct k_clock * const posix_clocks[];
56 static const struct k_clock *clockid_to_kclock(const clockid_t id);
57 static const struct k_clock clock_realtime, clock_monotonic;
58 
59 /*
60  * we assume that the new SIGEV_THREAD_ID shares no bits with the other
61  * SIGEV values.  Here we put out an error if this assumption fails.
62  */
63 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
64                        ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
65 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
66 #endif
67 
68 /*
69  * The timer ID is turned into a timer address by idr_find().
70  * Verifying a valid ID consists of:
71  *
72  * a) checking that idr_find() returns other than -1.
73  * b) checking that the timer id matches the one in the timer itself.
74  * c) that the timer owner is in the callers thread group.
75  */
76 
77 /*
78  * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
79  *	    to implement others.  This structure defines the various
80  *	    clocks.
81  *
82  * RESOLUTION: Clock resolution is used to round up timer and interval
83  *	    times, NOT to report clock times, which are reported with as
84  *	    much resolution as the system can muster.  In some cases this
85  *	    resolution may depend on the underlying clock hardware and
86  *	    may not be quantifiable until run time, and only then is the
87  *	    necessary code is written.	The standard says we should say
88  *	    something about this issue in the documentation...
89  *
90  * FUNCTIONS: The CLOCKs structure defines possible functions to
91  *	    handle various clock functions.
92  *
93  *	    The standard POSIX timer management code assumes the
94  *	    following: 1.) The k_itimer struct (sched.h) is used for
95  *	    the timer.  2.) The list, it_lock, it_clock, it_id and
96  *	    it_pid fields are not modified by timer code.
97  *
98  * Permissions: It is assumed that the clock_settime() function defined
99  *	    for each clock will take care of permission checks.	 Some
100  *	    clocks may be set able by any user (i.e. local process
101  *	    clocks) others not.	 Currently the only set able clock we
102  *	    have is CLOCK_REALTIME and its high res counter part, both of
103  *	    which we beg off on and pass to do_sys_settimeofday().
104  */
105 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
106 
107 #define lock_timer(tid, flags)						   \
108 ({	struct k_itimer *__timr;					   \
109 	__cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags));  \
110 	__timr;								   \
111 })
112 
113 static int hash(struct signal_struct *sig, unsigned int nr)
114 {
115 	return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
116 }
117 
118 static struct k_itimer *__posix_timers_find(struct hlist_head *head,
119 					    struct signal_struct *sig,
120 					    timer_t id)
121 {
122 	struct k_itimer *timer;
123 
124 	hlist_for_each_entry_rcu(timer, head, t_hash) {
125 		if ((timer->it_signal == sig) && (timer->it_id == id))
126 			return timer;
127 	}
128 	return NULL;
129 }
130 
131 static struct k_itimer *posix_timer_by_id(timer_t id)
132 {
133 	struct signal_struct *sig = current->signal;
134 	struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
135 
136 	return __posix_timers_find(head, sig, id);
137 }
138 
139 static int posix_timer_add(struct k_itimer *timer)
140 {
141 	struct signal_struct *sig = current->signal;
142 	int first_free_id = sig->posix_timer_id;
143 	struct hlist_head *head;
144 	int ret = -ENOENT;
145 
146 	do {
147 		spin_lock(&hash_lock);
148 		head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
149 		if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
150 			hlist_add_head_rcu(&timer->t_hash, head);
151 			ret = sig->posix_timer_id;
152 		}
153 		if (++sig->posix_timer_id < 0)
154 			sig->posix_timer_id = 0;
155 		if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
156 			/* Loop over all possible ids completed */
157 			ret = -EAGAIN;
158 		spin_unlock(&hash_lock);
159 	} while (ret == -ENOENT);
160 	return ret;
161 }
162 
163 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
164 {
165 	spin_unlock_irqrestore(&timr->it_lock, flags);
166 }
167 
168 /* Get clock_realtime */
169 static int posix_get_realtime_timespec(clockid_t which_clock, struct timespec64 *tp)
170 {
171 	ktime_get_real_ts64(tp);
172 	return 0;
173 }
174 
175 static ktime_t posix_get_realtime_ktime(clockid_t which_clock)
176 {
177 	return ktime_get_real();
178 }
179 
180 /* Set clock_realtime */
181 static int posix_clock_realtime_set(const clockid_t which_clock,
182 				    const struct timespec64 *tp)
183 {
184 	return do_sys_settimeofday64(tp, NULL);
185 }
186 
187 static int posix_clock_realtime_adj(const clockid_t which_clock,
188 				    struct __kernel_timex *t)
189 {
190 	return do_adjtimex(t);
191 }
192 
193 /*
194  * Get monotonic time for posix timers
195  */
196 static int posix_get_monotonic_timespec(clockid_t which_clock, struct timespec64 *tp)
197 {
198 	ktime_get_ts64(tp);
199 	timens_add_monotonic(tp);
200 	return 0;
201 }
202 
203 static ktime_t posix_get_monotonic_ktime(clockid_t which_clock)
204 {
205 	return ktime_get();
206 }
207 
208 /*
209  * Get monotonic-raw time for posix timers
210  */
211 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
212 {
213 	ktime_get_raw_ts64(tp);
214 	timens_add_monotonic(tp);
215 	return 0;
216 }
217 
218 
219 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
220 {
221 	ktime_get_coarse_real_ts64(tp);
222 	return 0;
223 }
224 
225 static int posix_get_monotonic_coarse(clockid_t which_clock,
226 						struct timespec64 *tp)
227 {
228 	ktime_get_coarse_ts64(tp);
229 	timens_add_monotonic(tp);
230 	return 0;
231 }
232 
233 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
234 {
235 	*tp = ktime_to_timespec64(KTIME_LOW_RES);
236 	return 0;
237 }
238 
239 static int posix_get_boottime_timespec(const clockid_t which_clock, struct timespec64 *tp)
240 {
241 	ktime_get_boottime_ts64(tp);
242 	timens_add_boottime(tp);
243 	return 0;
244 }
245 
246 static ktime_t posix_get_boottime_ktime(const clockid_t which_clock)
247 {
248 	return ktime_get_boottime();
249 }
250 
251 static int posix_get_tai_timespec(clockid_t which_clock, struct timespec64 *tp)
252 {
253 	ktime_get_clocktai_ts64(tp);
254 	return 0;
255 }
256 
257 static ktime_t posix_get_tai_ktime(clockid_t which_clock)
258 {
259 	return ktime_get_clocktai();
260 }
261 
262 static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
263 {
264 	tp->tv_sec = 0;
265 	tp->tv_nsec = hrtimer_resolution;
266 	return 0;
267 }
268 
269 /*
270  * Initialize everything, well, just everything in Posix clocks/timers ;)
271  */
272 static __init int init_posix_timers(void)
273 {
274 	posix_timers_cache = kmem_cache_create("posix_timers_cache",
275 					sizeof (struct k_itimer), 0, SLAB_PANIC,
276 					NULL);
277 	return 0;
278 }
279 __initcall(init_posix_timers);
280 
281 /*
282  * The siginfo si_overrun field and the return value of timer_getoverrun(2)
283  * are of type int. Clamp the overrun value to INT_MAX
284  */
285 static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval)
286 {
287 	s64 sum = timr->it_overrun_last + (s64)baseval;
288 
289 	return sum > (s64)INT_MAX ? INT_MAX : (int)sum;
290 }
291 
292 static void common_hrtimer_rearm(struct k_itimer *timr)
293 {
294 	struct hrtimer *timer = &timr->it.real.timer;
295 
296 	timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
297 					    timr->it_interval);
298 	hrtimer_restart(timer);
299 }
300 
301 /*
302  * This function is exported for use by the signal deliver code.  It is
303  * called just prior to the info block being released and passes that
304  * block to us.  It's function is to update the overrun entry AND to
305  * restart the timer.  It should only be called if the timer is to be
306  * restarted (i.e. we have flagged this in the sys_private entry of the
307  * info block).
308  *
309  * To protect against the timer going away while the interrupt is queued,
310  * we require that the it_requeue_pending flag be set.
311  */
312 void posixtimer_rearm(struct kernel_siginfo *info)
313 {
314 	struct k_itimer *timr;
315 	unsigned long flags;
316 
317 	timr = lock_timer(info->si_tid, &flags);
318 	if (!timr)
319 		return;
320 
321 	if (timr->it_interval && timr->it_requeue_pending == info->si_sys_private) {
322 		timr->kclock->timer_rearm(timr);
323 
324 		timr->it_active = 1;
325 		timr->it_overrun_last = timr->it_overrun;
326 		timr->it_overrun = -1LL;
327 		++timr->it_requeue_pending;
328 
329 		info->si_overrun = timer_overrun_to_int(timr, info->si_overrun);
330 	}
331 
332 	unlock_timer(timr, flags);
333 }
334 
335 int posix_timer_event(struct k_itimer *timr, int si_private)
336 {
337 	enum pid_type type;
338 	int ret = -1;
339 	/*
340 	 * FIXME: if ->sigq is queued we can race with
341 	 * dequeue_signal()->posixtimer_rearm().
342 	 *
343 	 * If dequeue_signal() sees the "right" value of
344 	 * si_sys_private it calls posixtimer_rearm().
345 	 * We re-queue ->sigq and drop ->it_lock().
346 	 * posixtimer_rearm() locks the timer
347 	 * and re-schedules it while ->sigq is pending.
348 	 * Not really bad, but not that we want.
349 	 */
350 	timr->sigq->info.si_sys_private = si_private;
351 
352 	type = !(timr->it_sigev_notify & SIGEV_THREAD_ID) ? PIDTYPE_TGID : PIDTYPE_PID;
353 	ret = send_sigqueue(timr->sigq, timr->it_pid, type);
354 	/* If we failed to send the signal the timer stops. */
355 	return ret > 0;
356 }
357 
358 /*
359  * This function gets called when a POSIX.1b interval timer expires.  It
360  * is used as a callback from the kernel internal timer.  The
361  * run_timer_list code ALWAYS calls with interrupts on.
362 
363  * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
364  */
365 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
366 {
367 	struct k_itimer *timr;
368 	unsigned long flags;
369 	int si_private = 0;
370 	enum hrtimer_restart ret = HRTIMER_NORESTART;
371 
372 	timr = container_of(timer, struct k_itimer, it.real.timer);
373 	spin_lock_irqsave(&timr->it_lock, flags);
374 
375 	timr->it_active = 0;
376 	if (timr->it_interval != 0)
377 		si_private = ++timr->it_requeue_pending;
378 
379 	if (posix_timer_event(timr, si_private)) {
380 		/*
381 		 * signal was not sent because of sig_ignor
382 		 * we will not get a call back to restart it AND
383 		 * it should be restarted.
384 		 */
385 		if (timr->it_interval != 0) {
386 			ktime_t now = hrtimer_cb_get_time(timer);
387 
388 			/*
389 			 * FIXME: What we really want, is to stop this
390 			 * timer completely and restart it in case the
391 			 * SIG_IGN is removed. This is a non trivial
392 			 * change which involves sighand locking
393 			 * (sigh !), which we don't want to do late in
394 			 * the release cycle.
395 			 *
396 			 * For now we just let timers with an interval
397 			 * less than a jiffie expire every jiffie to
398 			 * avoid softirq starvation in case of SIG_IGN
399 			 * and a very small interval, which would put
400 			 * the timer right back on the softirq pending
401 			 * list. By moving now ahead of time we trick
402 			 * hrtimer_forward() to expire the timer
403 			 * later, while we still maintain the overrun
404 			 * accuracy, but have some inconsistency in
405 			 * the timer_gettime() case. This is at least
406 			 * better than a starved softirq. A more
407 			 * complex fix which solves also another related
408 			 * inconsistency is already in the pipeline.
409 			 */
410 #ifdef CONFIG_HIGH_RES_TIMERS
411 			{
412 				ktime_t kj = NSEC_PER_SEC / HZ;
413 
414 				if (timr->it_interval < kj)
415 					now = ktime_add(now, kj);
416 			}
417 #endif
418 			timr->it_overrun += hrtimer_forward(timer, now,
419 							    timr->it_interval);
420 			ret = HRTIMER_RESTART;
421 			++timr->it_requeue_pending;
422 			timr->it_active = 1;
423 		}
424 	}
425 
426 	unlock_timer(timr, flags);
427 	return ret;
428 }
429 
430 static struct pid *good_sigevent(sigevent_t * event)
431 {
432 	struct pid *pid = task_tgid(current);
433 	struct task_struct *rtn;
434 
435 	switch (event->sigev_notify) {
436 	case SIGEV_SIGNAL | SIGEV_THREAD_ID:
437 		pid = find_vpid(event->sigev_notify_thread_id);
438 		rtn = pid_task(pid, PIDTYPE_PID);
439 		if (!rtn || !same_thread_group(rtn, current))
440 			return NULL;
441 		/* FALLTHRU */
442 	case SIGEV_SIGNAL:
443 	case SIGEV_THREAD:
444 		if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
445 			return NULL;
446 		/* FALLTHRU */
447 	case SIGEV_NONE:
448 		return pid;
449 	default:
450 		return NULL;
451 	}
452 }
453 
454 static struct k_itimer * alloc_posix_timer(void)
455 {
456 	struct k_itimer *tmr;
457 	tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
458 	if (!tmr)
459 		return tmr;
460 	if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
461 		kmem_cache_free(posix_timers_cache, tmr);
462 		return NULL;
463 	}
464 	clear_siginfo(&tmr->sigq->info);
465 	return tmr;
466 }
467 
468 static void k_itimer_rcu_free(struct rcu_head *head)
469 {
470 	struct k_itimer *tmr = container_of(head, struct k_itimer, rcu);
471 
472 	kmem_cache_free(posix_timers_cache, tmr);
473 }
474 
475 #define IT_ID_SET	1
476 #define IT_ID_NOT_SET	0
477 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
478 {
479 	if (it_id_set) {
480 		unsigned long flags;
481 		spin_lock_irqsave(&hash_lock, flags);
482 		hlist_del_rcu(&tmr->t_hash);
483 		spin_unlock_irqrestore(&hash_lock, flags);
484 	}
485 	put_pid(tmr->it_pid);
486 	sigqueue_free(tmr->sigq);
487 	call_rcu(&tmr->rcu, k_itimer_rcu_free);
488 }
489 
490 static int common_timer_create(struct k_itimer *new_timer)
491 {
492 	hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
493 	return 0;
494 }
495 
496 /* Create a POSIX.1b interval timer. */
497 static int do_timer_create(clockid_t which_clock, struct sigevent *event,
498 			   timer_t __user *created_timer_id)
499 {
500 	const struct k_clock *kc = clockid_to_kclock(which_clock);
501 	struct k_itimer *new_timer;
502 	int error, new_timer_id;
503 	int it_id_set = IT_ID_NOT_SET;
504 
505 	if (!kc)
506 		return -EINVAL;
507 	if (!kc->timer_create)
508 		return -EOPNOTSUPP;
509 
510 	new_timer = alloc_posix_timer();
511 	if (unlikely(!new_timer))
512 		return -EAGAIN;
513 
514 	spin_lock_init(&new_timer->it_lock);
515 	new_timer_id = posix_timer_add(new_timer);
516 	if (new_timer_id < 0) {
517 		error = new_timer_id;
518 		goto out;
519 	}
520 
521 	it_id_set = IT_ID_SET;
522 	new_timer->it_id = (timer_t) new_timer_id;
523 	new_timer->it_clock = which_clock;
524 	new_timer->kclock = kc;
525 	new_timer->it_overrun = -1LL;
526 
527 	if (event) {
528 		rcu_read_lock();
529 		new_timer->it_pid = get_pid(good_sigevent(event));
530 		rcu_read_unlock();
531 		if (!new_timer->it_pid) {
532 			error = -EINVAL;
533 			goto out;
534 		}
535 		new_timer->it_sigev_notify     = event->sigev_notify;
536 		new_timer->sigq->info.si_signo = event->sigev_signo;
537 		new_timer->sigq->info.si_value = event->sigev_value;
538 	} else {
539 		new_timer->it_sigev_notify     = SIGEV_SIGNAL;
540 		new_timer->sigq->info.si_signo = SIGALRM;
541 		memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
542 		new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
543 		new_timer->it_pid = get_pid(task_tgid(current));
544 	}
545 
546 	new_timer->sigq->info.si_tid   = new_timer->it_id;
547 	new_timer->sigq->info.si_code  = SI_TIMER;
548 
549 	if (copy_to_user(created_timer_id,
550 			 &new_timer_id, sizeof (new_timer_id))) {
551 		error = -EFAULT;
552 		goto out;
553 	}
554 
555 	error = kc->timer_create(new_timer);
556 	if (error)
557 		goto out;
558 
559 	spin_lock_irq(&current->sighand->siglock);
560 	new_timer->it_signal = current->signal;
561 	list_add(&new_timer->list, &current->signal->posix_timers);
562 	spin_unlock_irq(&current->sighand->siglock);
563 
564 	return 0;
565 	/*
566 	 * In the case of the timer belonging to another task, after
567 	 * the task is unlocked, the timer is owned by the other task
568 	 * and may cease to exist at any time.  Don't use or modify
569 	 * new_timer after the unlock call.
570 	 */
571 out:
572 	release_posix_timer(new_timer, it_id_set);
573 	return error;
574 }
575 
576 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
577 		struct sigevent __user *, timer_event_spec,
578 		timer_t __user *, created_timer_id)
579 {
580 	if (timer_event_spec) {
581 		sigevent_t event;
582 
583 		if (copy_from_user(&event, timer_event_spec, sizeof (event)))
584 			return -EFAULT;
585 		return do_timer_create(which_clock, &event, created_timer_id);
586 	}
587 	return do_timer_create(which_clock, NULL, created_timer_id);
588 }
589 
590 #ifdef CONFIG_COMPAT
591 COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
592 		       struct compat_sigevent __user *, timer_event_spec,
593 		       timer_t __user *, created_timer_id)
594 {
595 	if (timer_event_spec) {
596 		sigevent_t event;
597 
598 		if (get_compat_sigevent(&event, timer_event_spec))
599 			return -EFAULT;
600 		return do_timer_create(which_clock, &event, created_timer_id);
601 	}
602 	return do_timer_create(which_clock, NULL, created_timer_id);
603 }
604 #endif
605 
606 /*
607  * Locking issues: We need to protect the result of the id look up until
608  * we get the timer locked down so it is not deleted under us.  The
609  * removal is done under the idr spinlock so we use that here to bridge
610  * the find to the timer lock.  To avoid a dead lock, the timer id MUST
611  * be release with out holding the timer lock.
612  */
613 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
614 {
615 	struct k_itimer *timr;
616 
617 	/*
618 	 * timer_t could be any type >= int and we want to make sure any
619 	 * @timer_id outside positive int range fails lookup.
620 	 */
621 	if ((unsigned long long)timer_id > INT_MAX)
622 		return NULL;
623 
624 	rcu_read_lock();
625 	timr = posix_timer_by_id(timer_id);
626 	if (timr) {
627 		spin_lock_irqsave(&timr->it_lock, *flags);
628 		if (timr->it_signal == current->signal) {
629 			rcu_read_unlock();
630 			return timr;
631 		}
632 		spin_unlock_irqrestore(&timr->it_lock, *flags);
633 	}
634 	rcu_read_unlock();
635 
636 	return NULL;
637 }
638 
639 static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
640 {
641 	struct hrtimer *timer = &timr->it.real.timer;
642 
643 	return __hrtimer_expires_remaining_adjusted(timer, now);
644 }
645 
646 static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
647 {
648 	struct hrtimer *timer = &timr->it.real.timer;
649 
650 	return hrtimer_forward(timer, now, timr->it_interval);
651 }
652 
653 /*
654  * Get the time remaining on a POSIX.1b interval timer.  This function
655  * is ALWAYS called with spin_lock_irq on the timer, thus it must not
656  * mess with irq.
657  *
658  * We have a couple of messes to clean up here.  First there is the case
659  * of a timer that has a requeue pending.  These timers should appear to
660  * be in the timer list with an expiry as if we were to requeue them
661  * now.
662  *
663  * The second issue is the SIGEV_NONE timer which may be active but is
664  * not really ever put in the timer list (to save system resources).
665  * This timer may be expired, and if so, we will do it here.  Otherwise
666  * it is the same as a requeue pending timer WRT to what we should
667  * report.
668  */
669 void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
670 {
671 	const struct k_clock *kc = timr->kclock;
672 	ktime_t now, remaining, iv;
673 	bool sig_none;
674 
675 	sig_none = timr->it_sigev_notify == SIGEV_NONE;
676 	iv = timr->it_interval;
677 
678 	/* interval timer ? */
679 	if (iv) {
680 		cur_setting->it_interval = ktime_to_timespec64(iv);
681 	} else if (!timr->it_active) {
682 		/*
683 		 * SIGEV_NONE oneshot timers are never queued. Check them
684 		 * below.
685 		 */
686 		if (!sig_none)
687 			return;
688 	}
689 
690 	now = kc->clock_get_ktime(timr->it_clock);
691 
692 	/*
693 	 * When a requeue is pending or this is a SIGEV_NONE timer move the
694 	 * expiry time forward by intervals, so expiry is > now.
695 	 */
696 	if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
697 		timr->it_overrun += kc->timer_forward(timr, now);
698 
699 	remaining = kc->timer_remaining(timr, now);
700 	/* Return 0 only, when the timer is expired and not pending */
701 	if (remaining <= 0) {
702 		/*
703 		 * A single shot SIGEV_NONE timer must return 0, when
704 		 * it is expired !
705 		 */
706 		if (!sig_none)
707 			cur_setting->it_value.tv_nsec = 1;
708 	} else {
709 		cur_setting->it_value = ktime_to_timespec64(remaining);
710 	}
711 }
712 
713 /* Get the time remaining on a POSIX.1b interval timer. */
714 static int do_timer_gettime(timer_t timer_id,  struct itimerspec64 *setting)
715 {
716 	struct k_itimer *timr;
717 	const struct k_clock *kc;
718 	unsigned long flags;
719 	int ret = 0;
720 
721 	timr = lock_timer(timer_id, &flags);
722 	if (!timr)
723 		return -EINVAL;
724 
725 	memset(setting, 0, sizeof(*setting));
726 	kc = timr->kclock;
727 	if (WARN_ON_ONCE(!kc || !kc->timer_get))
728 		ret = -EINVAL;
729 	else
730 		kc->timer_get(timr, setting);
731 
732 	unlock_timer(timr, flags);
733 	return ret;
734 }
735 
736 /* Get the time remaining on a POSIX.1b interval timer. */
737 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
738 		struct __kernel_itimerspec __user *, setting)
739 {
740 	struct itimerspec64 cur_setting;
741 
742 	int ret = do_timer_gettime(timer_id, &cur_setting);
743 	if (!ret) {
744 		if (put_itimerspec64(&cur_setting, setting))
745 			ret = -EFAULT;
746 	}
747 	return ret;
748 }
749 
750 #ifdef CONFIG_COMPAT_32BIT_TIME
751 
752 SYSCALL_DEFINE2(timer_gettime32, timer_t, timer_id,
753 		struct old_itimerspec32 __user *, setting)
754 {
755 	struct itimerspec64 cur_setting;
756 
757 	int ret = do_timer_gettime(timer_id, &cur_setting);
758 	if (!ret) {
759 		if (put_old_itimerspec32(&cur_setting, setting))
760 			ret = -EFAULT;
761 	}
762 	return ret;
763 }
764 
765 #endif
766 
767 /*
768  * Get the number of overruns of a POSIX.1b interval timer.  This is to
769  * be the overrun of the timer last delivered.  At the same time we are
770  * accumulating overruns on the next timer.  The overrun is frozen when
771  * the signal is delivered, either at the notify time (if the info block
772  * is not queued) or at the actual delivery time (as we are informed by
773  * the call back to posixtimer_rearm().  So all we need to do is
774  * to pick up the frozen overrun.
775  */
776 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
777 {
778 	struct k_itimer *timr;
779 	int overrun;
780 	unsigned long flags;
781 
782 	timr = lock_timer(timer_id, &flags);
783 	if (!timr)
784 		return -EINVAL;
785 
786 	overrun = timer_overrun_to_int(timr, 0);
787 	unlock_timer(timr, flags);
788 
789 	return overrun;
790 }
791 
792 static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
793 			       bool absolute, bool sigev_none)
794 {
795 	struct hrtimer *timer = &timr->it.real.timer;
796 	enum hrtimer_mode mode;
797 
798 	mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
799 	/*
800 	 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
801 	 * clock modifications, so they become CLOCK_MONOTONIC based under the
802 	 * hood. See hrtimer_init(). Update timr->kclock, so the generic
803 	 * functions which use timr->kclock->clock_get_*() work.
804 	 *
805 	 * Note: it_clock stays unmodified, because the next timer_set() might
806 	 * use ABSTIME, so it needs to switch back.
807 	 */
808 	if (timr->it_clock == CLOCK_REALTIME)
809 		timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
810 
811 	hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
812 	timr->it.real.timer.function = posix_timer_fn;
813 
814 	if (!absolute)
815 		expires = ktime_add_safe(expires, timer->base->get_time());
816 	hrtimer_set_expires(timer, expires);
817 
818 	if (!sigev_none)
819 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
820 }
821 
822 static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
823 {
824 	return hrtimer_try_to_cancel(&timr->it.real.timer);
825 }
826 
827 static void common_timer_wait_running(struct k_itimer *timer)
828 {
829 	hrtimer_cancel_wait_running(&timer->it.real.timer);
830 }
831 
832 /*
833  * On PREEMPT_RT this prevent priority inversion against softirq kthread in
834  * case it gets preempted while executing a timer callback. See comments in
835  * hrtimer_cancel_wait_running. For PREEMPT_RT=n this just results in a
836  * cpu_relax().
837  */
838 static struct k_itimer *timer_wait_running(struct k_itimer *timer,
839 					   unsigned long *flags)
840 {
841 	const struct k_clock *kc = READ_ONCE(timer->kclock);
842 	timer_t timer_id = READ_ONCE(timer->it_id);
843 
844 	/* Prevent kfree(timer) after dropping the lock */
845 	rcu_read_lock();
846 	unlock_timer(timer, *flags);
847 
848 	if (!WARN_ON_ONCE(!kc->timer_wait_running))
849 		kc->timer_wait_running(timer);
850 
851 	rcu_read_unlock();
852 	/* Relock the timer. It might be not longer hashed. */
853 	return lock_timer(timer_id, flags);
854 }
855 
856 /* Set a POSIX.1b interval timer. */
857 int common_timer_set(struct k_itimer *timr, int flags,
858 		     struct itimerspec64 *new_setting,
859 		     struct itimerspec64 *old_setting)
860 {
861 	const struct k_clock *kc = timr->kclock;
862 	bool sigev_none;
863 	ktime_t expires;
864 
865 	if (old_setting)
866 		common_timer_get(timr, old_setting);
867 
868 	/* Prevent rearming by clearing the interval */
869 	timr->it_interval = 0;
870 	/*
871 	 * Careful here. On SMP systems the timer expiry function could be
872 	 * active and spinning on timr->it_lock.
873 	 */
874 	if (kc->timer_try_to_cancel(timr) < 0)
875 		return TIMER_RETRY;
876 
877 	timr->it_active = 0;
878 	timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
879 		~REQUEUE_PENDING;
880 	timr->it_overrun_last = 0;
881 
882 	/* Switch off the timer when it_value is zero */
883 	if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
884 		return 0;
885 
886 	timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
887 	expires = timespec64_to_ktime(new_setting->it_value);
888 	if (flags & TIMER_ABSTIME)
889 		expires = timens_ktime_to_host(timr->it_clock, expires);
890 	sigev_none = timr->it_sigev_notify == SIGEV_NONE;
891 
892 	kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
893 	timr->it_active = !sigev_none;
894 	return 0;
895 }
896 
897 static int do_timer_settime(timer_t timer_id, int tmr_flags,
898 			    struct itimerspec64 *new_spec64,
899 			    struct itimerspec64 *old_spec64)
900 {
901 	const struct k_clock *kc;
902 	struct k_itimer *timr;
903 	unsigned long flags;
904 	int error = 0;
905 
906 	if (!timespec64_valid(&new_spec64->it_interval) ||
907 	    !timespec64_valid(&new_spec64->it_value))
908 		return -EINVAL;
909 
910 	if (old_spec64)
911 		memset(old_spec64, 0, sizeof(*old_spec64));
912 
913 	timr = lock_timer(timer_id, &flags);
914 retry:
915 	if (!timr)
916 		return -EINVAL;
917 
918 	kc = timr->kclock;
919 	if (WARN_ON_ONCE(!kc || !kc->timer_set))
920 		error = -EINVAL;
921 	else
922 		error = kc->timer_set(timr, tmr_flags, new_spec64, old_spec64);
923 
924 	if (error == TIMER_RETRY) {
925 		// We already got the old time...
926 		old_spec64 = NULL;
927 		/* Unlocks and relocks the timer if it still exists */
928 		timr = timer_wait_running(timr, &flags);
929 		goto retry;
930 	}
931 	unlock_timer(timr, flags);
932 
933 	return error;
934 }
935 
936 /* Set a POSIX.1b interval timer */
937 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
938 		const struct __kernel_itimerspec __user *, new_setting,
939 		struct __kernel_itimerspec __user *, old_setting)
940 {
941 	struct itimerspec64 new_spec, old_spec;
942 	struct itimerspec64 *rtn = old_setting ? &old_spec : NULL;
943 	int error = 0;
944 
945 	if (!new_setting)
946 		return -EINVAL;
947 
948 	if (get_itimerspec64(&new_spec, new_setting))
949 		return -EFAULT;
950 
951 	error = do_timer_settime(timer_id, flags, &new_spec, rtn);
952 	if (!error && old_setting) {
953 		if (put_itimerspec64(&old_spec, old_setting))
954 			error = -EFAULT;
955 	}
956 	return error;
957 }
958 
959 #ifdef CONFIG_COMPAT_32BIT_TIME
960 SYSCALL_DEFINE4(timer_settime32, timer_t, timer_id, int, flags,
961 		struct old_itimerspec32 __user *, new,
962 		struct old_itimerspec32 __user *, old)
963 {
964 	struct itimerspec64 new_spec, old_spec;
965 	struct itimerspec64 *rtn = old ? &old_spec : NULL;
966 	int error = 0;
967 
968 	if (!new)
969 		return -EINVAL;
970 	if (get_old_itimerspec32(&new_spec, new))
971 		return -EFAULT;
972 
973 	error = do_timer_settime(timer_id, flags, &new_spec, rtn);
974 	if (!error && old) {
975 		if (put_old_itimerspec32(&old_spec, old))
976 			error = -EFAULT;
977 	}
978 	return error;
979 }
980 #endif
981 
982 int common_timer_del(struct k_itimer *timer)
983 {
984 	const struct k_clock *kc = timer->kclock;
985 
986 	timer->it_interval = 0;
987 	if (kc->timer_try_to_cancel(timer) < 0)
988 		return TIMER_RETRY;
989 	timer->it_active = 0;
990 	return 0;
991 }
992 
993 static inline int timer_delete_hook(struct k_itimer *timer)
994 {
995 	const struct k_clock *kc = timer->kclock;
996 
997 	if (WARN_ON_ONCE(!kc || !kc->timer_del))
998 		return -EINVAL;
999 	return kc->timer_del(timer);
1000 }
1001 
1002 /* Delete a POSIX.1b interval timer. */
1003 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
1004 {
1005 	struct k_itimer *timer;
1006 	unsigned long flags;
1007 
1008 	timer = lock_timer(timer_id, &flags);
1009 
1010 retry_delete:
1011 	if (!timer)
1012 		return -EINVAL;
1013 
1014 	if (unlikely(timer_delete_hook(timer) == TIMER_RETRY)) {
1015 		/* Unlocks and relocks the timer if it still exists */
1016 		timer = timer_wait_running(timer, &flags);
1017 		goto retry_delete;
1018 	}
1019 
1020 	spin_lock(&current->sighand->siglock);
1021 	list_del(&timer->list);
1022 	spin_unlock(&current->sighand->siglock);
1023 	/*
1024 	 * This keeps any tasks waiting on the spin lock from thinking
1025 	 * they got something (see the lock code above).
1026 	 */
1027 	timer->it_signal = NULL;
1028 
1029 	unlock_timer(timer, flags);
1030 	release_posix_timer(timer, IT_ID_SET);
1031 	return 0;
1032 }
1033 
1034 /*
1035  * return timer owned by the process, used by exit_itimers
1036  */
1037 static void itimer_delete(struct k_itimer *timer)
1038 {
1039 retry_delete:
1040 	spin_lock_irq(&timer->it_lock);
1041 
1042 	if (timer_delete_hook(timer) == TIMER_RETRY) {
1043 		spin_unlock_irq(&timer->it_lock);
1044 		goto retry_delete;
1045 	}
1046 	list_del(&timer->list);
1047 
1048 	spin_unlock_irq(&timer->it_lock);
1049 	release_posix_timer(timer, IT_ID_SET);
1050 }
1051 
1052 /*
1053  * This is called by do_exit or de_thread, only when there are no more
1054  * references to the shared signal_struct.
1055  */
1056 void exit_itimers(struct signal_struct *sig)
1057 {
1058 	struct k_itimer *tmr;
1059 
1060 	while (!list_empty(&sig->posix_timers)) {
1061 		tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
1062 		itimer_delete(tmr);
1063 	}
1064 }
1065 
1066 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1067 		const struct __kernel_timespec __user *, tp)
1068 {
1069 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1070 	struct timespec64 new_tp;
1071 
1072 	if (!kc || !kc->clock_set)
1073 		return -EINVAL;
1074 
1075 	if (get_timespec64(&new_tp, tp))
1076 		return -EFAULT;
1077 
1078 	return kc->clock_set(which_clock, &new_tp);
1079 }
1080 
1081 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1082 		struct __kernel_timespec __user *, tp)
1083 {
1084 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1085 	struct timespec64 kernel_tp;
1086 	int error;
1087 
1088 	if (!kc)
1089 		return -EINVAL;
1090 
1091 	error = kc->clock_get_timespec(which_clock, &kernel_tp);
1092 
1093 	if (!error && put_timespec64(&kernel_tp, tp))
1094 		error = -EFAULT;
1095 
1096 	return error;
1097 }
1098 
1099 int do_clock_adjtime(const clockid_t which_clock, struct __kernel_timex * ktx)
1100 {
1101 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1102 
1103 	if (!kc)
1104 		return -EINVAL;
1105 	if (!kc->clock_adj)
1106 		return -EOPNOTSUPP;
1107 
1108 	return kc->clock_adj(which_clock, ktx);
1109 }
1110 
1111 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1112 		struct __kernel_timex __user *, utx)
1113 {
1114 	struct __kernel_timex ktx;
1115 	int err;
1116 
1117 	if (copy_from_user(&ktx, utx, sizeof(ktx)))
1118 		return -EFAULT;
1119 
1120 	err = do_clock_adjtime(which_clock, &ktx);
1121 
1122 	if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1123 		return -EFAULT;
1124 
1125 	return err;
1126 }
1127 
1128 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1129 		struct __kernel_timespec __user *, tp)
1130 {
1131 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1132 	struct timespec64 rtn_tp;
1133 	int error;
1134 
1135 	if (!kc)
1136 		return -EINVAL;
1137 
1138 	error = kc->clock_getres(which_clock, &rtn_tp);
1139 
1140 	if (!error && tp && put_timespec64(&rtn_tp, tp))
1141 		error = -EFAULT;
1142 
1143 	return error;
1144 }
1145 
1146 #ifdef CONFIG_COMPAT_32BIT_TIME
1147 
1148 SYSCALL_DEFINE2(clock_settime32, clockid_t, which_clock,
1149 		struct old_timespec32 __user *, tp)
1150 {
1151 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1152 	struct timespec64 ts;
1153 
1154 	if (!kc || !kc->clock_set)
1155 		return -EINVAL;
1156 
1157 	if (get_old_timespec32(&ts, tp))
1158 		return -EFAULT;
1159 
1160 	return kc->clock_set(which_clock, &ts);
1161 }
1162 
1163 SYSCALL_DEFINE2(clock_gettime32, clockid_t, which_clock,
1164 		struct old_timespec32 __user *, tp)
1165 {
1166 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1167 	struct timespec64 ts;
1168 	int err;
1169 
1170 	if (!kc)
1171 		return -EINVAL;
1172 
1173 	err = kc->clock_get_timespec(which_clock, &ts);
1174 
1175 	if (!err && put_old_timespec32(&ts, tp))
1176 		err = -EFAULT;
1177 
1178 	return err;
1179 }
1180 
1181 SYSCALL_DEFINE2(clock_adjtime32, clockid_t, which_clock,
1182 		struct old_timex32 __user *, utp)
1183 {
1184 	struct __kernel_timex ktx;
1185 	int err;
1186 
1187 	err = get_old_timex32(&ktx, utp);
1188 	if (err)
1189 		return err;
1190 
1191 	err = do_clock_adjtime(which_clock, &ktx);
1192 
1193 	if (err >= 0)
1194 		err = put_old_timex32(utp, &ktx);
1195 
1196 	return err;
1197 }
1198 
1199 SYSCALL_DEFINE2(clock_getres_time32, clockid_t, which_clock,
1200 		struct old_timespec32 __user *, tp)
1201 {
1202 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1203 	struct timespec64 ts;
1204 	int err;
1205 
1206 	if (!kc)
1207 		return -EINVAL;
1208 
1209 	err = kc->clock_getres(which_clock, &ts);
1210 	if (!err && tp && put_old_timespec32(&ts, tp))
1211 		return -EFAULT;
1212 
1213 	return err;
1214 }
1215 
1216 #endif
1217 
1218 /*
1219  * nanosleep for monotonic and realtime clocks
1220  */
1221 static int common_nsleep(const clockid_t which_clock, int flags,
1222 			 const struct timespec64 *rqtp)
1223 {
1224 	ktime_t texp = timespec64_to_ktime(*rqtp);
1225 
1226 	return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ?
1227 				 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1228 				 which_clock);
1229 }
1230 
1231 static int common_nsleep_timens(const clockid_t which_clock, int flags,
1232 			 const struct timespec64 *rqtp)
1233 {
1234 	ktime_t texp = timespec64_to_ktime(*rqtp);
1235 
1236 	if (flags & TIMER_ABSTIME)
1237 		texp = timens_ktime_to_host(which_clock, texp);
1238 
1239 	return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ?
1240 				 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1241 				 which_clock);
1242 }
1243 
1244 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1245 		const struct __kernel_timespec __user *, rqtp,
1246 		struct __kernel_timespec __user *, rmtp)
1247 {
1248 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1249 	struct timespec64 t;
1250 
1251 	if (!kc)
1252 		return -EINVAL;
1253 	if (!kc->nsleep)
1254 		return -EOPNOTSUPP;
1255 
1256 	if (get_timespec64(&t, rqtp))
1257 		return -EFAULT;
1258 
1259 	if (!timespec64_valid(&t))
1260 		return -EINVAL;
1261 	if (flags & TIMER_ABSTIME)
1262 		rmtp = NULL;
1263 	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1264 	current->restart_block.nanosleep.rmtp = rmtp;
1265 
1266 	return kc->nsleep(which_clock, flags, &t);
1267 }
1268 
1269 #ifdef CONFIG_COMPAT_32BIT_TIME
1270 
1271 SYSCALL_DEFINE4(clock_nanosleep_time32, clockid_t, which_clock, int, flags,
1272 		struct old_timespec32 __user *, rqtp,
1273 		struct old_timespec32 __user *, rmtp)
1274 {
1275 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1276 	struct timespec64 t;
1277 
1278 	if (!kc)
1279 		return -EINVAL;
1280 	if (!kc->nsleep)
1281 		return -EOPNOTSUPP;
1282 
1283 	if (get_old_timespec32(&t, rqtp))
1284 		return -EFAULT;
1285 
1286 	if (!timespec64_valid(&t))
1287 		return -EINVAL;
1288 	if (flags & TIMER_ABSTIME)
1289 		rmtp = NULL;
1290 	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1291 	current->restart_block.nanosleep.compat_rmtp = rmtp;
1292 
1293 	return kc->nsleep(which_clock, flags, &t);
1294 }
1295 
1296 #endif
1297 
1298 static const struct k_clock clock_realtime = {
1299 	.clock_getres		= posix_get_hrtimer_res,
1300 	.clock_get_timespec	= posix_get_realtime_timespec,
1301 	.clock_get_ktime	= posix_get_realtime_ktime,
1302 	.clock_set		= posix_clock_realtime_set,
1303 	.clock_adj		= posix_clock_realtime_adj,
1304 	.nsleep			= common_nsleep,
1305 	.timer_create		= common_timer_create,
1306 	.timer_set		= common_timer_set,
1307 	.timer_get		= common_timer_get,
1308 	.timer_del		= common_timer_del,
1309 	.timer_rearm		= common_hrtimer_rearm,
1310 	.timer_forward		= common_hrtimer_forward,
1311 	.timer_remaining	= common_hrtimer_remaining,
1312 	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1313 	.timer_wait_running	= common_timer_wait_running,
1314 	.timer_arm		= common_hrtimer_arm,
1315 };
1316 
1317 static const struct k_clock clock_monotonic = {
1318 	.clock_getres		= posix_get_hrtimer_res,
1319 	.clock_get_timespec	= posix_get_monotonic_timespec,
1320 	.clock_get_ktime	= posix_get_monotonic_ktime,
1321 	.nsleep			= common_nsleep_timens,
1322 	.timer_create		= common_timer_create,
1323 	.timer_set		= common_timer_set,
1324 	.timer_get		= common_timer_get,
1325 	.timer_del		= common_timer_del,
1326 	.timer_rearm		= common_hrtimer_rearm,
1327 	.timer_forward		= common_hrtimer_forward,
1328 	.timer_remaining	= common_hrtimer_remaining,
1329 	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1330 	.timer_wait_running	= common_timer_wait_running,
1331 	.timer_arm		= common_hrtimer_arm,
1332 };
1333 
1334 static const struct k_clock clock_monotonic_raw = {
1335 	.clock_getres		= posix_get_hrtimer_res,
1336 	.clock_get_timespec	= posix_get_monotonic_raw,
1337 };
1338 
1339 static const struct k_clock clock_realtime_coarse = {
1340 	.clock_getres		= posix_get_coarse_res,
1341 	.clock_get_timespec	= posix_get_realtime_coarse,
1342 };
1343 
1344 static const struct k_clock clock_monotonic_coarse = {
1345 	.clock_getres		= posix_get_coarse_res,
1346 	.clock_get_timespec	= posix_get_monotonic_coarse,
1347 };
1348 
1349 static const struct k_clock clock_tai = {
1350 	.clock_getres		= posix_get_hrtimer_res,
1351 	.clock_get_ktime	= posix_get_tai_ktime,
1352 	.clock_get_timespec	= posix_get_tai_timespec,
1353 	.nsleep			= common_nsleep,
1354 	.timer_create		= common_timer_create,
1355 	.timer_set		= common_timer_set,
1356 	.timer_get		= common_timer_get,
1357 	.timer_del		= common_timer_del,
1358 	.timer_rearm		= common_hrtimer_rearm,
1359 	.timer_forward		= common_hrtimer_forward,
1360 	.timer_remaining	= common_hrtimer_remaining,
1361 	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1362 	.timer_wait_running	= common_timer_wait_running,
1363 	.timer_arm		= common_hrtimer_arm,
1364 };
1365 
1366 static const struct k_clock clock_boottime = {
1367 	.clock_getres		= posix_get_hrtimer_res,
1368 	.clock_get_ktime	= posix_get_boottime_ktime,
1369 	.clock_get_timespec	= posix_get_boottime_timespec,
1370 	.nsleep			= common_nsleep_timens,
1371 	.timer_create		= common_timer_create,
1372 	.timer_set		= common_timer_set,
1373 	.timer_get		= common_timer_get,
1374 	.timer_del		= common_timer_del,
1375 	.timer_rearm		= common_hrtimer_rearm,
1376 	.timer_forward		= common_hrtimer_forward,
1377 	.timer_remaining	= common_hrtimer_remaining,
1378 	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1379 	.timer_wait_running	= common_timer_wait_running,
1380 	.timer_arm		= common_hrtimer_arm,
1381 };
1382 
1383 static const struct k_clock * const posix_clocks[] = {
1384 	[CLOCK_REALTIME]		= &clock_realtime,
1385 	[CLOCK_MONOTONIC]		= &clock_monotonic,
1386 	[CLOCK_PROCESS_CPUTIME_ID]	= &clock_process,
1387 	[CLOCK_THREAD_CPUTIME_ID]	= &clock_thread,
1388 	[CLOCK_MONOTONIC_RAW]		= &clock_monotonic_raw,
1389 	[CLOCK_REALTIME_COARSE]		= &clock_realtime_coarse,
1390 	[CLOCK_MONOTONIC_COARSE]	= &clock_monotonic_coarse,
1391 	[CLOCK_BOOTTIME]		= &clock_boottime,
1392 	[CLOCK_REALTIME_ALARM]		= &alarm_clock,
1393 	[CLOCK_BOOTTIME_ALARM]		= &alarm_clock,
1394 	[CLOCK_TAI]			= &clock_tai,
1395 };
1396 
1397 static const struct k_clock *clockid_to_kclock(const clockid_t id)
1398 {
1399 	clockid_t idx = id;
1400 
1401 	if (id < 0) {
1402 		return (id & CLOCKFD_MASK) == CLOCKFD ?
1403 			&clock_posix_dynamic : &clock_posix_cpu;
1404 	}
1405 
1406 	if (id >= ARRAY_SIZE(posix_clocks))
1407 		return NULL;
1408 
1409 	return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
1410 }
1411