1 /* 2 * linux/kernel/posix-timers.c 3 * 4 * 5 * 2002-10-15 Posix Clocks & timers 6 * by George Anzinger george@mvista.com 7 * 8 * Copyright (C) 2002 2003 by MontaVista Software. 9 * 10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug. 11 * Copyright (C) 2004 Boris Hu 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; either version 2 of the License, or (at 16 * your option) any later version. 17 * 18 * This program is distributed in the hope that it will be useful, but 19 * WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 21 * General Public License for more details. 22 23 * You should have received a copy of the GNU General Public License 24 * along with this program; if not, write to the Free Software 25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 26 * 27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA 28 */ 29 30 /* These are all the functions necessary to implement 31 * POSIX clocks & timers 32 */ 33 #include <linux/mm.h> 34 #include <linux/interrupt.h> 35 #include <linux/slab.h> 36 #include <linux/time.h> 37 #include <linux/mutex.h> 38 #include <linux/sched/task.h> 39 40 #include <linux/uaccess.h> 41 #include <linux/list.h> 42 #include <linux/init.h> 43 #include <linux/compiler.h> 44 #include <linux/hash.h> 45 #include <linux/posix-clock.h> 46 #include <linux/posix-timers.h> 47 #include <linux/syscalls.h> 48 #include <linux/wait.h> 49 #include <linux/workqueue.h> 50 #include <linux/export.h> 51 #include <linux/hashtable.h> 52 #include <linux/compat.h> 53 #include <linux/nospec.h> 54 55 #include "timekeeping.h" 56 #include "posix-timers.h" 57 58 /* 59 * Management arrays for POSIX timers. Timers are now kept in static hash table 60 * with 512 entries. 61 * Timer ids are allocated by local routine, which selects proper hash head by 62 * key, constructed from current->signal address and per signal struct counter. 63 * This keeps timer ids unique per process, but now they can intersect between 64 * processes. 65 */ 66 67 /* 68 * Lets keep our timers in a slab cache :-) 69 */ 70 static struct kmem_cache *posix_timers_cache; 71 72 static DEFINE_HASHTABLE(posix_timers_hashtable, 9); 73 static DEFINE_SPINLOCK(hash_lock); 74 75 static const struct k_clock * const posix_clocks[]; 76 static const struct k_clock *clockid_to_kclock(const clockid_t id); 77 static const struct k_clock clock_realtime, clock_monotonic; 78 79 /* 80 * we assume that the new SIGEV_THREAD_ID shares no bits with the other 81 * SIGEV values. Here we put out an error if this assumption fails. 82 */ 83 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \ 84 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD)) 85 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!" 86 #endif 87 88 /* 89 * The timer ID is turned into a timer address by idr_find(). 90 * Verifying a valid ID consists of: 91 * 92 * a) checking that idr_find() returns other than -1. 93 * b) checking that the timer id matches the one in the timer itself. 94 * c) that the timer owner is in the callers thread group. 95 */ 96 97 /* 98 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us 99 * to implement others. This structure defines the various 100 * clocks. 101 * 102 * RESOLUTION: Clock resolution is used to round up timer and interval 103 * times, NOT to report clock times, which are reported with as 104 * much resolution as the system can muster. In some cases this 105 * resolution may depend on the underlying clock hardware and 106 * may not be quantifiable until run time, and only then is the 107 * necessary code is written. The standard says we should say 108 * something about this issue in the documentation... 109 * 110 * FUNCTIONS: The CLOCKs structure defines possible functions to 111 * handle various clock functions. 112 * 113 * The standard POSIX timer management code assumes the 114 * following: 1.) The k_itimer struct (sched.h) is used for 115 * the timer. 2.) The list, it_lock, it_clock, it_id and 116 * it_pid fields are not modified by timer code. 117 * 118 * Permissions: It is assumed that the clock_settime() function defined 119 * for each clock will take care of permission checks. Some 120 * clocks may be set able by any user (i.e. local process 121 * clocks) others not. Currently the only set able clock we 122 * have is CLOCK_REALTIME and its high res counter part, both of 123 * which we beg off on and pass to do_sys_settimeofday(). 124 */ 125 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags); 126 127 #define lock_timer(tid, flags) \ 128 ({ struct k_itimer *__timr; \ 129 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \ 130 __timr; \ 131 }) 132 133 static int hash(struct signal_struct *sig, unsigned int nr) 134 { 135 return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable)); 136 } 137 138 static struct k_itimer *__posix_timers_find(struct hlist_head *head, 139 struct signal_struct *sig, 140 timer_t id) 141 { 142 struct k_itimer *timer; 143 144 hlist_for_each_entry_rcu(timer, head, t_hash) { 145 if ((timer->it_signal == sig) && (timer->it_id == id)) 146 return timer; 147 } 148 return NULL; 149 } 150 151 static struct k_itimer *posix_timer_by_id(timer_t id) 152 { 153 struct signal_struct *sig = current->signal; 154 struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)]; 155 156 return __posix_timers_find(head, sig, id); 157 } 158 159 static int posix_timer_add(struct k_itimer *timer) 160 { 161 struct signal_struct *sig = current->signal; 162 int first_free_id = sig->posix_timer_id; 163 struct hlist_head *head; 164 int ret = -ENOENT; 165 166 do { 167 spin_lock(&hash_lock); 168 head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)]; 169 if (!__posix_timers_find(head, sig, sig->posix_timer_id)) { 170 hlist_add_head_rcu(&timer->t_hash, head); 171 ret = sig->posix_timer_id; 172 } 173 if (++sig->posix_timer_id < 0) 174 sig->posix_timer_id = 0; 175 if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT)) 176 /* Loop over all possible ids completed */ 177 ret = -EAGAIN; 178 spin_unlock(&hash_lock); 179 } while (ret == -ENOENT); 180 return ret; 181 } 182 183 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags) 184 { 185 spin_unlock_irqrestore(&timr->it_lock, flags); 186 } 187 188 /* Get clock_realtime */ 189 static int posix_clock_realtime_get(clockid_t which_clock, struct timespec64 *tp) 190 { 191 ktime_get_real_ts64(tp); 192 return 0; 193 } 194 195 /* Set clock_realtime */ 196 static int posix_clock_realtime_set(const clockid_t which_clock, 197 const struct timespec64 *tp) 198 { 199 return do_sys_settimeofday64(tp, NULL); 200 } 201 202 static int posix_clock_realtime_adj(const clockid_t which_clock, 203 struct timex *t) 204 { 205 return do_adjtimex(t); 206 } 207 208 /* 209 * Get monotonic time for posix timers 210 */ 211 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec64 *tp) 212 { 213 ktime_get_ts64(tp); 214 return 0; 215 } 216 217 /* 218 * Get monotonic-raw time for posix timers 219 */ 220 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp) 221 { 222 ktime_get_raw_ts64(tp); 223 return 0; 224 } 225 226 227 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp) 228 { 229 ktime_get_coarse_real_ts64(tp); 230 return 0; 231 } 232 233 static int posix_get_monotonic_coarse(clockid_t which_clock, 234 struct timespec64 *tp) 235 { 236 ktime_get_coarse_ts64(tp); 237 return 0; 238 } 239 240 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp) 241 { 242 *tp = ktime_to_timespec64(KTIME_LOW_RES); 243 return 0; 244 } 245 246 static int posix_get_boottime(const clockid_t which_clock, struct timespec64 *tp) 247 { 248 ktime_get_boottime_ts64(tp); 249 return 0; 250 } 251 252 static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp) 253 { 254 ktime_get_clocktai_ts64(tp); 255 return 0; 256 } 257 258 static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp) 259 { 260 tp->tv_sec = 0; 261 tp->tv_nsec = hrtimer_resolution; 262 return 0; 263 } 264 265 /* 266 * Initialize everything, well, just everything in Posix clocks/timers ;) 267 */ 268 static __init int init_posix_timers(void) 269 { 270 posix_timers_cache = kmem_cache_create("posix_timers_cache", 271 sizeof (struct k_itimer), 0, SLAB_PANIC, 272 NULL); 273 return 0; 274 } 275 __initcall(init_posix_timers); 276 277 /* 278 * The siginfo si_overrun field and the return value of timer_getoverrun(2) 279 * are of type int. Clamp the overrun value to INT_MAX 280 */ 281 static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval) 282 { 283 s64 sum = timr->it_overrun_last + (s64)baseval; 284 285 return sum > (s64)INT_MAX ? INT_MAX : (int)sum; 286 } 287 288 static void common_hrtimer_rearm(struct k_itimer *timr) 289 { 290 struct hrtimer *timer = &timr->it.real.timer; 291 292 if (!timr->it_interval) 293 return; 294 295 timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(), 296 timr->it_interval); 297 hrtimer_restart(timer); 298 } 299 300 /* 301 * This function is exported for use by the signal deliver code. It is 302 * called just prior to the info block being released and passes that 303 * block to us. It's function is to update the overrun entry AND to 304 * restart the timer. It should only be called if the timer is to be 305 * restarted (i.e. we have flagged this in the sys_private entry of the 306 * info block). 307 * 308 * To protect against the timer going away while the interrupt is queued, 309 * we require that the it_requeue_pending flag be set. 310 */ 311 void posixtimer_rearm(struct kernel_siginfo *info) 312 { 313 struct k_itimer *timr; 314 unsigned long flags; 315 316 timr = lock_timer(info->si_tid, &flags); 317 if (!timr) 318 return; 319 320 if (timr->it_requeue_pending == info->si_sys_private) { 321 timr->kclock->timer_rearm(timr); 322 323 timr->it_active = 1; 324 timr->it_overrun_last = timr->it_overrun; 325 timr->it_overrun = -1LL; 326 ++timr->it_requeue_pending; 327 328 info->si_overrun = timer_overrun_to_int(timr, info->si_overrun); 329 } 330 331 unlock_timer(timr, flags); 332 } 333 334 int posix_timer_event(struct k_itimer *timr, int si_private) 335 { 336 enum pid_type type; 337 int ret = -1; 338 /* 339 * FIXME: if ->sigq is queued we can race with 340 * dequeue_signal()->posixtimer_rearm(). 341 * 342 * If dequeue_signal() sees the "right" value of 343 * si_sys_private it calls posixtimer_rearm(). 344 * We re-queue ->sigq and drop ->it_lock(). 345 * posixtimer_rearm() locks the timer 346 * and re-schedules it while ->sigq is pending. 347 * Not really bad, but not that we want. 348 */ 349 timr->sigq->info.si_sys_private = si_private; 350 351 type = !(timr->it_sigev_notify & SIGEV_THREAD_ID) ? PIDTYPE_TGID : PIDTYPE_PID; 352 ret = send_sigqueue(timr->sigq, timr->it_pid, type); 353 /* If we failed to send the signal the timer stops. */ 354 return ret > 0; 355 } 356 357 /* 358 * This function gets called when a POSIX.1b interval timer expires. It 359 * is used as a callback from the kernel internal timer. The 360 * run_timer_list code ALWAYS calls with interrupts on. 361 362 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers. 363 */ 364 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer) 365 { 366 struct k_itimer *timr; 367 unsigned long flags; 368 int si_private = 0; 369 enum hrtimer_restart ret = HRTIMER_NORESTART; 370 371 timr = container_of(timer, struct k_itimer, it.real.timer); 372 spin_lock_irqsave(&timr->it_lock, flags); 373 374 timr->it_active = 0; 375 if (timr->it_interval != 0) 376 si_private = ++timr->it_requeue_pending; 377 378 if (posix_timer_event(timr, si_private)) { 379 /* 380 * signal was not sent because of sig_ignor 381 * we will not get a call back to restart it AND 382 * it should be restarted. 383 */ 384 if (timr->it_interval != 0) { 385 ktime_t now = hrtimer_cb_get_time(timer); 386 387 /* 388 * FIXME: What we really want, is to stop this 389 * timer completely and restart it in case the 390 * SIG_IGN is removed. This is a non trivial 391 * change which involves sighand locking 392 * (sigh !), which we don't want to do late in 393 * the release cycle. 394 * 395 * For now we just let timers with an interval 396 * less than a jiffie expire every jiffie to 397 * avoid softirq starvation in case of SIG_IGN 398 * and a very small interval, which would put 399 * the timer right back on the softirq pending 400 * list. By moving now ahead of time we trick 401 * hrtimer_forward() to expire the timer 402 * later, while we still maintain the overrun 403 * accuracy, but have some inconsistency in 404 * the timer_gettime() case. This is at least 405 * better than a starved softirq. A more 406 * complex fix which solves also another related 407 * inconsistency is already in the pipeline. 408 */ 409 #ifdef CONFIG_HIGH_RES_TIMERS 410 { 411 ktime_t kj = NSEC_PER_SEC / HZ; 412 413 if (timr->it_interval < kj) 414 now = ktime_add(now, kj); 415 } 416 #endif 417 timr->it_overrun += hrtimer_forward(timer, now, 418 timr->it_interval); 419 ret = HRTIMER_RESTART; 420 ++timr->it_requeue_pending; 421 timr->it_active = 1; 422 } 423 } 424 425 unlock_timer(timr, flags); 426 return ret; 427 } 428 429 static struct pid *good_sigevent(sigevent_t * event) 430 { 431 struct pid *pid = task_tgid(current); 432 struct task_struct *rtn; 433 434 switch (event->sigev_notify) { 435 case SIGEV_SIGNAL | SIGEV_THREAD_ID: 436 pid = find_vpid(event->sigev_notify_thread_id); 437 rtn = pid_task(pid, PIDTYPE_PID); 438 if (!rtn || !same_thread_group(rtn, current)) 439 return NULL; 440 /* FALLTHRU */ 441 case SIGEV_SIGNAL: 442 case SIGEV_THREAD: 443 if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX) 444 return NULL; 445 /* FALLTHRU */ 446 case SIGEV_NONE: 447 return pid; 448 default: 449 return NULL; 450 } 451 } 452 453 static struct k_itimer * alloc_posix_timer(void) 454 { 455 struct k_itimer *tmr; 456 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL); 457 if (!tmr) 458 return tmr; 459 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) { 460 kmem_cache_free(posix_timers_cache, tmr); 461 return NULL; 462 } 463 clear_siginfo(&tmr->sigq->info); 464 return tmr; 465 } 466 467 static void k_itimer_rcu_free(struct rcu_head *head) 468 { 469 struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu); 470 471 kmem_cache_free(posix_timers_cache, tmr); 472 } 473 474 #define IT_ID_SET 1 475 #define IT_ID_NOT_SET 0 476 static void release_posix_timer(struct k_itimer *tmr, int it_id_set) 477 { 478 if (it_id_set) { 479 unsigned long flags; 480 spin_lock_irqsave(&hash_lock, flags); 481 hlist_del_rcu(&tmr->t_hash); 482 spin_unlock_irqrestore(&hash_lock, flags); 483 } 484 put_pid(tmr->it_pid); 485 sigqueue_free(tmr->sigq); 486 call_rcu(&tmr->it.rcu, k_itimer_rcu_free); 487 } 488 489 static int common_timer_create(struct k_itimer *new_timer) 490 { 491 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0); 492 return 0; 493 } 494 495 /* Create a POSIX.1b interval timer. */ 496 static int do_timer_create(clockid_t which_clock, struct sigevent *event, 497 timer_t __user *created_timer_id) 498 { 499 const struct k_clock *kc = clockid_to_kclock(which_clock); 500 struct k_itimer *new_timer; 501 int error, new_timer_id; 502 int it_id_set = IT_ID_NOT_SET; 503 504 if (!kc) 505 return -EINVAL; 506 if (!kc->timer_create) 507 return -EOPNOTSUPP; 508 509 new_timer = alloc_posix_timer(); 510 if (unlikely(!new_timer)) 511 return -EAGAIN; 512 513 spin_lock_init(&new_timer->it_lock); 514 new_timer_id = posix_timer_add(new_timer); 515 if (new_timer_id < 0) { 516 error = new_timer_id; 517 goto out; 518 } 519 520 it_id_set = IT_ID_SET; 521 new_timer->it_id = (timer_t) new_timer_id; 522 new_timer->it_clock = which_clock; 523 new_timer->kclock = kc; 524 new_timer->it_overrun = -1LL; 525 526 if (event) { 527 rcu_read_lock(); 528 new_timer->it_pid = get_pid(good_sigevent(event)); 529 rcu_read_unlock(); 530 if (!new_timer->it_pid) { 531 error = -EINVAL; 532 goto out; 533 } 534 new_timer->it_sigev_notify = event->sigev_notify; 535 new_timer->sigq->info.si_signo = event->sigev_signo; 536 new_timer->sigq->info.si_value = event->sigev_value; 537 } else { 538 new_timer->it_sigev_notify = SIGEV_SIGNAL; 539 new_timer->sigq->info.si_signo = SIGALRM; 540 memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t)); 541 new_timer->sigq->info.si_value.sival_int = new_timer->it_id; 542 new_timer->it_pid = get_pid(task_tgid(current)); 543 } 544 545 new_timer->sigq->info.si_tid = new_timer->it_id; 546 new_timer->sigq->info.si_code = SI_TIMER; 547 548 if (copy_to_user(created_timer_id, 549 &new_timer_id, sizeof (new_timer_id))) { 550 error = -EFAULT; 551 goto out; 552 } 553 554 error = kc->timer_create(new_timer); 555 if (error) 556 goto out; 557 558 spin_lock_irq(¤t->sighand->siglock); 559 new_timer->it_signal = current->signal; 560 list_add(&new_timer->list, ¤t->signal->posix_timers); 561 spin_unlock_irq(¤t->sighand->siglock); 562 563 return 0; 564 /* 565 * In the case of the timer belonging to another task, after 566 * the task is unlocked, the timer is owned by the other task 567 * and may cease to exist at any time. Don't use or modify 568 * new_timer after the unlock call. 569 */ 570 out: 571 release_posix_timer(new_timer, it_id_set); 572 return error; 573 } 574 575 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock, 576 struct sigevent __user *, timer_event_spec, 577 timer_t __user *, created_timer_id) 578 { 579 if (timer_event_spec) { 580 sigevent_t event; 581 582 if (copy_from_user(&event, timer_event_spec, sizeof (event))) 583 return -EFAULT; 584 return do_timer_create(which_clock, &event, created_timer_id); 585 } 586 return do_timer_create(which_clock, NULL, created_timer_id); 587 } 588 589 #ifdef CONFIG_COMPAT 590 COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock, 591 struct compat_sigevent __user *, timer_event_spec, 592 timer_t __user *, created_timer_id) 593 { 594 if (timer_event_spec) { 595 sigevent_t event; 596 597 if (get_compat_sigevent(&event, timer_event_spec)) 598 return -EFAULT; 599 return do_timer_create(which_clock, &event, created_timer_id); 600 } 601 return do_timer_create(which_clock, NULL, created_timer_id); 602 } 603 #endif 604 605 /* 606 * Locking issues: We need to protect the result of the id look up until 607 * we get the timer locked down so it is not deleted under us. The 608 * removal is done under the idr spinlock so we use that here to bridge 609 * the find to the timer lock. To avoid a dead lock, the timer id MUST 610 * be release with out holding the timer lock. 611 */ 612 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags) 613 { 614 struct k_itimer *timr; 615 616 /* 617 * timer_t could be any type >= int and we want to make sure any 618 * @timer_id outside positive int range fails lookup. 619 */ 620 if ((unsigned long long)timer_id > INT_MAX) 621 return NULL; 622 623 rcu_read_lock(); 624 timr = posix_timer_by_id(timer_id); 625 if (timr) { 626 spin_lock_irqsave(&timr->it_lock, *flags); 627 if (timr->it_signal == current->signal) { 628 rcu_read_unlock(); 629 return timr; 630 } 631 spin_unlock_irqrestore(&timr->it_lock, *flags); 632 } 633 rcu_read_unlock(); 634 635 return NULL; 636 } 637 638 static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now) 639 { 640 struct hrtimer *timer = &timr->it.real.timer; 641 642 return __hrtimer_expires_remaining_adjusted(timer, now); 643 } 644 645 static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now) 646 { 647 struct hrtimer *timer = &timr->it.real.timer; 648 649 return hrtimer_forward(timer, now, timr->it_interval); 650 } 651 652 /* 653 * Get the time remaining on a POSIX.1b interval timer. This function 654 * is ALWAYS called with spin_lock_irq on the timer, thus it must not 655 * mess with irq. 656 * 657 * We have a couple of messes to clean up here. First there is the case 658 * of a timer that has a requeue pending. These timers should appear to 659 * be in the timer list with an expiry as if we were to requeue them 660 * now. 661 * 662 * The second issue is the SIGEV_NONE timer which may be active but is 663 * not really ever put in the timer list (to save system resources). 664 * This timer may be expired, and if so, we will do it here. Otherwise 665 * it is the same as a requeue pending timer WRT to what we should 666 * report. 667 */ 668 void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting) 669 { 670 const struct k_clock *kc = timr->kclock; 671 ktime_t now, remaining, iv; 672 struct timespec64 ts64; 673 bool sig_none; 674 675 sig_none = timr->it_sigev_notify == SIGEV_NONE; 676 iv = timr->it_interval; 677 678 /* interval timer ? */ 679 if (iv) { 680 cur_setting->it_interval = ktime_to_timespec64(iv); 681 } else if (!timr->it_active) { 682 /* 683 * SIGEV_NONE oneshot timers are never queued. Check them 684 * below. 685 */ 686 if (!sig_none) 687 return; 688 } 689 690 /* 691 * The timespec64 based conversion is suboptimal, but it's not 692 * worth to implement yet another callback. 693 */ 694 kc->clock_get(timr->it_clock, &ts64); 695 now = timespec64_to_ktime(ts64); 696 697 /* 698 * When a requeue is pending or this is a SIGEV_NONE timer move the 699 * expiry time forward by intervals, so expiry is > now. 700 */ 701 if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none)) 702 timr->it_overrun += kc->timer_forward(timr, now); 703 704 remaining = kc->timer_remaining(timr, now); 705 /* Return 0 only, when the timer is expired and not pending */ 706 if (remaining <= 0) { 707 /* 708 * A single shot SIGEV_NONE timer must return 0, when 709 * it is expired ! 710 */ 711 if (!sig_none) 712 cur_setting->it_value.tv_nsec = 1; 713 } else { 714 cur_setting->it_value = ktime_to_timespec64(remaining); 715 } 716 } 717 718 /* Get the time remaining on a POSIX.1b interval timer. */ 719 static int do_timer_gettime(timer_t timer_id, struct itimerspec64 *setting) 720 { 721 struct k_itimer *timr; 722 const struct k_clock *kc; 723 unsigned long flags; 724 int ret = 0; 725 726 timr = lock_timer(timer_id, &flags); 727 if (!timr) 728 return -EINVAL; 729 730 memset(setting, 0, sizeof(*setting)); 731 kc = timr->kclock; 732 if (WARN_ON_ONCE(!kc || !kc->timer_get)) 733 ret = -EINVAL; 734 else 735 kc->timer_get(timr, setting); 736 737 unlock_timer(timr, flags); 738 return ret; 739 } 740 741 /* Get the time remaining on a POSIX.1b interval timer. */ 742 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id, 743 struct __kernel_itimerspec __user *, setting) 744 { 745 struct itimerspec64 cur_setting; 746 747 int ret = do_timer_gettime(timer_id, &cur_setting); 748 if (!ret) { 749 if (put_itimerspec64(&cur_setting, setting)) 750 ret = -EFAULT; 751 } 752 return ret; 753 } 754 755 #ifdef CONFIG_COMPAT_32BIT_TIME 756 757 COMPAT_SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id, 758 struct old_itimerspec32 __user *, setting) 759 { 760 struct itimerspec64 cur_setting; 761 762 int ret = do_timer_gettime(timer_id, &cur_setting); 763 if (!ret) { 764 if (put_old_itimerspec32(&cur_setting, setting)) 765 ret = -EFAULT; 766 } 767 return ret; 768 } 769 770 #endif 771 772 /* 773 * Get the number of overruns of a POSIX.1b interval timer. This is to 774 * be the overrun of the timer last delivered. At the same time we are 775 * accumulating overruns on the next timer. The overrun is frozen when 776 * the signal is delivered, either at the notify time (if the info block 777 * is not queued) or at the actual delivery time (as we are informed by 778 * the call back to posixtimer_rearm(). So all we need to do is 779 * to pick up the frozen overrun. 780 */ 781 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id) 782 { 783 struct k_itimer *timr; 784 int overrun; 785 unsigned long flags; 786 787 timr = lock_timer(timer_id, &flags); 788 if (!timr) 789 return -EINVAL; 790 791 overrun = timer_overrun_to_int(timr, 0); 792 unlock_timer(timr, flags); 793 794 return overrun; 795 } 796 797 static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires, 798 bool absolute, bool sigev_none) 799 { 800 struct hrtimer *timer = &timr->it.real.timer; 801 enum hrtimer_mode mode; 802 803 mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL; 804 /* 805 * Posix magic: Relative CLOCK_REALTIME timers are not affected by 806 * clock modifications, so they become CLOCK_MONOTONIC based under the 807 * hood. See hrtimer_init(). Update timr->kclock, so the generic 808 * functions which use timr->kclock->clock_get() work. 809 * 810 * Note: it_clock stays unmodified, because the next timer_set() might 811 * use ABSTIME, so it needs to switch back. 812 */ 813 if (timr->it_clock == CLOCK_REALTIME) 814 timr->kclock = absolute ? &clock_realtime : &clock_monotonic; 815 816 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode); 817 timr->it.real.timer.function = posix_timer_fn; 818 819 if (!absolute) 820 expires = ktime_add_safe(expires, timer->base->get_time()); 821 hrtimer_set_expires(timer, expires); 822 823 if (!sigev_none) 824 hrtimer_start_expires(timer, HRTIMER_MODE_ABS); 825 } 826 827 static int common_hrtimer_try_to_cancel(struct k_itimer *timr) 828 { 829 return hrtimer_try_to_cancel(&timr->it.real.timer); 830 } 831 832 /* Set a POSIX.1b interval timer. */ 833 int common_timer_set(struct k_itimer *timr, int flags, 834 struct itimerspec64 *new_setting, 835 struct itimerspec64 *old_setting) 836 { 837 const struct k_clock *kc = timr->kclock; 838 bool sigev_none; 839 ktime_t expires; 840 841 if (old_setting) 842 common_timer_get(timr, old_setting); 843 844 /* Prevent rearming by clearing the interval */ 845 timr->it_interval = 0; 846 /* 847 * Careful here. On SMP systems the timer expiry function could be 848 * active and spinning on timr->it_lock. 849 */ 850 if (kc->timer_try_to_cancel(timr) < 0) 851 return TIMER_RETRY; 852 853 timr->it_active = 0; 854 timr->it_requeue_pending = (timr->it_requeue_pending + 2) & 855 ~REQUEUE_PENDING; 856 timr->it_overrun_last = 0; 857 858 /* Switch off the timer when it_value is zero */ 859 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) 860 return 0; 861 862 timr->it_interval = timespec64_to_ktime(new_setting->it_interval); 863 expires = timespec64_to_ktime(new_setting->it_value); 864 sigev_none = timr->it_sigev_notify == SIGEV_NONE; 865 866 kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none); 867 timr->it_active = !sigev_none; 868 return 0; 869 } 870 871 static int do_timer_settime(timer_t timer_id, int flags, 872 struct itimerspec64 *new_spec64, 873 struct itimerspec64 *old_spec64) 874 { 875 const struct k_clock *kc; 876 struct k_itimer *timr; 877 unsigned long flag; 878 int error = 0; 879 880 if (!timespec64_valid(&new_spec64->it_interval) || 881 !timespec64_valid(&new_spec64->it_value)) 882 return -EINVAL; 883 884 if (old_spec64) 885 memset(old_spec64, 0, sizeof(*old_spec64)); 886 retry: 887 timr = lock_timer(timer_id, &flag); 888 if (!timr) 889 return -EINVAL; 890 891 kc = timr->kclock; 892 if (WARN_ON_ONCE(!kc || !kc->timer_set)) 893 error = -EINVAL; 894 else 895 error = kc->timer_set(timr, flags, new_spec64, old_spec64); 896 897 unlock_timer(timr, flag); 898 if (error == TIMER_RETRY) { 899 old_spec64 = NULL; // We already got the old time... 900 goto retry; 901 } 902 903 return error; 904 } 905 906 /* Set a POSIX.1b interval timer */ 907 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags, 908 const struct __kernel_itimerspec __user *, new_setting, 909 struct __kernel_itimerspec __user *, old_setting) 910 { 911 struct itimerspec64 new_spec, old_spec; 912 struct itimerspec64 *rtn = old_setting ? &old_spec : NULL; 913 int error = 0; 914 915 if (!new_setting) 916 return -EINVAL; 917 918 if (get_itimerspec64(&new_spec, new_setting)) 919 return -EFAULT; 920 921 error = do_timer_settime(timer_id, flags, &new_spec, rtn); 922 if (!error && old_setting) { 923 if (put_itimerspec64(&old_spec, old_setting)) 924 error = -EFAULT; 925 } 926 return error; 927 } 928 929 #ifdef CONFIG_COMPAT_32BIT_TIME 930 COMPAT_SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags, 931 struct old_itimerspec32 __user *, new, 932 struct old_itimerspec32 __user *, old) 933 { 934 struct itimerspec64 new_spec, old_spec; 935 struct itimerspec64 *rtn = old ? &old_spec : NULL; 936 int error = 0; 937 938 if (!new) 939 return -EINVAL; 940 if (get_old_itimerspec32(&new_spec, new)) 941 return -EFAULT; 942 943 error = do_timer_settime(timer_id, flags, &new_spec, rtn); 944 if (!error && old) { 945 if (put_old_itimerspec32(&old_spec, old)) 946 error = -EFAULT; 947 } 948 return error; 949 } 950 #endif 951 952 int common_timer_del(struct k_itimer *timer) 953 { 954 const struct k_clock *kc = timer->kclock; 955 956 timer->it_interval = 0; 957 if (kc->timer_try_to_cancel(timer) < 0) 958 return TIMER_RETRY; 959 timer->it_active = 0; 960 return 0; 961 } 962 963 static inline int timer_delete_hook(struct k_itimer *timer) 964 { 965 const struct k_clock *kc = timer->kclock; 966 967 if (WARN_ON_ONCE(!kc || !kc->timer_del)) 968 return -EINVAL; 969 return kc->timer_del(timer); 970 } 971 972 /* Delete a POSIX.1b interval timer. */ 973 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id) 974 { 975 struct k_itimer *timer; 976 unsigned long flags; 977 978 retry_delete: 979 timer = lock_timer(timer_id, &flags); 980 if (!timer) 981 return -EINVAL; 982 983 if (timer_delete_hook(timer) == TIMER_RETRY) { 984 unlock_timer(timer, flags); 985 goto retry_delete; 986 } 987 988 spin_lock(¤t->sighand->siglock); 989 list_del(&timer->list); 990 spin_unlock(¤t->sighand->siglock); 991 /* 992 * This keeps any tasks waiting on the spin lock from thinking 993 * they got something (see the lock code above). 994 */ 995 timer->it_signal = NULL; 996 997 unlock_timer(timer, flags); 998 release_posix_timer(timer, IT_ID_SET); 999 return 0; 1000 } 1001 1002 /* 1003 * return timer owned by the process, used by exit_itimers 1004 */ 1005 static void itimer_delete(struct k_itimer *timer) 1006 { 1007 unsigned long flags; 1008 1009 retry_delete: 1010 spin_lock_irqsave(&timer->it_lock, flags); 1011 1012 if (timer_delete_hook(timer) == TIMER_RETRY) { 1013 unlock_timer(timer, flags); 1014 goto retry_delete; 1015 } 1016 list_del(&timer->list); 1017 /* 1018 * This keeps any tasks waiting on the spin lock from thinking 1019 * they got something (see the lock code above). 1020 */ 1021 timer->it_signal = NULL; 1022 1023 unlock_timer(timer, flags); 1024 release_posix_timer(timer, IT_ID_SET); 1025 } 1026 1027 /* 1028 * This is called by do_exit or de_thread, only when there are no more 1029 * references to the shared signal_struct. 1030 */ 1031 void exit_itimers(struct signal_struct *sig) 1032 { 1033 struct k_itimer *tmr; 1034 1035 while (!list_empty(&sig->posix_timers)) { 1036 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list); 1037 itimer_delete(tmr); 1038 } 1039 } 1040 1041 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock, 1042 const struct __kernel_timespec __user *, tp) 1043 { 1044 const struct k_clock *kc = clockid_to_kclock(which_clock); 1045 struct timespec64 new_tp; 1046 1047 if (!kc || !kc->clock_set) 1048 return -EINVAL; 1049 1050 if (get_timespec64(&new_tp, tp)) 1051 return -EFAULT; 1052 1053 return kc->clock_set(which_clock, &new_tp); 1054 } 1055 1056 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock, 1057 struct __kernel_timespec __user *, tp) 1058 { 1059 const struct k_clock *kc = clockid_to_kclock(which_clock); 1060 struct timespec64 kernel_tp; 1061 int error; 1062 1063 if (!kc) 1064 return -EINVAL; 1065 1066 error = kc->clock_get(which_clock, &kernel_tp); 1067 1068 if (!error && put_timespec64(&kernel_tp, tp)) 1069 error = -EFAULT; 1070 1071 return error; 1072 } 1073 1074 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock, 1075 struct timex __user *, utx) 1076 { 1077 const struct k_clock *kc = clockid_to_kclock(which_clock); 1078 struct timex ktx; 1079 int err; 1080 1081 if (!kc) 1082 return -EINVAL; 1083 if (!kc->clock_adj) 1084 return -EOPNOTSUPP; 1085 1086 if (copy_from_user(&ktx, utx, sizeof(ktx))) 1087 return -EFAULT; 1088 1089 err = kc->clock_adj(which_clock, &ktx); 1090 1091 if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx))) 1092 return -EFAULT; 1093 1094 return err; 1095 } 1096 1097 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock, 1098 struct __kernel_timespec __user *, tp) 1099 { 1100 const struct k_clock *kc = clockid_to_kclock(which_clock); 1101 struct timespec64 rtn_tp; 1102 int error; 1103 1104 if (!kc) 1105 return -EINVAL; 1106 1107 error = kc->clock_getres(which_clock, &rtn_tp); 1108 1109 if (!error && tp && put_timespec64(&rtn_tp, tp)) 1110 error = -EFAULT; 1111 1112 return error; 1113 } 1114 1115 #ifdef CONFIG_COMPAT_32BIT_TIME 1116 1117 COMPAT_SYSCALL_DEFINE2(clock_settime, clockid_t, which_clock, 1118 struct old_timespec32 __user *, tp) 1119 { 1120 const struct k_clock *kc = clockid_to_kclock(which_clock); 1121 struct timespec64 ts; 1122 1123 if (!kc || !kc->clock_set) 1124 return -EINVAL; 1125 1126 if (get_old_timespec32(&ts, tp)) 1127 return -EFAULT; 1128 1129 return kc->clock_set(which_clock, &ts); 1130 } 1131 1132 COMPAT_SYSCALL_DEFINE2(clock_gettime, clockid_t, which_clock, 1133 struct old_timespec32 __user *, tp) 1134 { 1135 const struct k_clock *kc = clockid_to_kclock(which_clock); 1136 struct timespec64 ts; 1137 int err; 1138 1139 if (!kc) 1140 return -EINVAL; 1141 1142 err = kc->clock_get(which_clock, &ts); 1143 1144 if (!err && put_old_timespec32(&ts, tp)) 1145 err = -EFAULT; 1146 1147 return err; 1148 } 1149 1150 #endif 1151 1152 #ifdef CONFIG_COMPAT 1153 1154 COMPAT_SYSCALL_DEFINE2(clock_adjtime, clockid_t, which_clock, 1155 struct compat_timex __user *, utp) 1156 { 1157 const struct k_clock *kc = clockid_to_kclock(which_clock); 1158 struct timex ktx; 1159 int err; 1160 1161 if (!kc) 1162 return -EINVAL; 1163 if (!kc->clock_adj) 1164 return -EOPNOTSUPP; 1165 1166 err = compat_get_timex(&ktx, utp); 1167 if (err) 1168 return err; 1169 1170 err = kc->clock_adj(which_clock, &ktx); 1171 1172 if (err >= 0) 1173 err = compat_put_timex(utp, &ktx); 1174 1175 return err; 1176 } 1177 1178 #endif 1179 1180 #ifdef CONFIG_COMPAT_32BIT_TIME 1181 1182 COMPAT_SYSCALL_DEFINE2(clock_getres, clockid_t, which_clock, 1183 struct old_timespec32 __user *, tp) 1184 { 1185 const struct k_clock *kc = clockid_to_kclock(which_clock); 1186 struct timespec64 ts; 1187 int err; 1188 1189 if (!kc) 1190 return -EINVAL; 1191 1192 err = kc->clock_getres(which_clock, &ts); 1193 if (!err && tp && put_old_timespec32(&ts, tp)) 1194 return -EFAULT; 1195 1196 return err; 1197 } 1198 1199 #endif 1200 1201 /* 1202 * nanosleep for monotonic and realtime clocks 1203 */ 1204 static int common_nsleep(const clockid_t which_clock, int flags, 1205 const struct timespec64 *rqtp) 1206 { 1207 return hrtimer_nanosleep(rqtp, flags & TIMER_ABSTIME ? 1208 HRTIMER_MODE_ABS : HRTIMER_MODE_REL, 1209 which_clock); 1210 } 1211 1212 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags, 1213 const struct __kernel_timespec __user *, rqtp, 1214 struct __kernel_timespec __user *, rmtp) 1215 { 1216 const struct k_clock *kc = clockid_to_kclock(which_clock); 1217 struct timespec64 t; 1218 1219 if (!kc) 1220 return -EINVAL; 1221 if (!kc->nsleep) 1222 return -EOPNOTSUPP; 1223 1224 if (get_timespec64(&t, rqtp)) 1225 return -EFAULT; 1226 1227 if (!timespec64_valid(&t)) 1228 return -EINVAL; 1229 if (flags & TIMER_ABSTIME) 1230 rmtp = NULL; 1231 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; 1232 current->restart_block.nanosleep.rmtp = rmtp; 1233 1234 return kc->nsleep(which_clock, flags, &t); 1235 } 1236 1237 #ifdef CONFIG_COMPAT_32BIT_TIME 1238 1239 COMPAT_SYSCALL_DEFINE4(clock_nanosleep, clockid_t, which_clock, int, flags, 1240 struct old_timespec32 __user *, rqtp, 1241 struct old_timespec32 __user *, rmtp) 1242 { 1243 const struct k_clock *kc = clockid_to_kclock(which_clock); 1244 struct timespec64 t; 1245 1246 if (!kc) 1247 return -EINVAL; 1248 if (!kc->nsleep) 1249 return -EOPNOTSUPP; 1250 1251 if (get_old_timespec32(&t, rqtp)) 1252 return -EFAULT; 1253 1254 if (!timespec64_valid(&t)) 1255 return -EINVAL; 1256 if (flags & TIMER_ABSTIME) 1257 rmtp = NULL; 1258 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; 1259 current->restart_block.nanosleep.compat_rmtp = rmtp; 1260 1261 return kc->nsleep(which_clock, flags, &t); 1262 } 1263 1264 #endif 1265 1266 static const struct k_clock clock_realtime = { 1267 .clock_getres = posix_get_hrtimer_res, 1268 .clock_get = posix_clock_realtime_get, 1269 .clock_set = posix_clock_realtime_set, 1270 .clock_adj = posix_clock_realtime_adj, 1271 .nsleep = common_nsleep, 1272 .timer_create = common_timer_create, 1273 .timer_set = common_timer_set, 1274 .timer_get = common_timer_get, 1275 .timer_del = common_timer_del, 1276 .timer_rearm = common_hrtimer_rearm, 1277 .timer_forward = common_hrtimer_forward, 1278 .timer_remaining = common_hrtimer_remaining, 1279 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1280 .timer_arm = common_hrtimer_arm, 1281 }; 1282 1283 static const struct k_clock clock_monotonic = { 1284 .clock_getres = posix_get_hrtimer_res, 1285 .clock_get = posix_ktime_get_ts, 1286 .nsleep = common_nsleep, 1287 .timer_create = common_timer_create, 1288 .timer_set = common_timer_set, 1289 .timer_get = common_timer_get, 1290 .timer_del = common_timer_del, 1291 .timer_rearm = common_hrtimer_rearm, 1292 .timer_forward = common_hrtimer_forward, 1293 .timer_remaining = common_hrtimer_remaining, 1294 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1295 .timer_arm = common_hrtimer_arm, 1296 }; 1297 1298 static const struct k_clock clock_monotonic_raw = { 1299 .clock_getres = posix_get_hrtimer_res, 1300 .clock_get = posix_get_monotonic_raw, 1301 }; 1302 1303 static const struct k_clock clock_realtime_coarse = { 1304 .clock_getres = posix_get_coarse_res, 1305 .clock_get = posix_get_realtime_coarse, 1306 }; 1307 1308 static const struct k_clock clock_monotonic_coarse = { 1309 .clock_getres = posix_get_coarse_res, 1310 .clock_get = posix_get_monotonic_coarse, 1311 }; 1312 1313 static const struct k_clock clock_tai = { 1314 .clock_getres = posix_get_hrtimer_res, 1315 .clock_get = posix_get_tai, 1316 .nsleep = common_nsleep, 1317 .timer_create = common_timer_create, 1318 .timer_set = common_timer_set, 1319 .timer_get = common_timer_get, 1320 .timer_del = common_timer_del, 1321 .timer_rearm = common_hrtimer_rearm, 1322 .timer_forward = common_hrtimer_forward, 1323 .timer_remaining = common_hrtimer_remaining, 1324 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1325 .timer_arm = common_hrtimer_arm, 1326 }; 1327 1328 static const struct k_clock clock_boottime = { 1329 .clock_getres = posix_get_hrtimer_res, 1330 .clock_get = posix_get_boottime, 1331 .nsleep = common_nsleep, 1332 .timer_create = common_timer_create, 1333 .timer_set = common_timer_set, 1334 .timer_get = common_timer_get, 1335 .timer_del = common_timer_del, 1336 .timer_rearm = common_hrtimer_rearm, 1337 .timer_forward = common_hrtimer_forward, 1338 .timer_remaining = common_hrtimer_remaining, 1339 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1340 .timer_arm = common_hrtimer_arm, 1341 }; 1342 1343 static const struct k_clock * const posix_clocks[] = { 1344 [CLOCK_REALTIME] = &clock_realtime, 1345 [CLOCK_MONOTONIC] = &clock_monotonic, 1346 [CLOCK_PROCESS_CPUTIME_ID] = &clock_process, 1347 [CLOCK_THREAD_CPUTIME_ID] = &clock_thread, 1348 [CLOCK_MONOTONIC_RAW] = &clock_monotonic_raw, 1349 [CLOCK_REALTIME_COARSE] = &clock_realtime_coarse, 1350 [CLOCK_MONOTONIC_COARSE] = &clock_monotonic_coarse, 1351 [CLOCK_BOOTTIME] = &clock_boottime, 1352 [CLOCK_REALTIME_ALARM] = &alarm_clock, 1353 [CLOCK_BOOTTIME_ALARM] = &alarm_clock, 1354 [CLOCK_TAI] = &clock_tai, 1355 }; 1356 1357 static const struct k_clock *clockid_to_kclock(const clockid_t id) 1358 { 1359 clockid_t idx = id; 1360 1361 if (id < 0) { 1362 return (id & CLOCKFD_MASK) == CLOCKFD ? 1363 &clock_posix_dynamic : &clock_posix_cpu; 1364 } 1365 1366 if (id >= ARRAY_SIZE(posix_clocks)) 1367 return NULL; 1368 1369 return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))]; 1370 } 1371