1 /* 2 * linux/kernel/posix-timers.c 3 * 4 * 5 * 2002-10-15 Posix Clocks & timers 6 * by George Anzinger george@mvista.com 7 * 8 * Copyright (C) 2002 2003 by MontaVista Software. 9 * 10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug. 11 * Copyright (C) 2004 Boris Hu 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; either version 2 of the License, or (at 16 * your option) any later version. 17 * 18 * This program is distributed in the hope that it will be useful, but 19 * WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 21 * General Public License for more details. 22 23 * You should have received a copy of the GNU General Public License 24 * along with this program; if not, write to the Free Software 25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 26 * 27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA 28 */ 29 30 /* These are all the functions necessary to implement 31 * POSIX clocks & timers 32 */ 33 #include <linux/mm.h> 34 #include <linux/interrupt.h> 35 #include <linux/slab.h> 36 #include <linux/time.h> 37 #include <linux/mutex.h> 38 #include <linux/sched/task.h> 39 40 #include <linux/uaccess.h> 41 #include <linux/list.h> 42 #include <linux/init.h> 43 #include <linux/compiler.h> 44 #include <linux/hash.h> 45 #include <linux/posix-clock.h> 46 #include <linux/posix-timers.h> 47 #include <linux/syscalls.h> 48 #include <linux/wait.h> 49 #include <linux/workqueue.h> 50 #include <linux/export.h> 51 #include <linux/hashtable.h> 52 #include <linux/compat.h> 53 54 #include "timekeeping.h" 55 #include "posix-timers.h" 56 57 /* 58 * Management arrays for POSIX timers. Timers are now kept in static hash table 59 * with 512 entries. 60 * Timer ids are allocated by local routine, which selects proper hash head by 61 * key, constructed from current->signal address and per signal struct counter. 62 * This keeps timer ids unique per process, but now they can intersect between 63 * processes. 64 */ 65 66 /* 67 * Lets keep our timers in a slab cache :-) 68 */ 69 static struct kmem_cache *posix_timers_cache; 70 71 static DEFINE_HASHTABLE(posix_timers_hashtable, 9); 72 static DEFINE_SPINLOCK(hash_lock); 73 74 static const struct k_clock * const posix_clocks[]; 75 static const struct k_clock *clockid_to_kclock(const clockid_t id); 76 static const struct k_clock clock_realtime, clock_monotonic; 77 78 /* 79 * we assume that the new SIGEV_THREAD_ID shares no bits with the other 80 * SIGEV values. Here we put out an error if this assumption fails. 81 */ 82 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \ 83 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD)) 84 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!" 85 #endif 86 87 /* 88 * parisc wants ENOTSUP instead of EOPNOTSUPP 89 */ 90 #ifndef ENOTSUP 91 # define ENANOSLEEP_NOTSUP EOPNOTSUPP 92 #else 93 # define ENANOSLEEP_NOTSUP ENOTSUP 94 #endif 95 96 /* 97 * The timer ID is turned into a timer address by idr_find(). 98 * Verifying a valid ID consists of: 99 * 100 * a) checking that idr_find() returns other than -1. 101 * b) checking that the timer id matches the one in the timer itself. 102 * c) that the timer owner is in the callers thread group. 103 */ 104 105 /* 106 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us 107 * to implement others. This structure defines the various 108 * clocks. 109 * 110 * RESOLUTION: Clock resolution is used to round up timer and interval 111 * times, NOT to report clock times, which are reported with as 112 * much resolution as the system can muster. In some cases this 113 * resolution may depend on the underlying clock hardware and 114 * may not be quantifiable until run time, and only then is the 115 * necessary code is written. The standard says we should say 116 * something about this issue in the documentation... 117 * 118 * FUNCTIONS: The CLOCKs structure defines possible functions to 119 * handle various clock functions. 120 * 121 * The standard POSIX timer management code assumes the 122 * following: 1.) The k_itimer struct (sched.h) is used for 123 * the timer. 2.) The list, it_lock, it_clock, it_id and 124 * it_pid fields are not modified by timer code. 125 * 126 * Permissions: It is assumed that the clock_settime() function defined 127 * for each clock will take care of permission checks. Some 128 * clocks may be set able by any user (i.e. local process 129 * clocks) others not. Currently the only set able clock we 130 * have is CLOCK_REALTIME and its high res counter part, both of 131 * which we beg off on and pass to do_sys_settimeofday(). 132 */ 133 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags); 134 135 #define lock_timer(tid, flags) \ 136 ({ struct k_itimer *__timr; \ 137 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \ 138 __timr; \ 139 }) 140 141 static int hash(struct signal_struct *sig, unsigned int nr) 142 { 143 return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable)); 144 } 145 146 static struct k_itimer *__posix_timers_find(struct hlist_head *head, 147 struct signal_struct *sig, 148 timer_t id) 149 { 150 struct k_itimer *timer; 151 152 hlist_for_each_entry_rcu(timer, head, t_hash) { 153 if ((timer->it_signal == sig) && (timer->it_id == id)) 154 return timer; 155 } 156 return NULL; 157 } 158 159 static struct k_itimer *posix_timer_by_id(timer_t id) 160 { 161 struct signal_struct *sig = current->signal; 162 struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)]; 163 164 return __posix_timers_find(head, sig, id); 165 } 166 167 static int posix_timer_add(struct k_itimer *timer) 168 { 169 struct signal_struct *sig = current->signal; 170 int first_free_id = sig->posix_timer_id; 171 struct hlist_head *head; 172 int ret = -ENOENT; 173 174 do { 175 spin_lock(&hash_lock); 176 head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)]; 177 if (!__posix_timers_find(head, sig, sig->posix_timer_id)) { 178 hlist_add_head_rcu(&timer->t_hash, head); 179 ret = sig->posix_timer_id; 180 } 181 if (++sig->posix_timer_id < 0) 182 sig->posix_timer_id = 0; 183 if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT)) 184 /* Loop over all possible ids completed */ 185 ret = -EAGAIN; 186 spin_unlock(&hash_lock); 187 } while (ret == -ENOENT); 188 return ret; 189 } 190 191 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags) 192 { 193 spin_unlock_irqrestore(&timr->it_lock, flags); 194 } 195 196 /* Get clock_realtime */ 197 static int posix_clock_realtime_get(clockid_t which_clock, struct timespec64 *tp) 198 { 199 ktime_get_real_ts64(tp); 200 return 0; 201 } 202 203 /* Set clock_realtime */ 204 static int posix_clock_realtime_set(const clockid_t which_clock, 205 const struct timespec64 *tp) 206 { 207 return do_sys_settimeofday64(tp, NULL); 208 } 209 210 static int posix_clock_realtime_adj(const clockid_t which_clock, 211 struct timex *t) 212 { 213 return do_adjtimex(t); 214 } 215 216 /* 217 * Get monotonic time for posix timers 218 */ 219 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec64 *tp) 220 { 221 ktime_get_ts64(tp); 222 return 0; 223 } 224 225 /* 226 * Get monotonic-raw time for posix timers 227 */ 228 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp) 229 { 230 getrawmonotonic64(tp); 231 return 0; 232 } 233 234 235 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp) 236 { 237 *tp = current_kernel_time64(); 238 return 0; 239 } 240 241 static int posix_get_monotonic_coarse(clockid_t which_clock, 242 struct timespec64 *tp) 243 { 244 *tp = get_monotonic_coarse64(); 245 return 0; 246 } 247 248 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp) 249 { 250 *tp = ktime_to_timespec64(KTIME_LOW_RES); 251 return 0; 252 } 253 254 static int posix_get_boottime(const clockid_t which_clock, struct timespec64 *tp) 255 { 256 get_monotonic_boottime64(tp); 257 return 0; 258 } 259 260 static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp) 261 { 262 timekeeping_clocktai64(tp); 263 return 0; 264 } 265 266 static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp) 267 { 268 tp->tv_sec = 0; 269 tp->tv_nsec = hrtimer_resolution; 270 return 0; 271 } 272 273 /* 274 * Initialize everything, well, just everything in Posix clocks/timers ;) 275 */ 276 static __init int init_posix_timers(void) 277 { 278 posix_timers_cache = kmem_cache_create("posix_timers_cache", 279 sizeof (struct k_itimer), 0, SLAB_PANIC, 280 NULL); 281 return 0; 282 } 283 __initcall(init_posix_timers); 284 285 static void common_hrtimer_rearm(struct k_itimer *timr) 286 { 287 struct hrtimer *timer = &timr->it.real.timer; 288 289 if (!timr->it_interval) 290 return; 291 292 timr->it_overrun += (unsigned int) hrtimer_forward(timer, 293 timer->base->get_time(), 294 timr->it_interval); 295 hrtimer_restart(timer); 296 } 297 298 /* 299 * This function is exported for use by the signal deliver code. It is 300 * called just prior to the info block being released and passes that 301 * block to us. It's function is to update the overrun entry AND to 302 * restart the timer. It should only be called if the timer is to be 303 * restarted (i.e. we have flagged this in the sys_private entry of the 304 * info block). 305 * 306 * To protect against the timer going away while the interrupt is queued, 307 * we require that the it_requeue_pending flag be set. 308 */ 309 void posixtimer_rearm(struct siginfo *info) 310 { 311 struct k_itimer *timr; 312 unsigned long flags; 313 314 timr = lock_timer(info->si_tid, &flags); 315 if (!timr) 316 return; 317 318 if (timr->it_requeue_pending == info->si_sys_private) { 319 timr->kclock->timer_rearm(timr); 320 321 timr->it_active = 1; 322 timr->it_overrun_last = timr->it_overrun; 323 timr->it_overrun = -1; 324 ++timr->it_requeue_pending; 325 326 info->si_overrun += timr->it_overrun_last; 327 } 328 329 unlock_timer(timr, flags); 330 } 331 332 int posix_timer_event(struct k_itimer *timr, int si_private) 333 { 334 struct task_struct *task; 335 int shared, ret = -1; 336 /* 337 * FIXME: if ->sigq is queued we can race with 338 * dequeue_signal()->posixtimer_rearm(). 339 * 340 * If dequeue_signal() sees the "right" value of 341 * si_sys_private it calls posixtimer_rearm(). 342 * We re-queue ->sigq and drop ->it_lock(). 343 * posixtimer_rearm() locks the timer 344 * and re-schedules it while ->sigq is pending. 345 * Not really bad, but not that we want. 346 */ 347 timr->sigq->info.si_sys_private = si_private; 348 349 rcu_read_lock(); 350 task = pid_task(timr->it_pid, PIDTYPE_PID); 351 if (task) { 352 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID); 353 ret = send_sigqueue(timr->sigq, task, shared); 354 } 355 rcu_read_unlock(); 356 /* If we failed to send the signal the timer stops. */ 357 return ret > 0; 358 } 359 360 /* 361 * This function gets called when a POSIX.1b interval timer expires. It 362 * is used as a callback from the kernel internal timer. The 363 * run_timer_list code ALWAYS calls with interrupts on. 364 365 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers. 366 */ 367 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer) 368 { 369 struct k_itimer *timr; 370 unsigned long flags; 371 int si_private = 0; 372 enum hrtimer_restart ret = HRTIMER_NORESTART; 373 374 timr = container_of(timer, struct k_itimer, it.real.timer); 375 spin_lock_irqsave(&timr->it_lock, flags); 376 377 timr->it_active = 0; 378 if (timr->it_interval != 0) 379 si_private = ++timr->it_requeue_pending; 380 381 if (posix_timer_event(timr, si_private)) { 382 /* 383 * signal was not sent because of sig_ignor 384 * we will not get a call back to restart it AND 385 * it should be restarted. 386 */ 387 if (timr->it_interval != 0) { 388 ktime_t now = hrtimer_cb_get_time(timer); 389 390 /* 391 * FIXME: What we really want, is to stop this 392 * timer completely and restart it in case the 393 * SIG_IGN is removed. This is a non trivial 394 * change which involves sighand locking 395 * (sigh !), which we don't want to do late in 396 * the release cycle. 397 * 398 * For now we just let timers with an interval 399 * less than a jiffie expire every jiffie to 400 * avoid softirq starvation in case of SIG_IGN 401 * and a very small interval, which would put 402 * the timer right back on the softirq pending 403 * list. By moving now ahead of time we trick 404 * hrtimer_forward() to expire the timer 405 * later, while we still maintain the overrun 406 * accuracy, but have some inconsistency in 407 * the timer_gettime() case. This is at least 408 * better than a starved softirq. A more 409 * complex fix which solves also another related 410 * inconsistency is already in the pipeline. 411 */ 412 #ifdef CONFIG_HIGH_RES_TIMERS 413 { 414 ktime_t kj = NSEC_PER_SEC / HZ; 415 416 if (timr->it_interval < kj) 417 now = ktime_add(now, kj); 418 } 419 #endif 420 timr->it_overrun += (unsigned int) 421 hrtimer_forward(timer, now, 422 timr->it_interval); 423 ret = HRTIMER_RESTART; 424 ++timr->it_requeue_pending; 425 timr->it_active = 1; 426 } 427 } 428 429 unlock_timer(timr, flags); 430 return ret; 431 } 432 433 static struct pid *good_sigevent(sigevent_t * event) 434 { 435 struct task_struct *rtn = current->group_leader; 436 437 switch (event->sigev_notify) { 438 case SIGEV_SIGNAL | SIGEV_THREAD_ID: 439 rtn = find_task_by_vpid(event->sigev_notify_thread_id); 440 if (!rtn || !same_thread_group(rtn, current)) 441 return NULL; 442 /* FALLTHRU */ 443 case SIGEV_SIGNAL: 444 case SIGEV_THREAD: 445 if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX) 446 return NULL; 447 /* FALLTHRU */ 448 case SIGEV_NONE: 449 return task_pid(rtn); 450 default: 451 return NULL; 452 } 453 } 454 455 static struct k_itimer * alloc_posix_timer(void) 456 { 457 struct k_itimer *tmr; 458 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL); 459 if (!tmr) 460 return tmr; 461 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) { 462 kmem_cache_free(posix_timers_cache, tmr); 463 return NULL; 464 } 465 clear_siginfo(&tmr->sigq->info); 466 return tmr; 467 } 468 469 static void k_itimer_rcu_free(struct rcu_head *head) 470 { 471 struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu); 472 473 kmem_cache_free(posix_timers_cache, tmr); 474 } 475 476 #define IT_ID_SET 1 477 #define IT_ID_NOT_SET 0 478 static void release_posix_timer(struct k_itimer *tmr, int it_id_set) 479 { 480 if (it_id_set) { 481 unsigned long flags; 482 spin_lock_irqsave(&hash_lock, flags); 483 hlist_del_rcu(&tmr->t_hash); 484 spin_unlock_irqrestore(&hash_lock, flags); 485 } 486 put_pid(tmr->it_pid); 487 sigqueue_free(tmr->sigq); 488 call_rcu(&tmr->it.rcu, k_itimer_rcu_free); 489 } 490 491 static int common_timer_create(struct k_itimer *new_timer) 492 { 493 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0); 494 return 0; 495 } 496 497 /* Create a POSIX.1b interval timer. */ 498 static int do_timer_create(clockid_t which_clock, struct sigevent *event, 499 timer_t __user *created_timer_id) 500 { 501 const struct k_clock *kc = clockid_to_kclock(which_clock); 502 struct k_itimer *new_timer; 503 int error, new_timer_id; 504 int it_id_set = IT_ID_NOT_SET; 505 506 if (!kc) 507 return -EINVAL; 508 if (!kc->timer_create) 509 return -EOPNOTSUPP; 510 511 new_timer = alloc_posix_timer(); 512 if (unlikely(!new_timer)) 513 return -EAGAIN; 514 515 spin_lock_init(&new_timer->it_lock); 516 new_timer_id = posix_timer_add(new_timer); 517 if (new_timer_id < 0) { 518 error = new_timer_id; 519 goto out; 520 } 521 522 it_id_set = IT_ID_SET; 523 new_timer->it_id = (timer_t) new_timer_id; 524 new_timer->it_clock = which_clock; 525 new_timer->kclock = kc; 526 new_timer->it_overrun = -1; 527 528 if (event) { 529 rcu_read_lock(); 530 new_timer->it_pid = get_pid(good_sigevent(event)); 531 rcu_read_unlock(); 532 if (!new_timer->it_pid) { 533 error = -EINVAL; 534 goto out; 535 } 536 new_timer->it_sigev_notify = event->sigev_notify; 537 new_timer->sigq->info.si_signo = event->sigev_signo; 538 new_timer->sigq->info.si_value = event->sigev_value; 539 } else { 540 new_timer->it_sigev_notify = SIGEV_SIGNAL; 541 new_timer->sigq->info.si_signo = SIGALRM; 542 memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t)); 543 new_timer->sigq->info.si_value.sival_int = new_timer->it_id; 544 new_timer->it_pid = get_pid(task_tgid(current)); 545 } 546 547 new_timer->sigq->info.si_tid = new_timer->it_id; 548 new_timer->sigq->info.si_code = SI_TIMER; 549 550 if (copy_to_user(created_timer_id, 551 &new_timer_id, sizeof (new_timer_id))) { 552 error = -EFAULT; 553 goto out; 554 } 555 556 error = kc->timer_create(new_timer); 557 if (error) 558 goto out; 559 560 spin_lock_irq(¤t->sighand->siglock); 561 new_timer->it_signal = current->signal; 562 list_add(&new_timer->list, ¤t->signal->posix_timers); 563 spin_unlock_irq(¤t->sighand->siglock); 564 565 return 0; 566 /* 567 * In the case of the timer belonging to another task, after 568 * the task is unlocked, the timer is owned by the other task 569 * and may cease to exist at any time. Don't use or modify 570 * new_timer after the unlock call. 571 */ 572 out: 573 release_posix_timer(new_timer, it_id_set); 574 return error; 575 } 576 577 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock, 578 struct sigevent __user *, timer_event_spec, 579 timer_t __user *, created_timer_id) 580 { 581 if (timer_event_spec) { 582 sigevent_t event; 583 584 if (copy_from_user(&event, timer_event_spec, sizeof (event))) 585 return -EFAULT; 586 return do_timer_create(which_clock, &event, created_timer_id); 587 } 588 return do_timer_create(which_clock, NULL, created_timer_id); 589 } 590 591 #ifdef CONFIG_COMPAT 592 COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock, 593 struct compat_sigevent __user *, timer_event_spec, 594 timer_t __user *, created_timer_id) 595 { 596 if (timer_event_spec) { 597 sigevent_t event; 598 599 if (get_compat_sigevent(&event, timer_event_spec)) 600 return -EFAULT; 601 return do_timer_create(which_clock, &event, created_timer_id); 602 } 603 return do_timer_create(which_clock, NULL, created_timer_id); 604 } 605 #endif 606 607 /* 608 * Locking issues: We need to protect the result of the id look up until 609 * we get the timer locked down so it is not deleted under us. The 610 * removal is done under the idr spinlock so we use that here to bridge 611 * the find to the timer lock. To avoid a dead lock, the timer id MUST 612 * be release with out holding the timer lock. 613 */ 614 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags) 615 { 616 struct k_itimer *timr; 617 618 /* 619 * timer_t could be any type >= int and we want to make sure any 620 * @timer_id outside positive int range fails lookup. 621 */ 622 if ((unsigned long long)timer_id > INT_MAX) 623 return NULL; 624 625 rcu_read_lock(); 626 timr = posix_timer_by_id(timer_id); 627 if (timr) { 628 spin_lock_irqsave(&timr->it_lock, *flags); 629 if (timr->it_signal == current->signal) { 630 rcu_read_unlock(); 631 return timr; 632 } 633 spin_unlock_irqrestore(&timr->it_lock, *flags); 634 } 635 rcu_read_unlock(); 636 637 return NULL; 638 } 639 640 static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now) 641 { 642 struct hrtimer *timer = &timr->it.real.timer; 643 644 return __hrtimer_expires_remaining_adjusted(timer, now); 645 } 646 647 static int common_hrtimer_forward(struct k_itimer *timr, ktime_t now) 648 { 649 struct hrtimer *timer = &timr->it.real.timer; 650 651 return (int)hrtimer_forward(timer, now, timr->it_interval); 652 } 653 654 /* 655 * Get the time remaining on a POSIX.1b interval timer. This function 656 * is ALWAYS called with spin_lock_irq on the timer, thus it must not 657 * mess with irq. 658 * 659 * We have a couple of messes to clean up here. First there is the case 660 * of a timer that has a requeue pending. These timers should appear to 661 * be in the timer list with an expiry as if we were to requeue them 662 * now. 663 * 664 * The second issue is the SIGEV_NONE timer which may be active but is 665 * not really ever put in the timer list (to save system resources). 666 * This timer may be expired, and if so, we will do it here. Otherwise 667 * it is the same as a requeue pending timer WRT to what we should 668 * report. 669 */ 670 void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting) 671 { 672 const struct k_clock *kc = timr->kclock; 673 ktime_t now, remaining, iv; 674 struct timespec64 ts64; 675 bool sig_none; 676 677 sig_none = timr->it_sigev_notify == SIGEV_NONE; 678 iv = timr->it_interval; 679 680 /* interval timer ? */ 681 if (iv) { 682 cur_setting->it_interval = ktime_to_timespec64(iv); 683 } else if (!timr->it_active) { 684 /* 685 * SIGEV_NONE oneshot timers are never queued. Check them 686 * below. 687 */ 688 if (!sig_none) 689 return; 690 } 691 692 /* 693 * The timespec64 based conversion is suboptimal, but it's not 694 * worth to implement yet another callback. 695 */ 696 kc->clock_get(timr->it_clock, &ts64); 697 now = timespec64_to_ktime(ts64); 698 699 /* 700 * When a requeue is pending or this is a SIGEV_NONE timer move the 701 * expiry time forward by intervals, so expiry is > now. 702 */ 703 if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none)) 704 timr->it_overrun += kc->timer_forward(timr, now); 705 706 remaining = kc->timer_remaining(timr, now); 707 /* Return 0 only, when the timer is expired and not pending */ 708 if (remaining <= 0) { 709 /* 710 * A single shot SIGEV_NONE timer must return 0, when 711 * it is expired ! 712 */ 713 if (!sig_none) 714 cur_setting->it_value.tv_nsec = 1; 715 } else { 716 cur_setting->it_value = ktime_to_timespec64(remaining); 717 } 718 } 719 720 /* Get the time remaining on a POSIX.1b interval timer. */ 721 static int do_timer_gettime(timer_t timer_id, struct itimerspec64 *setting) 722 { 723 struct k_itimer *timr; 724 const struct k_clock *kc; 725 unsigned long flags; 726 int ret = 0; 727 728 timr = lock_timer(timer_id, &flags); 729 if (!timr) 730 return -EINVAL; 731 732 memset(setting, 0, sizeof(*setting)); 733 kc = timr->kclock; 734 if (WARN_ON_ONCE(!kc || !kc->timer_get)) 735 ret = -EINVAL; 736 else 737 kc->timer_get(timr, setting); 738 739 unlock_timer(timr, flags); 740 return ret; 741 } 742 743 /* Get the time remaining on a POSIX.1b interval timer. */ 744 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id, 745 struct itimerspec __user *, setting) 746 { 747 struct itimerspec64 cur_setting; 748 749 int ret = do_timer_gettime(timer_id, &cur_setting); 750 if (!ret) { 751 if (put_itimerspec64(&cur_setting, setting)) 752 ret = -EFAULT; 753 } 754 return ret; 755 } 756 757 #ifdef CONFIG_COMPAT 758 COMPAT_SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id, 759 struct compat_itimerspec __user *, setting) 760 { 761 struct itimerspec64 cur_setting; 762 763 int ret = do_timer_gettime(timer_id, &cur_setting); 764 if (!ret) { 765 if (put_compat_itimerspec64(&cur_setting, setting)) 766 ret = -EFAULT; 767 } 768 return ret; 769 } 770 #endif 771 772 /* 773 * Get the number of overruns of a POSIX.1b interval timer. This is to 774 * be the overrun of the timer last delivered. At the same time we are 775 * accumulating overruns on the next timer. The overrun is frozen when 776 * the signal is delivered, either at the notify time (if the info block 777 * is not queued) or at the actual delivery time (as we are informed by 778 * the call back to posixtimer_rearm(). So all we need to do is 779 * to pick up the frozen overrun. 780 */ 781 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id) 782 { 783 struct k_itimer *timr; 784 int overrun; 785 unsigned long flags; 786 787 timr = lock_timer(timer_id, &flags); 788 if (!timr) 789 return -EINVAL; 790 791 overrun = timr->it_overrun_last; 792 unlock_timer(timr, flags); 793 794 return overrun; 795 } 796 797 static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires, 798 bool absolute, bool sigev_none) 799 { 800 struct hrtimer *timer = &timr->it.real.timer; 801 enum hrtimer_mode mode; 802 803 mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL; 804 /* 805 * Posix magic: Relative CLOCK_REALTIME timers are not affected by 806 * clock modifications, so they become CLOCK_MONOTONIC based under the 807 * hood. See hrtimer_init(). Update timr->kclock, so the generic 808 * functions which use timr->kclock->clock_get() work. 809 * 810 * Note: it_clock stays unmodified, because the next timer_set() might 811 * use ABSTIME, so it needs to switch back. 812 */ 813 if (timr->it_clock == CLOCK_REALTIME) 814 timr->kclock = absolute ? &clock_realtime : &clock_monotonic; 815 816 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode); 817 timr->it.real.timer.function = posix_timer_fn; 818 819 if (!absolute) 820 expires = ktime_add_safe(expires, timer->base->get_time()); 821 hrtimer_set_expires(timer, expires); 822 823 if (!sigev_none) 824 hrtimer_start_expires(timer, HRTIMER_MODE_ABS); 825 } 826 827 static int common_hrtimer_try_to_cancel(struct k_itimer *timr) 828 { 829 return hrtimer_try_to_cancel(&timr->it.real.timer); 830 } 831 832 /* Set a POSIX.1b interval timer. */ 833 int common_timer_set(struct k_itimer *timr, int flags, 834 struct itimerspec64 *new_setting, 835 struct itimerspec64 *old_setting) 836 { 837 const struct k_clock *kc = timr->kclock; 838 bool sigev_none; 839 ktime_t expires; 840 841 if (old_setting) 842 common_timer_get(timr, old_setting); 843 844 /* Prevent rearming by clearing the interval */ 845 timr->it_interval = 0; 846 /* 847 * Careful here. On SMP systems the timer expiry function could be 848 * active and spinning on timr->it_lock. 849 */ 850 if (kc->timer_try_to_cancel(timr) < 0) 851 return TIMER_RETRY; 852 853 timr->it_active = 0; 854 timr->it_requeue_pending = (timr->it_requeue_pending + 2) & 855 ~REQUEUE_PENDING; 856 timr->it_overrun_last = 0; 857 858 /* Switch off the timer when it_value is zero */ 859 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) 860 return 0; 861 862 timr->it_interval = timespec64_to_ktime(new_setting->it_interval); 863 expires = timespec64_to_ktime(new_setting->it_value); 864 sigev_none = timr->it_sigev_notify == SIGEV_NONE; 865 866 kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none); 867 timr->it_active = !sigev_none; 868 return 0; 869 } 870 871 static int do_timer_settime(timer_t timer_id, int flags, 872 struct itimerspec64 *new_spec64, 873 struct itimerspec64 *old_spec64) 874 { 875 const struct k_clock *kc; 876 struct k_itimer *timr; 877 unsigned long flag; 878 int error = 0; 879 880 if (!timespec64_valid(&new_spec64->it_interval) || 881 !timespec64_valid(&new_spec64->it_value)) 882 return -EINVAL; 883 884 if (old_spec64) 885 memset(old_spec64, 0, sizeof(*old_spec64)); 886 retry: 887 timr = lock_timer(timer_id, &flag); 888 if (!timr) 889 return -EINVAL; 890 891 kc = timr->kclock; 892 if (WARN_ON_ONCE(!kc || !kc->timer_set)) 893 error = -EINVAL; 894 else 895 error = kc->timer_set(timr, flags, new_spec64, old_spec64); 896 897 unlock_timer(timr, flag); 898 if (error == TIMER_RETRY) { 899 old_spec64 = NULL; // We already got the old time... 900 goto retry; 901 } 902 903 return error; 904 } 905 906 /* Set a POSIX.1b interval timer */ 907 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags, 908 const struct itimerspec __user *, new_setting, 909 struct itimerspec __user *, old_setting) 910 { 911 struct itimerspec64 new_spec, old_spec; 912 struct itimerspec64 *rtn = old_setting ? &old_spec : NULL; 913 int error = 0; 914 915 if (!new_setting) 916 return -EINVAL; 917 918 if (get_itimerspec64(&new_spec, new_setting)) 919 return -EFAULT; 920 921 error = do_timer_settime(timer_id, flags, &new_spec, rtn); 922 if (!error && old_setting) { 923 if (put_itimerspec64(&old_spec, old_setting)) 924 error = -EFAULT; 925 } 926 return error; 927 } 928 929 #ifdef CONFIG_COMPAT 930 COMPAT_SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags, 931 struct compat_itimerspec __user *, new, 932 struct compat_itimerspec __user *, old) 933 { 934 struct itimerspec64 new_spec, old_spec; 935 struct itimerspec64 *rtn = old ? &old_spec : NULL; 936 int error = 0; 937 938 if (!new) 939 return -EINVAL; 940 if (get_compat_itimerspec64(&new_spec, new)) 941 return -EFAULT; 942 943 error = do_timer_settime(timer_id, flags, &new_spec, rtn); 944 if (!error && old) { 945 if (put_compat_itimerspec64(&old_spec, old)) 946 error = -EFAULT; 947 } 948 return error; 949 } 950 #endif 951 952 int common_timer_del(struct k_itimer *timer) 953 { 954 const struct k_clock *kc = timer->kclock; 955 956 timer->it_interval = 0; 957 if (kc->timer_try_to_cancel(timer) < 0) 958 return TIMER_RETRY; 959 timer->it_active = 0; 960 return 0; 961 } 962 963 static inline int timer_delete_hook(struct k_itimer *timer) 964 { 965 const struct k_clock *kc = timer->kclock; 966 967 if (WARN_ON_ONCE(!kc || !kc->timer_del)) 968 return -EINVAL; 969 return kc->timer_del(timer); 970 } 971 972 /* Delete a POSIX.1b interval timer. */ 973 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id) 974 { 975 struct k_itimer *timer; 976 unsigned long flags; 977 978 retry_delete: 979 timer = lock_timer(timer_id, &flags); 980 if (!timer) 981 return -EINVAL; 982 983 if (timer_delete_hook(timer) == TIMER_RETRY) { 984 unlock_timer(timer, flags); 985 goto retry_delete; 986 } 987 988 spin_lock(¤t->sighand->siglock); 989 list_del(&timer->list); 990 spin_unlock(¤t->sighand->siglock); 991 /* 992 * This keeps any tasks waiting on the spin lock from thinking 993 * they got something (see the lock code above). 994 */ 995 timer->it_signal = NULL; 996 997 unlock_timer(timer, flags); 998 release_posix_timer(timer, IT_ID_SET); 999 return 0; 1000 } 1001 1002 /* 1003 * return timer owned by the process, used by exit_itimers 1004 */ 1005 static void itimer_delete(struct k_itimer *timer) 1006 { 1007 unsigned long flags; 1008 1009 retry_delete: 1010 spin_lock_irqsave(&timer->it_lock, flags); 1011 1012 if (timer_delete_hook(timer) == TIMER_RETRY) { 1013 unlock_timer(timer, flags); 1014 goto retry_delete; 1015 } 1016 list_del(&timer->list); 1017 /* 1018 * This keeps any tasks waiting on the spin lock from thinking 1019 * they got something (see the lock code above). 1020 */ 1021 timer->it_signal = NULL; 1022 1023 unlock_timer(timer, flags); 1024 release_posix_timer(timer, IT_ID_SET); 1025 } 1026 1027 /* 1028 * This is called by do_exit or de_thread, only when there are no more 1029 * references to the shared signal_struct. 1030 */ 1031 void exit_itimers(struct signal_struct *sig) 1032 { 1033 struct k_itimer *tmr; 1034 1035 while (!list_empty(&sig->posix_timers)) { 1036 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list); 1037 itimer_delete(tmr); 1038 } 1039 } 1040 1041 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock, 1042 const struct timespec __user *, tp) 1043 { 1044 const struct k_clock *kc = clockid_to_kclock(which_clock); 1045 struct timespec64 new_tp; 1046 1047 if (!kc || !kc->clock_set) 1048 return -EINVAL; 1049 1050 if (get_timespec64(&new_tp, tp)) 1051 return -EFAULT; 1052 1053 return kc->clock_set(which_clock, &new_tp); 1054 } 1055 1056 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock, 1057 struct timespec __user *,tp) 1058 { 1059 const struct k_clock *kc = clockid_to_kclock(which_clock); 1060 struct timespec64 kernel_tp; 1061 int error; 1062 1063 if (!kc) 1064 return -EINVAL; 1065 1066 error = kc->clock_get(which_clock, &kernel_tp); 1067 1068 if (!error && put_timespec64(&kernel_tp, tp)) 1069 error = -EFAULT; 1070 1071 return error; 1072 } 1073 1074 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock, 1075 struct timex __user *, utx) 1076 { 1077 const struct k_clock *kc = clockid_to_kclock(which_clock); 1078 struct timex ktx; 1079 int err; 1080 1081 if (!kc) 1082 return -EINVAL; 1083 if (!kc->clock_adj) 1084 return -EOPNOTSUPP; 1085 1086 if (copy_from_user(&ktx, utx, sizeof(ktx))) 1087 return -EFAULT; 1088 1089 err = kc->clock_adj(which_clock, &ktx); 1090 1091 if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx))) 1092 return -EFAULT; 1093 1094 return err; 1095 } 1096 1097 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock, 1098 struct timespec __user *, tp) 1099 { 1100 const struct k_clock *kc = clockid_to_kclock(which_clock); 1101 struct timespec64 rtn_tp; 1102 int error; 1103 1104 if (!kc) 1105 return -EINVAL; 1106 1107 error = kc->clock_getres(which_clock, &rtn_tp); 1108 1109 if (!error && tp && put_timespec64(&rtn_tp, tp)) 1110 error = -EFAULT; 1111 1112 return error; 1113 } 1114 1115 #ifdef CONFIG_COMPAT 1116 1117 COMPAT_SYSCALL_DEFINE2(clock_settime, clockid_t, which_clock, 1118 struct compat_timespec __user *, tp) 1119 { 1120 const struct k_clock *kc = clockid_to_kclock(which_clock); 1121 struct timespec64 ts; 1122 1123 if (!kc || !kc->clock_set) 1124 return -EINVAL; 1125 1126 if (compat_get_timespec64(&ts, tp)) 1127 return -EFAULT; 1128 1129 return kc->clock_set(which_clock, &ts); 1130 } 1131 1132 COMPAT_SYSCALL_DEFINE2(clock_gettime, clockid_t, which_clock, 1133 struct compat_timespec __user *, tp) 1134 { 1135 const struct k_clock *kc = clockid_to_kclock(which_clock); 1136 struct timespec64 ts; 1137 int err; 1138 1139 if (!kc) 1140 return -EINVAL; 1141 1142 err = kc->clock_get(which_clock, &ts); 1143 1144 if (!err && compat_put_timespec64(&ts, tp)) 1145 err = -EFAULT; 1146 1147 return err; 1148 } 1149 1150 COMPAT_SYSCALL_DEFINE2(clock_adjtime, clockid_t, which_clock, 1151 struct compat_timex __user *, utp) 1152 { 1153 const struct k_clock *kc = clockid_to_kclock(which_clock); 1154 struct timex ktx; 1155 int err; 1156 1157 if (!kc) 1158 return -EINVAL; 1159 if (!kc->clock_adj) 1160 return -EOPNOTSUPP; 1161 1162 err = compat_get_timex(&ktx, utp); 1163 if (err) 1164 return err; 1165 1166 err = kc->clock_adj(which_clock, &ktx); 1167 1168 if (err >= 0) 1169 err = compat_put_timex(utp, &ktx); 1170 1171 return err; 1172 } 1173 1174 COMPAT_SYSCALL_DEFINE2(clock_getres, clockid_t, which_clock, 1175 struct compat_timespec __user *, tp) 1176 { 1177 const struct k_clock *kc = clockid_to_kclock(which_clock); 1178 struct timespec64 ts; 1179 int err; 1180 1181 if (!kc) 1182 return -EINVAL; 1183 1184 err = kc->clock_getres(which_clock, &ts); 1185 if (!err && tp && compat_put_timespec64(&ts, tp)) 1186 return -EFAULT; 1187 1188 return err; 1189 } 1190 1191 #endif 1192 1193 /* 1194 * nanosleep for monotonic and realtime clocks 1195 */ 1196 static int common_nsleep(const clockid_t which_clock, int flags, 1197 const struct timespec64 *rqtp) 1198 { 1199 return hrtimer_nanosleep(rqtp, flags & TIMER_ABSTIME ? 1200 HRTIMER_MODE_ABS : HRTIMER_MODE_REL, 1201 which_clock); 1202 } 1203 1204 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags, 1205 const struct timespec __user *, rqtp, 1206 struct timespec __user *, rmtp) 1207 { 1208 const struct k_clock *kc = clockid_to_kclock(which_clock); 1209 struct timespec64 t; 1210 1211 if (!kc) 1212 return -EINVAL; 1213 if (!kc->nsleep) 1214 return -ENANOSLEEP_NOTSUP; 1215 1216 if (get_timespec64(&t, rqtp)) 1217 return -EFAULT; 1218 1219 if (!timespec64_valid(&t)) 1220 return -EINVAL; 1221 if (flags & TIMER_ABSTIME) 1222 rmtp = NULL; 1223 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; 1224 current->restart_block.nanosleep.rmtp = rmtp; 1225 1226 return kc->nsleep(which_clock, flags, &t); 1227 } 1228 1229 #ifdef CONFIG_COMPAT 1230 COMPAT_SYSCALL_DEFINE4(clock_nanosleep, clockid_t, which_clock, int, flags, 1231 struct compat_timespec __user *, rqtp, 1232 struct compat_timespec __user *, rmtp) 1233 { 1234 const struct k_clock *kc = clockid_to_kclock(which_clock); 1235 struct timespec64 t; 1236 1237 if (!kc) 1238 return -EINVAL; 1239 if (!kc->nsleep) 1240 return -ENANOSLEEP_NOTSUP; 1241 1242 if (compat_get_timespec64(&t, rqtp)) 1243 return -EFAULT; 1244 1245 if (!timespec64_valid(&t)) 1246 return -EINVAL; 1247 if (flags & TIMER_ABSTIME) 1248 rmtp = NULL; 1249 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; 1250 current->restart_block.nanosleep.compat_rmtp = rmtp; 1251 1252 return kc->nsleep(which_clock, flags, &t); 1253 } 1254 #endif 1255 1256 static const struct k_clock clock_realtime = { 1257 .clock_getres = posix_get_hrtimer_res, 1258 .clock_get = posix_clock_realtime_get, 1259 .clock_set = posix_clock_realtime_set, 1260 .clock_adj = posix_clock_realtime_adj, 1261 .nsleep = common_nsleep, 1262 .timer_create = common_timer_create, 1263 .timer_set = common_timer_set, 1264 .timer_get = common_timer_get, 1265 .timer_del = common_timer_del, 1266 .timer_rearm = common_hrtimer_rearm, 1267 .timer_forward = common_hrtimer_forward, 1268 .timer_remaining = common_hrtimer_remaining, 1269 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1270 .timer_arm = common_hrtimer_arm, 1271 }; 1272 1273 static const struct k_clock clock_monotonic = { 1274 .clock_getres = posix_get_hrtimer_res, 1275 .clock_get = posix_ktime_get_ts, 1276 .nsleep = common_nsleep, 1277 .timer_create = common_timer_create, 1278 .timer_set = common_timer_set, 1279 .timer_get = common_timer_get, 1280 .timer_del = common_timer_del, 1281 .timer_rearm = common_hrtimer_rearm, 1282 .timer_forward = common_hrtimer_forward, 1283 .timer_remaining = common_hrtimer_remaining, 1284 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1285 .timer_arm = common_hrtimer_arm, 1286 }; 1287 1288 static const struct k_clock clock_monotonic_raw = { 1289 .clock_getres = posix_get_hrtimer_res, 1290 .clock_get = posix_get_monotonic_raw, 1291 }; 1292 1293 static const struct k_clock clock_realtime_coarse = { 1294 .clock_getres = posix_get_coarse_res, 1295 .clock_get = posix_get_realtime_coarse, 1296 }; 1297 1298 static const struct k_clock clock_monotonic_coarse = { 1299 .clock_getres = posix_get_coarse_res, 1300 .clock_get = posix_get_monotonic_coarse, 1301 }; 1302 1303 static const struct k_clock clock_tai = { 1304 .clock_getres = posix_get_hrtimer_res, 1305 .clock_get = posix_get_tai, 1306 .nsleep = common_nsleep, 1307 .timer_create = common_timer_create, 1308 .timer_set = common_timer_set, 1309 .timer_get = common_timer_get, 1310 .timer_del = common_timer_del, 1311 .timer_rearm = common_hrtimer_rearm, 1312 .timer_forward = common_hrtimer_forward, 1313 .timer_remaining = common_hrtimer_remaining, 1314 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1315 .timer_arm = common_hrtimer_arm, 1316 }; 1317 1318 static const struct k_clock clock_boottime = { 1319 .clock_getres = posix_get_hrtimer_res, 1320 .clock_get = posix_get_boottime, 1321 .nsleep = common_nsleep, 1322 .timer_create = common_timer_create, 1323 .timer_set = common_timer_set, 1324 .timer_get = common_timer_get, 1325 .timer_del = common_timer_del, 1326 .timer_rearm = common_hrtimer_rearm, 1327 .timer_forward = common_hrtimer_forward, 1328 .timer_remaining = common_hrtimer_remaining, 1329 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1330 .timer_arm = common_hrtimer_arm, 1331 }; 1332 1333 static const struct k_clock * const posix_clocks[] = { 1334 [CLOCK_REALTIME] = &clock_realtime, 1335 [CLOCK_MONOTONIC] = &clock_monotonic, 1336 [CLOCK_PROCESS_CPUTIME_ID] = &clock_process, 1337 [CLOCK_THREAD_CPUTIME_ID] = &clock_thread, 1338 [CLOCK_MONOTONIC_RAW] = &clock_monotonic_raw, 1339 [CLOCK_REALTIME_COARSE] = &clock_realtime_coarse, 1340 [CLOCK_MONOTONIC_COARSE] = &clock_monotonic_coarse, 1341 [CLOCK_BOOTTIME] = &clock_boottime, 1342 [CLOCK_REALTIME_ALARM] = &alarm_clock, 1343 [CLOCK_BOOTTIME_ALARM] = &alarm_clock, 1344 [CLOCK_TAI] = &clock_tai, 1345 }; 1346 1347 static const struct k_clock *clockid_to_kclock(const clockid_t id) 1348 { 1349 if (id < 0) 1350 return (id & CLOCKFD_MASK) == CLOCKFD ? 1351 &clock_posix_dynamic : &clock_posix_cpu; 1352 1353 if (id >= ARRAY_SIZE(posix_clocks) || !posix_clocks[id]) 1354 return NULL; 1355 return posix_clocks[id]; 1356 } 1357