xref: /openbmc/linux/kernel/time/posix-timers.c (revision 7f2e85840871f199057e65232ebde846192ed989)
1 /*
2  * linux/kernel/posix-timers.c
3  *
4  *
5  * 2002-10-15  Posix Clocks & timers
6  *                           by George Anzinger george@mvista.com
7  *
8  *			     Copyright (C) 2002 2003 by MontaVista Software.
9  *
10  * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11  *			     Copyright (C) 2004 Boris Hu
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or (at
16  * your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful, but
19  * WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21  * General Public License for more details.
22 
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26  *
27  * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28  */
29 
30 /* These are all the functions necessary to implement
31  * POSIX clocks & timers
32  */
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/slab.h>
36 #include <linux/time.h>
37 #include <linux/mutex.h>
38 #include <linux/sched/task.h>
39 
40 #include <linux/uaccess.h>
41 #include <linux/list.h>
42 #include <linux/init.h>
43 #include <linux/compiler.h>
44 #include <linux/hash.h>
45 #include <linux/posix-clock.h>
46 #include <linux/posix-timers.h>
47 #include <linux/syscalls.h>
48 #include <linux/wait.h>
49 #include <linux/workqueue.h>
50 #include <linux/export.h>
51 #include <linux/hashtable.h>
52 #include <linux/compat.h>
53 
54 #include "timekeeping.h"
55 #include "posix-timers.h"
56 
57 /*
58  * Management arrays for POSIX timers. Timers are now kept in static hash table
59  * with 512 entries.
60  * Timer ids are allocated by local routine, which selects proper hash head by
61  * key, constructed from current->signal address and per signal struct counter.
62  * This keeps timer ids unique per process, but now they can intersect between
63  * processes.
64  */
65 
66 /*
67  * Lets keep our timers in a slab cache :-)
68  */
69 static struct kmem_cache *posix_timers_cache;
70 
71 static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
72 static DEFINE_SPINLOCK(hash_lock);
73 
74 static const struct k_clock * const posix_clocks[];
75 static const struct k_clock *clockid_to_kclock(const clockid_t id);
76 static const struct k_clock clock_realtime, clock_monotonic;
77 
78 /*
79  * we assume that the new SIGEV_THREAD_ID shares no bits with the other
80  * SIGEV values.  Here we put out an error if this assumption fails.
81  */
82 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
83                        ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
84 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
85 #endif
86 
87 /*
88  * parisc wants ENOTSUP instead of EOPNOTSUPP
89  */
90 #ifndef ENOTSUP
91 # define ENANOSLEEP_NOTSUP EOPNOTSUPP
92 #else
93 # define ENANOSLEEP_NOTSUP ENOTSUP
94 #endif
95 
96 /*
97  * The timer ID is turned into a timer address by idr_find().
98  * Verifying a valid ID consists of:
99  *
100  * a) checking that idr_find() returns other than -1.
101  * b) checking that the timer id matches the one in the timer itself.
102  * c) that the timer owner is in the callers thread group.
103  */
104 
105 /*
106  * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
107  *	    to implement others.  This structure defines the various
108  *	    clocks.
109  *
110  * RESOLUTION: Clock resolution is used to round up timer and interval
111  *	    times, NOT to report clock times, which are reported with as
112  *	    much resolution as the system can muster.  In some cases this
113  *	    resolution may depend on the underlying clock hardware and
114  *	    may not be quantifiable until run time, and only then is the
115  *	    necessary code is written.	The standard says we should say
116  *	    something about this issue in the documentation...
117  *
118  * FUNCTIONS: The CLOCKs structure defines possible functions to
119  *	    handle various clock functions.
120  *
121  *	    The standard POSIX timer management code assumes the
122  *	    following: 1.) The k_itimer struct (sched.h) is used for
123  *	    the timer.  2.) The list, it_lock, it_clock, it_id and
124  *	    it_pid fields are not modified by timer code.
125  *
126  * Permissions: It is assumed that the clock_settime() function defined
127  *	    for each clock will take care of permission checks.	 Some
128  *	    clocks may be set able by any user (i.e. local process
129  *	    clocks) others not.	 Currently the only set able clock we
130  *	    have is CLOCK_REALTIME and its high res counter part, both of
131  *	    which we beg off on and pass to do_sys_settimeofday().
132  */
133 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
134 
135 #define lock_timer(tid, flags)						   \
136 ({	struct k_itimer *__timr;					   \
137 	__cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags));  \
138 	__timr;								   \
139 })
140 
141 static int hash(struct signal_struct *sig, unsigned int nr)
142 {
143 	return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
144 }
145 
146 static struct k_itimer *__posix_timers_find(struct hlist_head *head,
147 					    struct signal_struct *sig,
148 					    timer_t id)
149 {
150 	struct k_itimer *timer;
151 
152 	hlist_for_each_entry_rcu(timer, head, t_hash) {
153 		if ((timer->it_signal == sig) && (timer->it_id == id))
154 			return timer;
155 	}
156 	return NULL;
157 }
158 
159 static struct k_itimer *posix_timer_by_id(timer_t id)
160 {
161 	struct signal_struct *sig = current->signal;
162 	struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
163 
164 	return __posix_timers_find(head, sig, id);
165 }
166 
167 static int posix_timer_add(struct k_itimer *timer)
168 {
169 	struct signal_struct *sig = current->signal;
170 	int first_free_id = sig->posix_timer_id;
171 	struct hlist_head *head;
172 	int ret = -ENOENT;
173 
174 	do {
175 		spin_lock(&hash_lock);
176 		head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
177 		if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
178 			hlist_add_head_rcu(&timer->t_hash, head);
179 			ret = sig->posix_timer_id;
180 		}
181 		if (++sig->posix_timer_id < 0)
182 			sig->posix_timer_id = 0;
183 		if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
184 			/* Loop over all possible ids completed */
185 			ret = -EAGAIN;
186 		spin_unlock(&hash_lock);
187 	} while (ret == -ENOENT);
188 	return ret;
189 }
190 
191 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
192 {
193 	spin_unlock_irqrestore(&timr->it_lock, flags);
194 }
195 
196 /* Get clock_realtime */
197 static int posix_clock_realtime_get(clockid_t which_clock, struct timespec64 *tp)
198 {
199 	ktime_get_real_ts64(tp);
200 	return 0;
201 }
202 
203 /* Set clock_realtime */
204 static int posix_clock_realtime_set(const clockid_t which_clock,
205 				    const struct timespec64 *tp)
206 {
207 	return do_sys_settimeofday64(tp, NULL);
208 }
209 
210 static int posix_clock_realtime_adj(const clockid_t which_clock,
211 				    struct timex *t)
212 {
213 	return do_adjtimex(t);
214 }
215 
216 /*
217  * Get monotonic time for posix timers
218  */
219 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec64 *tp)
220 {
221 	ktime_get_ts64(tp);
222 	return 0;
223 }
224 
225 /*
226  * Get monotonic-raw time for posix timers
227  */
228 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
229 {
230 	getrawmonotonic64(tp);
231 	return 0;
232 }
233 
234 
235 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
236 {
237 	*tp = current_kernel_time64();
238 	return 0;
239 }
240 
241 static int posix_get_monotonic_coarse(clockid_t which_clock,
242 						struct timespec64 *tp)
243 {
244 	*tp = get_monotonic_coarse64();
245 	return 0;
246 }
247 
248 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
249 {
250 	*tp = ktime_to_timespec64(KTIME_LOW_RES);
251 	return 0;
252 }
253 
254 static int posix_get_boottime(const clockid_t which_clock, struct timespec64 *tp)
255 {
256 	get_monotonic_boottime64(tp);
257 	return 0;
258 }
259 
260 static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp)
261 {
262 	timekeeping_clocktai64(tp);
263 	return 0;
264 }
265 
266 static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
267 {
268 	tp->tv_sec = 0;
269 	tp->tv_nsec = hrtimer_resolution;
270 	return 0;
271 }
272 
273 /*
274  * Initialize everything, well, just everything in Posix clocks/timers ;)
275  */
276 static __init int init_posix_timers(void)
277 {
278 	posix_timers_cache = kmem_cache_create("posix_timers_cache",
279 					sizeof (struct k_itimer), 0, SLAB_PANIC,
280 					NULL);
281 	return 0;
282 }
283 __initcall(init_posix_timers);
284 
285 static void common_hrtimer_rearm(struct k_itimer *timr)
286 {
287 	struct hrtimer *timer = &timr->it.real.timer;
288 
289 	if (!timr->it_interval)
290 		return;
291 
292 	timr->it_overrun += (unsigned int) hrtimer_forward(timer,
293 						timer->base->get_time(),
294 						timr->it_interval);
295 	hrtimer_restart(timer);
296 }
297 
298 /*
299  * This function is exported for use by the signal deliver code.  It is
300  * called just prior to the info block being released and passes that
301  * block to us.  It's function is to update the overrun entry AND to
302  * restart the timer.  It should only be called if the timer is to be
303  * restarted (i.e. we have flagged this in the sys_private entry of the
304  * info block).
305  *
306  * To protect against the timer going away while the interrupt is queued,
307  * we require that the it_requeue_pending flag be set.
308  */
309 void posixtimer_rearm(struct siginfo *info)
310 {
311 	struct k_itimer *timr;
312 	unsigned long flags;
313 
314 	timr = lock_timer(info->si_tid, &flags);
315 	if (!timr)
316 		return;
317 
318 	if (timr->it_requeue_pending == info->si_sys_private) {
319 		timr->kclock->timer_rearm(timr);
320 
321 		timr->it_active = 1;
322 		timr->it_overrun_last = timr->it_overrun;
323 		timr->it_overrun = -1;
324 		++timr->it_requeue_pending;
325 
326 		info->si_overrun += timr->it_overrun_last;
327 	}
328 
329 	unlock_timer(timr, flags);
330 }
331 
332 int posix_timer_event(struct k_itimer *timr, int si_private)
333 {
334 	struct task_struct *task;
335 	int shared, ret = -1;
336 	/*
337 	 * FIXME: if ->sigq is queued we can race with
338 	 * dequeue_signal()->posixtimer_rearm().
339 	 *
340 	 * If dequeue_signal() sees the "right" value of
341 	 * si_sys_private it calls posixtimer_rearm().
342 	 * We re-queue ->sigq and drop ->it_lock().
343 	 * posixtimer_rearm() locks the timer
344 	 * and re-schedules it while ->sigq is pending.
345 	 * Not really bad, but not that we want.
346 	 */
347 	timr->sigq->info.si_sys_private = si_private;
348 
349 	rcu_read_lock();
350 	task = pid_task(timr->it_pid, PIDTYPE_PID);
351 	if (task) {
352 		shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
353 		ret = send_sigqueue(timr->sigq, task, shared);
354 	}
355 	rcu_read_unlock();
356 	/* If we failed to send the signal the timer stops. */
357 	return ret > 0;
358 }
359 
360 /*
361  * This function gets called when a POSIX.1b interval timer expires.  It
362  * is used as a callback from the kernel internal timer.  The
363  * run_timer_list code ALWAYS calls with interrupts on.
364 
365  * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
366  */
367 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
368 {
369 	struct k_itimer *timr;
370 	unsigned long flags;
371 	int si_private = 0;
372 	enum hrtimer_restart ret = HRTIMER_NORESTART;
373 
374 	timr = container_of(timer, struct k_itimer, it.real.timer);
375 	spin_lock_irqsave(&timr->it_lock, flags);
376 
377 	timr->it_active = 0;
378 	if (timr->it_interval != 0)
379 		si_private = ++timr->it_requeue_pending;
380 
381 	if (posix_timer_event(timr, si_private)) {
382 		/*
383 		 * signal was not sent because of sig_ignor
384 		 * we will not get a call back to restart it AND
385 		 * it should be restarted.
386 		 */
387 		if (timr->it_interval != 0) {
388 			ktime_t now = hrtimer_cb_get_time(timer);
389 
390 			/*
391 			 * FIXME: What we really want, is to stop this
392 			 * timer completely and restart it in case the
393 			 * SIG_IGN is removed. This is a non trivial
394 			 * change which involves sighand locking
395 			 * (sigh !), which we don't want to do late in
396 			 * the release cycle.
397 			 *
398 			 * For now we just let timers with an interval
399 			 * less than a jiffie expire every jiffie to
400 			 * avoid softirq starvation in case of SIG_IGN
401 			 * and a very small interval, which would put
402 			 * the timer right back on the softirq pending
403 			 * list. By moving now ahead of time we trick
404 			 * hrtimer_forward() to expire the timer
405 			 * later, while we still maintain the overrun
406 			 * accuracy, but have some inconsistency in
407 			 * the timer_gettime() case. This is at least
408 			 * better than a starved softirq. A more
409 			 * complex fix which solves also another related
410 			 * inconsistency is already in the pipeline.
411 			 */
412 #ifdef CONFIG_HIGH_RES_TIMERS
413 			{
414 				ktime_t kj = NSEC_PER_SEC / HZ;
415 
416 				if (timr->it_interval < kj)
417 					now = ktime_add(now, kj);
418 			}
419 #endif
420 			timr->it_overrun += (unsigned int)
421 				hrtimer_forward(timer, now,
422 						timr->it_interval);
423 			ret = HRTIMER_RESTART;
424 			++timr->it_requeue_pending;
425 			timr->it_active = 1;
426 		}
427 	}
428 
429 	unlock_timer(timr, flags);
430 	return ret;
431 }
432 
433 static struct pid *good_sigevent(sigevent_t * event)
434 {
435 	struct task_struct *rtn = current->group_leader;
436 
437 	switch (event->sigev_notify) {
438 	case SIGEV_SIGNAL | SIGEV_THREAD_ID:
439 		rtn = find_task_by_vpid(event->sigev_notify_thread_id);
440 		if (!rtn || !same_thread_group(rtn, current))
441 			return NULL;
442 		/* FALLTHRU */
443 	case SIGEV_SIGNAL:
444 	case SIGEV_THREAD:
445 		if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
446 			return NULL;
447 		/* FALLTHRU */
448 	case SIGEV_NONE:
449 		return task_pid(rtn);
450 	default:
451 		return NULL;
452 	}
453 }
454 
455 static struct k_itimer * alloc_posix_timer(void)
456 {
457 	struct k_itimer *tmr;
458 	tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
459 	if (!tmr)
460 		return tmr;
461 	if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
462 		kmem_cache_free(posix_timers_cache, tmr);
463 		return NULL;
464 	}
465 	clear_siginfo(&tmr->sigq->info);
466 	return tmr;
467 }
468 
469 static void k_itimer_rcu_free(struct rcu_head *head)
470 {
471 	struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);
472 
473 	kmem_cache_free(posix_timers_cache, tmr);
474 }
475 
476 #define IT_ID_SET	1
477 #define IT_ID_NOT_SET	0
478 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
479 {
480 	if (it_id_set) {
481 		unsigned long flags;
482 		spin_lock_irqsave(&hash_lock, flags);
483 		hlist_del_rcu(&tmr->t_hash);
484 		spin_unlock_irqrestore(&hash_lock, flags);
485 	}
486 	put_pid(tmr->it_pid);
487 	sigqueue_free(tmr->sigq);
488 	call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
489 }
490 
491 static int common_timer_create(struct k_itimer *new_timer)
492 {
493 	hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
494 	return 0;
495 }
496 
497 /* Create a POSIX.1b interval timer. */
498 static int do_timer_create(clockid_t which_clock, struct sigevent *event,
499 			   timer_t __user *created_timer_id)
500 {
501 	const struct k_clock *kc = clockid_to_kclock(which_clock);
502 	struct k_itimer *new_timer;
503 	int error, new_timer_id;
504 	int it_id_set = IT_ID_NOT_SET;
505 
506 	if (!kc)
507 		return -EINVAL;
508 	if (!kc->timer_create)
509 		return -EOPNOTSUPP;
510 
511 	new_timer = alloc_posix_timer();
512 	if (unlikely(!new_timer))
513 		return -EAGAIN;
514 
515 	spin_lock_init(&new_timer->it_lock);
516 	new_timer_id = posix_timer_add(new_timer);
517 	if (new_timer_id < 0) {
518 		error = new_timer_id;
519 		goto out;
520 	}
521 
522 	it_id_set = IT_ID_SET;
523 	new_timer->it_id = (timer_t) new_timer_id;
524 	new_timer->it_clock = which_clock;
525 	new_timer->kclock = kc;
526 	new_timer->it_overrun = -1;
527 
528 	if (event) {
529 		rcu_read_lock();
530 		new_timer->it_pid = get_pid(good_sigevent(event));
531 		rcu_read_unlock();
532 		if (!new_timer->it_pid) {
533 			error = -EINVAL;
534 			goto out;
535 		}
536 		new_timer->it_sigev_notify     = event->sigev_notify;
537 		new_timer->sigq->info.si_signo = event->sigev_signo;
538 		new_timer->sigq->info.si_value = event->sigev_value;
539 	} else {
540 		new_timer->it_sigev_notify     = SIGEV_SIGNAL;
541 		new_timer->sigq->info.si_signo = SIGALRM;
542 		memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
543 		new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
544 		new_timer->it_pid = get_pid(task_tgid(current));
545 	}
546 
547 	new_timer->sigq->info.si_tid   = new_timer->it_id;
548 	new_timer->sigq->info.si_code  = SI_TIMER;
549 
550 	if (copy_to_user(created_timer_id,
551 			 &new_timer_id, sizeof (new_timer_id))) {
552 		error = -EFAULT;
553 		goto out;
554 	}
555 
556 	error = kc->timer_create(new_timer);
557 	if (error)
558 		goto out;
559 
560 	spin_lock_irq(&current->sighand->siglock);
561 	new_timer->it_signal = current->signal;
562 	list_add(&new_timer->list, &current->signal->posix_timers);
563 	spin_unlock_irq(&current->sighand->siglock);
564 
565 	return 0;
566 	/*
567 	 * In the case of the timer belonging to another task, after
568 	 * the task is unlocked, the timer is owned by the other task
569 	 * and may cease to exist at any time.  Don't use or modify
570 	 * new_timer after the unlock call.
571 	 */
572 out:
573 	release_posix_timer(new_timer, it_id_set);
574 	return error;
575 }
576 
577 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
578 		struct sigevent __user *, timer_event_spec,
579 		timer_t __user *, created_timer_id)
580 {
581 	if (timer_event_spec) {
582 		sigevent_t event;
583 
584 		if (copy_from_user(&event, timer_event_spec, sizeof (event)))
585 			return -EFAULT;
586 		return do_timer_create(which_clock, &event, created_timer_id);
587 	}
588 	return do_timer_create(which_clock, NULL, created_timer_id);
589 }
590 
591 #ifdef CONFIG_COMPAT
592 COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
593 		       struct compat_sigevent __user *, timer_event_spec,
594 		       timer_t __user *, created_timer_id)
595 {
596 	if (timer_event_spec) {
597 		sigevent_t event;
598 
599 		if (get_compat_sigevent(&event, timer_event_spec))
600 			return -EFAULT;
601 		return do_timer_create(which_clock, &event, created_timer_id);
602 	}
603 	return do_timer_create(which_clock, NULL, created_timer_id);
604 }
605 #endif
606 
607 /*
608  * Locking issues: We need to protect the result of the id look up until
609  * we get the timer locked down so it is not deleted under us.  The
610  * removal is done under the idr spinlock so we use that here to bridge
611  * the find to the timer lock.  To avoid a dead lock, the timer id MUST
612  * be release with out holding the timer lock.
613  */
614 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
615 {
616 	struct k_itimer *timr;
617 
618 	/*
619 	 * timer_t could be any type >= int and we want to make sure any
620 	 * @timer_id outside positive int range fails lookup.
621 	 */
622 	if ((unsigned long long)timer_id > INT_MAX)
623 		return NULL;
624 
625 	rcu_read_lock();
626 	timr = posix_timer_by_id(timer_id);
627 	if (timr) {
628 		spin_lock_irqsave(&timr->it_lock, *flags);
629 		if (timr->it_signal == current->signal) {
630 			rcu_read_unlock();
631 			return timr;
632 		}
633 		spin_unlock_irqrestore(&timr->it_lock, *flags);
634 	}
635 	rcu_read_unlock();
636 
637 	return NULL;
638 }
639 
640 static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
641 {
642 	struct hrtimer *timer = &timr->it.real.timer;
643 
644 	return __hrtimer_expires_remaining_adjusted(timer, now);
645 }
646 
647 static int common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
648 {
649 	struct hrtimer *timer = &timr->it.real.timer;
650 
651 	return (int)hrtimer_forward(timer, now, timr->it_interval);
652 }
653 
654 /*
655  * Get the time remaining on a POSIX.1b interval timer.  This function
656  * is ALWAYS called with spin_lock_irq on the timer, thus it must not
657  * mess with irq.
658  *
659  * We have a couple of messes to clean up here.  First there is the case
660  * of a timer that has a requeue pending.  These timers should appear to
661  * be in the timer list with an expiry as if we were to requeue them
662  * now.
663  *
664  * The second issue is the SIGEV_NONE timer which may be active but is
665  * not really ever put in the timer list (to save system resources).
666  * This timer may be expired, and if so, we will do it here.  Otherwise
667  * it is the same as a requeue pending timer WRT to what we should
668  * report.
669  */
670 void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
671 {
672 	const struct k_clock *kc = timr->kclock;
673 	ktime_t now, remaining, iv;
674 	struct timespec64 ts64;
675 	bool sig_none;
676 
677 	sig_none = timr->it_sigev_notify == SIGEV_NONE;
678 	iv = timr->it_interval;
679 
680 	/* interval timer ? */
681 	if (iv) {
682 		cur_setting->it_interval = ktime_to_timespec64(iv);
683 	} else if (!timr->it_active) {
684 		/*
685 		 * SIGEV_NONE oneshot timers are never queued. Check them
686 		 * below.
687 		 */
688 		if (!sig_none)
689 			return;
690 	}
691 
692 	/*
693 	 * The timespec64 based conversion is suboptimal, but it's not
694 	 * worth to implement yet another callback.
695 	 */
696 	kc->clock_get(timr->it_clock, &ts64);
697 	now = timespec64_to_ktime(ts64);
698 
699 	/*
700 	 * When a requeue is pending or this is a SIGEV_NONE timer move the
701 	 * expiry time forward by intervals, so expiry is > now.
702 	 */
703 	if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
704 		timr->it_overrun += kc->timer_forward(timr, now);
705 
706 	remaining = kc->timer_remaining(timr, now);
707 	/* Return 0 only, when the timer is expired and not pending */
708 	if (remaining <= 0) {
709 		/*
710 		 * A single shot SIGEV_NONE timer must return 0, when
711 		 * it is expired !
712 		 */
713 		if (!sig_none)
714 			cur_setting->it_value.tv_nsec = 1;
715 	} else {
716 		cur_setting->it_value = ktime_to_timespec64(remaining);
717 	}
718 }
719 
720 /* Get the time remaining on a POSIX.1b interval timer. */
721 static int do_timer_gettime(timer_t timer_id,  struct itimerspec64 *setting)
722 {
723 	struct k_itimer *timr;
724 	const struct k_clock *kc;
725 	unsigned long flags;
726 	int ret = 0;
727 
728 	timr = lock_timer(timer_id, &flags);
729 	if (!timr)
730 		return -EINVAL;
731 
732 	memset(setting, 0, sizeof(*setting));
733 	kc = timr->kclock;
734 	if (WARN_ON_ONCE(!kc || !kc->timer_get))
735 		ret = -EINVAL;
736 	else
737 		kc->timer_get(timr, setting);
738 
739 	unlock_timer(timr, flags);
740 	return ret;
741 }
742 
743 /* Get the time remaining on a POSIX.1b interval timer. */
744 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
745 		struct itimerspec __user *, setting)
746 {
747 	struct itimerspec64 cur_setting;
748 
749 	int ret = do_timer_gettime(timer_id, &cur_setting);
750 	if (!ret) {
751 		if (put_itimerspec64(&cur_setting, setting))
752 			ret = -EFAULT;
753 	}
754 	return ret;
755 }
756 
757 #ifdef CONFIG_COMPAT
758 COMPAT_SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
759 		       struct compat_itimerspec __user *, setting)
760 {
761 	struct itimerspec64 cur_setting;
762 
763 	int ret = do_timer_gettime(timer_id, &cur_setting);
764 	if (!ret) {
765 		if (put_compat_itimerspec64(&cur_setting, setting))
766 			ret = -EFAULT;
767 	}
768 	return ret;
769 }
770 #endif
771 
772 /*
773  * Get the number of overruns of a POSIX.1b interval timer.  This is to
774  * be the overrun of the timer last delivered.  At the same time we are
775  * accumulating overruns on the next timer.  The overrun is frozen when
776  * the signal is delivered, either at the notify time (if the info block
777  * is not queued) or at the actual delivery time (as we are informed by
778  * the call back to posixtimer_rearm().  So all we need to do is
779  * to pick up the frozen overrun.
780  */
781 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
782 {
783 	struct k_itimer *timr;
784 	int overrun;
785 	unsigned long flags;
786 
787 	timr = lock_timer(timer_id, &flags);
788 	if (!timr)
789 		return -EINVAL;
790 
791 	overrun = timr->it_overrun_last;
792 	unlock_timer(timr, flags);
793 
794 	return overrun;
795 }
796 
797 static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
798 			       bool absolute, bool sigev_none)
799 {
800 	struct hrtimer *timer = &timr->it.real.timer;
801 	enum hrtimer_mode mode;
802 
803 	mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
804 	/*
805 	 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
806 	 * clock modifications, so they become CLOCK_MONOTONIC based under the
807 	 * hood. See hrtimer_init(). Update timr->kclock, so the generic
808 	 * functions which use timr->kclock->clock_get() work.
809 	 *
810 	 * Note: it_clock stays unmodified, because the next timer_set() might
811 	 * use ABSTIME, so it needs to switch back.
812 	 */
813 	if (timr->it_clock == CLOCK_REALTIME)
814 		timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
815 
816 	hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
817 	timr->it.real.timer.function = posix_timer_fn;
818 
819 	if (!absolute)
820 		expires = ktime_add_safe(expires, timer->base->get_time());
821 	hrtimer_set_expires(timer, expires);
822 
823 	if (!sigev_none)
824 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
825 }
826 
827 static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
828 {
829 	return hrtimer_try_to_cancel(&timr->it.real.timer);
830 }
831 
832 /* Set a POSIX.1b interval timer. */
833 int common_timer_set(struct k_itimer *timr, int flags,
834 		     struct itimerspec64 *new_setting,
835 		     struct itimerspec64 *old_setting)
836 {
837 	const struct k_clock *kc = timr->kclock;
838 	bool sigev_none;
839 	ktime_t expires;
840 
841 	if (old_setting)
842 		common_timer_get(timr, old_setting);
843 
844 	/* Prevent rearming by clearing the interval */
845 	timr->it_interval = 0;
846 	/*
847 	 * Careful here. On SMP systems the timer expiry function could be
848 	 * active and spinning on timr->it_lock.
849 	 */
850 	if (kc->timer_try_to_cancel(timr) < 0)
851 		return TIMER_RETRY;
852 
853 	timr->it_active = 0;
854 	timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
855 		~REQUEUE_PENDING;
856 	timr->it_overrun_last = 0;
857 
858 	/* Switch off the timer when it_value is zero */
859 	if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
860 		return 0;
861 
862 	timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
863 	expires = timespec64_to_ktime(new_setting->it_value);
864 	sigev_none = timr->it_sigev_notify == SIGEV_NONE;
865 
866 	kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
867 	timr->it_active = !sigev_none;
868 	return 0;
869 }
870 
871 static int do_timer_settime(timer_t timer_id, int flags,
872 			    struct itimerspec64 *new_spec64,
873 			    struct itimerspec64 *old_spec64)
874 {
875 	const struct k_clock *kc;
876 	struct k_itimer *timr;
877 	unsigned long flag;
878 	int error = 0;
879 
880 	if (!timespec64_valid(&new_spec64->it_interval) ||
881 	    !timespec64_valid(&new_spec64->it_value))
882 		return -EINVAL;
883 
884 	if (old_spec64)
885 		memset(old_spec64, 0, sizeof(*old_spec64));
886 retry:
887 	timr = lock_timer(timer_id, &flag);
888 	if (!timr)
889 		return -EINVAL;
890 
891 	kc = timr->kclock;
892 	if (WARN_ON_ONCE(!kc || !kc->timer_set))
893 		error = -EINVAL;
894 	else
895 		error = kc->timer_set(timr, flags, new_spec64, old_spec64);
896 
897 	unlock_timer(timr, flag);
898 	if (error == TIMER_RETRY) {
899 		old_spec64 = NULL;	// We already got the old time...
900 		goto retry;
901 	}
902 
903 	return error;
904 }
905 
906 /* Set a POSIX.1b interval timer */
907 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
908 		const struct itimerspec __user *, new_setting,
909 		struct itimerspec __user *, old_setting)
910 {
911 	struct itimerspec64 new_spec, old_spec;
912 	struct itimerspec64 *rtn = old_setting ? &old_spec : NULL;
913 	int error = 0;
914 
915 	if (!new_setting)
916 		return -EINVAL;
917 
918 	if (get_itimerspec64(&new_spec, new_setting))
919 		return -EFAULT;
920 
921 	error = do_timer_settime(timer_id, flags, &new_spec, rtn);
922 	if (!error && old_setting) {
923 		if (put_itimerspec64(&old_spec, old_setting))
924 			error = -EFAULT;
925 	}
926 	return error;
927 }
928 
929 #ifdef CONFIG_COMPAT
930 COMPAT_SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
931 		       struct compat_itimerspec __user *, new,
932 		       struct compat_itimerspec __user *, old)
933 {
934 	struct itimerspec64 new_spec, old_spec;
935 	struct itimerspec64 *rtn = old ? &old_spec : NULL;
936 	int error = 0;
937 
938 	if (!new)
939 		return -EINVAL;
940 	if (get_compat_itimerspec64(&new_spec, new))
941 		return -EFAULT;
942 
943 	error = do_timer_settime(timer_id, flags, &new_spec, rtn);
944 	if (!error && old) {
945 		if (put_compat_itimerspec64(&old_spec, old))
946 			error = -EFAULT;
947 	}
948 	return error;
949 }
950 #endif
951 
952 int common_timer_del(struct k_itimer *timer)
953 {
954 	const struct k_clock *kc = timer->kclock;
955 
956 	timer->it_interval = 0;
957 	if (kc->timer_try_to_cancel(timer) < 0)
958 		return TIMER_RETRY;
959 	timer->it_active = 0;
960 	return 0;
961 }
962 
963 static inline int timer_delete_hook(struct k_itimer *timer)
964 {
965 	const struct k_clock *kc = timer->kclock;
966 
967 	if (WARN_ON_ONCE(!kc || !kc->timer_del))
968 		return -EINVAL;
969 	return kc->timer_del(timer);
970 }
971 
972 /* Delete a POSIX.1b interval timer. */
973 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
974 {
975 	struct k_itimer *timer;
976 	unsigned long flags;
977 
978 retry_delete:
979 	timer = lock_timer(timer_id, &flags);
980 	if (!timer)
981 		return -EINVAL;
982 
983 	if (timer_delete_hook(timer) == TIMER_RETRY) {
984 		unlock_timer(timer, flags);
985 		goto retry_delete;
986 	}
987 
988 	spin_lock(&current->sighand->siglock);
989 	list_del(&timer->list);
990 	spin_unlock(&current->sighand->siglock);
991 	/*
992 	 * This keeps any tasks waiting on the spin lock from thinking
993 	 * they got something (see the lock code above).
994 	 */
995 	timer->it_signal = NULL;
996 
997 	unlock_timer(timer, flags);
998 	release_posix_timer(timer, IT_ID_SET);
999 	return 0;
1000 }
1001 
1002 /*
1003  * return timer owned by the process, used by exit_itimers
1004  */
1005 static void itimer_delete(struct k_itimer *timer)
1006 {
1007 	unsigned long flags;
1008 
1009 retry_delete:
1010 	spin_lock_irqsave(&timer->it_lock, flags);
1011 
1012 	if (timer_delete_hook(timer) == TIMER_RETRY) {
1013 		unlock_timer(timer, flags);
1014 		goto retry_delete;
1015 	}
1016 	list_del(&timer->list);
1017 	/*
1018 	 * This keeps any tasks waiting on the spin lock from thinking
1019 	 * they got something (see the lock code above).
1020 	 */
1021 	timer->it_signal = NULL;
1022 
1023 	unlock_timer(timer, flags);
1024 	release_posix_timer(timer, IT_ID_SET);
1025 }
1026 
1027 /*
1028  * This is called by do_exit or de_thread, only when there are no more
1029  * references to the shared signal_struct.
1030  */
1031 void exit_itimers(struct signal_struct *sig)
1032 {
1033 	struct k_itimer *tmr;
1034 
1035 	while (!list_empty(&sig->posix_timers)) {
1036 		tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
1037 		itimer_delete(tmr);
1038 	}
1039 }
1040 
1041 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1042 		const struct timespec __user *, tp)
1043 {
1044 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1045 	struct timespec64 new_tp;
1046 
1047 	if (!kc || !kc->clock_set)
1048 		return -EINVAL;
1049 
1050 	if (get_timespec64(&new_tp, tp))
1051 		return -EFAULT;
1052 
1053 	return kc->clock_set(which_clock, &new_tp);
1054 }
1055 
1056 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1057 		struct timespec __user *,tp)
1058 {
1059 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1060 	struct timespec64 kernel_tp;
1061 	int error;
1062 
1063 	if (!kc)
1064 		return -EINVAL;
1065 
1066 	error = kc->clock_get(which_clock, &kernel_tp);
1067 
1068 	if (!error && put_timespec64(&kernel_tp, tp))
1069 		error = -EFAULT;
1070 
1071 	return error;
1072 }
1073 
1074 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1075 		struct timex __user *, utx)
1076 {
1077 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1078 	struct timex ktx;
1079 	int err;
1080 
1081 	if (!kc)
1082 		return -EINVAL;
1083 	if (!kc->clock_adj)
1084 		return -EOPNOTSUPP;
1085 
1086 	if (copy_from_user(&ktx, utx, sizeof(ktx)))
1087 		return -EFAULT;
1088 
1089 	err = kc->clock_adj(which_clock, &ktx);
1090 
1091 	if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1092 		return -EFAULT;
1093 
1094 	return err;
1095 }
1096 
1097 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1098 		struct timespec __user *, tp)
1099 {
1100 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1101 	struct timespec64 rtn_tp;
1102 	int error;
1103 
1104 	if (!kc)
1105 		return -EINVAL;
1106 
1107 	error = kc->clock_getres(which_clock, &rtn_tp);
1108 
1109 	if (!error && tp && put_timespec64(&rtn_tp, tp))
1110 		error = -EFAULT;
1111 
1112 	return error;
1113 }
1114 
1115 #ifdef CONFIG_COMPAT
1116 
1117 COMPAT_SYSCALL_DEFINE2(clock_settime, clockid_t, which_clock,
1118 		       struct compat_timespec __user *, tp)
1119 {
1120 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1121 	struct timespec64 ts;
1122 
1123 	if (!kc || !kc->clock_set)
1124 		return -EINVAL;
1125 
1126 	if (compat_get_timespec64(&ts, tp))
1127 		return -EFAULT;
1128 
1129 	return kc->clock_set(which_clock, &ts);
1130 }
1131 
1132 COMPAT_SYSCALL_DEFINE2(clock_gettime, clockid_t, which_clock,
1133 		       struct compat_timespec __user *, tp)
1134 {
1135 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1136 	struct timespec64 ts;
1137 	int err;
1138 
1139 	if (!kc)
1140 		return -EINVAL;
1141 
1142 	err = kc->clock_get(which_clock, &ts);
1143 
1144 	if (!err && compat_put_timespec64(&ts, tp))
1145 		err = -EFAULT;
1146 
1147 	return err;
1148 }
1149 
1150 COMPAT_SYSCALL_DEFINE2(clock_adjtime, clockid_t, which_clock,
1151 		       struct compat_timex __user *, utp)
1152 {
1153 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1154 	struct timex ktx;
1155 	int err;
1156 
1157 	if (!kc)
1158 		return -EINVAL;
1159 	if (!kc->clock_adj)
1160 		return -EOPNOTSUPP;
1161 
1162 	err = compat_get_timex(&ktx, utp);
1163 	if (err)
1164 		return err;
1165 
1166 	err = kc->clock_adj(which_clock, &ktx);
1167 
1168 	if (err >= 0)
1169 		err = compat_put_timex(utp, &ktx);
1170 
1171 	return err;
1172 }
1173 
1174 COMPAT_SYSCALL_DEFINE2(clock_getres, clockid_t, which_clock,
1175 		       struct compat_timespec __user *, tp)
1176 {
1177 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1178 	struct timespec64 ts;
1179 	int err;
1180 
1181 	if (!kc)
1182 		return -EINVAL;
1183 
1184 	err = kc->clock_getres(which_clock, &ts);
1185 	if (!err && tp && compat_put_timespec64(&ts, tp))
1186 		return -EFAULT;
1187 
1188 	return err;
1189 }
1190 
1191 #endif
1192 
1193 /*
1194  * nanosleep for monotonic and realtime clocks
1195  */
1196 static int common_nsleep(const clockid_t which_clock, int flags,
1197 			 const struct timespec64 *rqtp)
1198 {
1199 	return hrtimer_nanosleep(rqtp, flags & TIMER_ABSTIME ?
1200 				 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1201 				 which_clock);
1202 }
1203 
1204 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1205 		const struct timespec __user *, rqtp,
1206 		struct timespec __user *, rmtp)
1207 {
1208 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1209 	struct timespec64 t;
1210 
1211 	if (!kc)
1212 		return -EINVAL;
1213 	if (!kc->nsleep)
1214 		return -ENANOSLEEP_NOTSUP;
1215 
1216 	if (get_timespec64(&t, rqtp))
1217 		return -EFAULT;
1218 
1219 	if (!timespec64_valid(&t))
1220 		return -EINVAL;
1221 	if (flags & TIMER_ABSTIME)
1222 		rmtp = NULL;
1223 	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1224 	current->restart_block.nanosleep.rmtp = rmtp;
1225 
1226 	return kc->nsleep(which_clock, flags, &t);
1227 }
1228 
1229 #ifdef CONFIG_COMPAT
1230 COMPAT_SYSCALL_DEFINE4(clock_nanosleep, clockid_t, which_clock, int, flags,
1231 		       struct compat_timespec __user *, rqtp,
1232 		       struct compat_timespec __user *, rmtp)
1233 {
1234 	const struct k_clock *kc = clockid_to_kclock(which_clock);
1235 	struct timespec64 t;
1236 
1237 	if (!kc)
1238 		return -EINVAL;
1239 	if (!kc->nsleep)
1240 		return -ENANOSLEEP_NOTSUP;
1241 
1242 	if (compat_get_timespec64(&t, rqtp))
1243 		return -EFAULT;
1244 
1245 	if (!timespec64_valid(&t))
1246 		return -EINVAL;
1247 	if (flags & TIMER_ABSTIME)
1248 		rmtp = NULL;
1249 	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1250 	current->restart_block.nanosleep.compat_rmtp = rmtp;
1251 
1252 	return kc->nsleep(which_clock, flags, &t);
1253 }
1254 #endif
1255 
1256 static const struct k_clock clock_realtime = {
1257 	.clock_getres		= posix_get_hrtimer_res,
1258 	.clock_get		= posix_clock_realtime_get,
1259 	.clock_set		= posix_clock_realtime_set,
1260 	.clock_adj		= posix_clock_realtime_adj,
1261 	.nsleep			= common_nsleep,
1262 	.timer_create		= common_timer_create,
1263 	.timer_set		= common_timer_set,
1264 	.timer_get		= common_timer_get,
1265 	.timer_del		= common_timer_del,
1266 	.timer_rearm		= common_hrtimer_rearm,
1267 	.timer_forward		= common_hrtimer_forward,
1268 	.timer_remaining	= common_hrtimer_remaining,
1269 	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1270 	.timer_arm		= common_hrtimer_arm,
1271 };
1272 
1273 static const struct k_clock clock_monotonic = {
1274 	.clock_getres		= posix_get_hrtimer_res,
1275 	.clock_get		= posix_ktime_get_ts,
1276 	.nsleep			= common_nsleep,
1277 	.timer_create		= common_timer_create,
1278 	.timer_set		= common_timer_set,
1279 	.timer_get		= common_timer_get,
1280 	.timer_del		= common_timer_del,
1281 	.timer_rearm		= common_hrtimer_rearm,
1282 	.timer_forward		= common_hrtimer_forward,
1283 	.timer_remaining	= common_hrtimer_remaining,
1284 	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1285 	.timer_arm		= common_hrtimer_arm,
1286 };
1287 
1288 static const struct k_clock clock_monotonic_raw = {
1289 	.clock_getres		= posix_get_hrtimer_res,
1290 	.clock_get		= posix_get_monotonic_raw,
1291 };
1292 
1293 static const struct k_clock clock_realtime_coarse = {
1294 	.clock_getres		= posix_get_coarse_res,
1295 	.clock_get		= posix_get_realtime_coarse,
1296 };
1297 
1298 static const struct k_clock clock_monotonic_coarse = {
1299 	.clock_getres		= posix_get_coarse_res,
1300 	.clock_get		= posix_get_monotonic_coarse,
1301 };
1302 
1303 static const struct k_clock clock_tai = {
1304 	.clock_getres		= posix_get_hrtimer_res,
1305 	.clock_get		= posix_get_tai,
1306 	.nsleep			= common_nsleep,
1307 	.timer_create		= common_timer_create,
1308 	.timer_set		= common_timer_set,
1309 	.timer_get		= common_timer_get,
1310 	.timer_del		= common_timer_del,
1311 	.timer_rearm		= common_hrtimer_rearm,
1312 	.timer_forward		= common_hrtimer_forward,
1313 	.timer_remaining	= common_hrtimer_remaining,
1314 	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1315 	.timer_arm		= common_hrtimer_arm,
1316 };
1317 
1318 static const struct k_clock clock_boottime = {
1319 	.clock_getres		= posix_get_hrtimer_res,
1320 	.clock_get		= posix_get_boottime,
1321 	.nsleep			= common_nsleep,
1322 	.timer_create		= common_timer_create,
1323 	.timer_set		= common_timer_set,
1324 	.timer_get		= common_timer_get,
1325 	.timer_del		= common_timer_del,
1326 	.timer_rearm		= common_hrtimer_rearm,
1327 	.timer_forward		= common_hrtimer_forward,
1328 	.timer_remaining	= common_hrtimer_remaining,
1329 	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
1330 	.timer_arm		= common_hrtimer_arm,
1331 };
1332 
1333 static const struct k_clock * const posix_clocks[] = {
1334 	[CLOCK_REALTIME]		= &clock_realtime,
1335 	[CLOCK_MONOTONIC]		= &clock_monotonic,
1336 	[CLOCK_PROCESS_CPUTIME_ID]	= &clock_process,
1337 	[CLOCK_THREAD_CPUTIME_ID]	= &clock_thread,
1338 	[CLOCK_MONOTONIC_RAW]		= &clock_monotonic_raw,
1339 	[CLOCK_REALTIME_COARSE]		= &clock_realtime_coarse,
1340 	[CLOCK_MONOTONIC_COARSE]	= &clock_monotonic_coarse,
1341 	[CLOCK_BOOTTIME]		= &clock_boottime,
1342 	[CLOCK_REALTIME_ALARM]		= &alarm_clock,
1343 	[CLOCK_BOOTTIME_ALARM]		= &alarm_clock,
1344 	[CLOCK_TAI]			= &clock_tai,
1345 };
1346 
1347 static const struct k_clock *clockid_to_kclock(const clockid_t id)
1348 {
1349 	if (id < 0)
1350 		return (id & CLOCKFD_MASK) == CLOCKFD ?
1351 			&clock_posix_dynamic : &clock_posix_cpu;
1352 
1353 	if (id >= ARRAY_SIZE(posix_clocks) || !posix_clocks[id])
1354 		return NULL;
1355 	return posix_clocks[id];
1356 }
1357