1 /* 2 * linux/kernel/posix-timers.c 3 * 4 * 5 * 2002-10-15 Posix Clocks & timers 6 * by George Anzinger george@mvista.com 7 * 8 * Copyright (C) 2002 2003 by MontaVista Software. 9 * 10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug. 11 * Copyright (C) 2004 Boris Hu 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; either version 2 of the License, or (at 16 * your option) any later version. 17 * 18 * This program is distributed in the hope that it will be useful, but 19 * WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 21 * General Public License for more details. 22 23 * You should have received a copy of the GNU General Public License 24 * along with this program; if not, write to the Free Software 25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 26 * 27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA 28 */ 29 30 /* These are all the functions necessary to implement 31 * POSIX clocks & timers 32 */ 33 #include <linux/mm.h> 34 #include <linux/interrupt.h> 35 #include <linux/slab.h> 36 #include <linux/time.h> 37 #include <linux/mutex.h> 38 #include <linux/sched/task.h> 39 40 #include <linux/uaccess.h> 41 #include <linux/list.h> 42 #include <linux/init.h> 43 #include <linux/compiler.h> 44 #include <linux/hash.h> 45 #include <linux/posix-clock.h> 46 #include <linux/posix-timers.h> 47 #include <linux/syscalls.h> 48 #include <linux/wait.h> 49 #include <linux/workqueue.h> 50 #include <linux/export.h> 51 #include <linux/hashtable.h> 52 #include <linux/compat.h> 53 #include <linux/nospec.h> 54 55 #include "timekeeping.h" 56 #include "posix-timers.h" 57 58 /* 59 * Management arrays for POSIX timers. Timers are now kept in static hash table 60 * with 512 entries. 61 * Timer ids are allocated by local routine, which selects proper hash head by 62 * key, constructed from current->signal address and per signal struct counter. 63 * This keeps timer ids unique per process, but now they can intersect between 64 * processes. 65 */ 66 67 /* 68 * Lets keep our timers in a slab cache :-) 69 */ 70 static struct kmem_cache *posix_timers_cache; 71 72 static DEFINE_HASHTABLE(posix_timers_hashtable, 9); 73 static DEFINE_SPINLOCK(hash_lock); 74 75 static const struct k_clock * const posix_clocks[]; 76 static const struct k_clock *clockid_to_kclock(const clockid_t id); 77 static const struct k_clock clock_realtime, clock_monotonic; 78 79 /* 80 * we assume that the new SIGEV_THREAD_ID shares no bits with the other 81 * SIGEV values. Here we put out an error if this assumption fails. 82 */ 83 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \ 84 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD)) 85 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!" 86 #endif 87 88 /* 89 * parisc wants ENOTSUP instead of EOPNOTSUPP 90 */ 91 #ifndef ENOTSUP 92 # define ENANOSLEEP_NOTSUP EOPNOTSUPP 93 #else 94 # define ENANOSLEEP_NOTSUP ENOTSUP 95 #endif 96 97 /* 98 * The timer ID is turned into a timer address by idr_find(). 99 * Verifying a valid ID consists of: 100 * 101 * a) checking that idr_find() returns other than -1. 102 * b) checking that the timer id matches the one in the timer itself. 103 * c) that the timer owner is in the callers thread group. 104 */ 105 106 /* 107 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us 108 * to implement others. This structure defines the various 109 * clocks. 110 * 111 * RESOLUTION: Clock resolution is used to round up timer and interval 112 * times, NOT to report clock times, which are reported with as 113 * much resolution as the system can muster. In some cases this 114 * resolution may depend on the underlying clock hardware and 115 * may not be quantifiable until run time, and only then is the 116 * necessary code is written. The standard says we should say 117 * something about this issue in the documentation... 118 * 119 * FUNCTIONS: The CLOCKs structure defines possible functions to 120 * handle various clock functions. 121 * 122 * The standard POSIX timer management code assumes the 123 * following: 1.) The k_itimer struct (sched.h) is used for 124 * the timer. 2.) The list, it_lock, it_clock, it_id and 125 * it_pid fields are not modified by timer code. 126 * 127 * Permissions: It is assumed that the clock_settime() function defined 128 * for each clock will take care of permission checks. Some 129 * clocks may be set able by any user (i.e. local process 130 * clocks) others not. Currently the only set able clock we 131 * have is CLOCK_REALTIME and its high res counter part, both of 132 * which we beg off on and pass to do_sys_settimeofday(). 133 */ 134 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags); 135 136 #define lock_timer(tid, flags) \ 137 ({ struct k_itimer *__timr; \ 138 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \ 139 __timr; \ 140 }) 141 142 static int hash(struct signal_struct *sig, unsigned int nr) 143 { 144 return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable)); 145 } 146 147 static struct k_itimer *__posix_timers_find(struct hlist_head *head, 148 struct signal_struct *sig, 149 timer_t id) 150 { 151 struct k_itimer *timer; 152 153 hlist_for_each_entry_rcu(timer, head, t_hash) { 154 if ((timer->it_signal == sig) && (timer->it_id == id)) 155 return timer; 156 } 157 return NULL; 158 } 159 160 static struct k_itimer *posix_timer_by_id(timer_t id) 161 { 162 struct signal_struct *sig = current->signal; 163 struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)]; 164 165 return __posix_timers_find(head, sig, id); 166 } 167 168 static int posix_timer_add(struct k_itimer *timer) 169 { 170 struct signal_struct *sig = current->signal; 171 int first_free_id = sig->posix_timer_id; 172 struct hlist_head *head; 173 int ret = -ENOENT; 174 175 do { 176 spin_lock(&hash_lock); 177 head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)]; 178 if (!__posix_timers_find(head, sig, sig->posix_timer_id)) { 179 hlist_add_head_rcu(&timer->t_hash, head); 180 ret = sig->posix_timer_id; 181 } 182 if (++sig->posix_timer_id < 0) 183 sig->posix_timer_id = 0; 184 if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT)) 185 /* Loop over all possible ids completed */ 186 ret = -EAGAIN; 187 spin_unlock(&hash_lock); 188 } while (ret == -ENOENT); 189 return ret; 190 } 191 192 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags) 193 { 194 spin_unlock_irqrestore(&timr->it_lock, flags); 195 } 196 197 /* Get clock_realtime */ 198 static int posix_clock_realtime_get(clockid_t which_clock, struct timespec64 *tp) 199 { 200 ktime_get_real_ts64(tp); 201 return 0; 202 } 203 204 /* Set clock_realtime */ 205 static int posix_clock_realtime_set(const clockid_t which_clock, 206 const struct timespec64 *tp) 207 { 208 return do_sys_settimeofday64(tp, NULL); 209 } 210 211 static int posix_clock_realtime_adj(const clockid_t which_clock, 212 struct timex *t) 213 { 214 return do_adjtimex(t); 215 } 216 217 /* 218 * Get monotonic time for posix timers 219 */ 220 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec64 *tp) 221 { 222 ktime_get_ts64(tp); 223 return 0; 224 } 225 226 /* 227 * Get monotonic-raw time for posix timers 228 */ 229 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp) 230 { 231 getrawmonotonic64(tp); 232 return 0; 233 } 234 235 236 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp) 237 { 238 *tp = current_kernel_time64(); 239 return 0; 240 } 241 242 static int posix_get_monotonic_coarse(clockid_t which_clock, 243 struct timespec64 *tp) 244 { 245 *tp = get_monotonic_coarse64(); 246 return 0; 247 } 248 249 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp) 250 { 251 *tp = ktime_to_timespec64(KTIME_LOW_RES); 252 return 0; 253 } 254 255 static int posix_get_boottime(const clockid_t which_clock, struct timespec64 *tp) 256 { 257 get_monotonic_boottime64(tp); 258 return 0; 259 } 260 261 static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp) 262 { 263 timekeeping_clocktai64(tp); 264 return 0; 265 } 266 267 static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp) 268 { 269 tp->tv_sec = 0; 270 tp->tv_nsec = hrtimer_resolution; 271 return 0; 272 } 273 274 /* 275 * Initialize everything, well, just everything in Posix clocks/timers ;) 276 */ 277 static __init int init_posix_timers(void) 278 { 279 posix_timers_cache = kmem_cache_create("posix_timers_cache", 280 sizeof (struct k_itimer), 0, SLAB_PANIC, 281 NULL); 282 return 0; 283 } 284 __initcall(init_posix_timers); 285 286 static void common_hrtimer_rearm(struct k_itimer *timr) 287 { 288 struct hrtimer *timer = &timr->it.real.timer; 289 290 if (!timr->it_interval) 291 return; 292 293 timr->it_overrun += (unsigned int) hrtimer_forward(timer, 294 timer->base->get_time(), 295 timr->it_interval); 296 hrtimer_restart(timer); 297 } 298 299 /* 300 * This function is exported for use by the signal deliver code. It is 301 * called just prior to the info block being released and passes that 302 * block to us. It's function is to update the overrun entry AND to 303 * restart the timer. It should only be called if the timer is to be 304 * restarted (i.e. we have flagged this in the sys_private entry of the 305 * info block). 306 * 307 * To protect against the timer going away while the interrupt is queued, 308 * we require that the it_requeue_pending flag be set. 309 */ 310 void posixtimer_rearm(struct siginfo *info) 311 { 312 struct k_itimer *timr; 313 unsigned long flags; 314 315 timr = lock_timer(info->si_tid, &flags); 316 if (!timr) 317 return; 318 319 if (timr->it_requeue_pending == info->si_sys_private) { 320 timr->kclock->timer_rearm(timr); 321 322 timr->it_active = 1; 323 timr->it_overrun_last = timr->it_overrun; 324 timr->it_overrun = -1; 325 ++timr->it_requeue_pending; 326 327 info->si_overrun += timr->it_overrun_last; 328 } 329 330 unlock_timer(timr, flags); 331 } 332 333 int posix_timer_event(struct k_itimer *timr, int si_private) 334 { 335 struct task_struct *task; 336 int shared, ret = -1; 337 /* 338 * FIXME: if ->sigq is queued we can race with 339 * dequeue_signal()->posixtimer_rearm(). 340 * 341 * If dequeue_signal() sees the "right" value of 342 * si_sys_private it calls posixtimer_rearm(). 343 * We re-queue ->sigq and drop ->it_lock(). 344 * posixtimer_rearm() locks the timer 345 * and re-schedules it while ->sigq is pending. 346 * Not really bad, but not that we want. 347 */ 348 timr->sigq->info.si_sys_private = si_private; 349 350 rcu_read_lock(); 351 task = pid_task(timr->it_pid, PIDTYPE_PID); 352 if (task) { 353 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID); 354 ret = send_sigqueue(timr->sigq, task, shared); 355 } 356 rcu_read_unlock(); 357 /* If we failed to send the signal the timer stops. */ 358 return ret > 0; 359 } 360 361 /* 362 * This function gets called when a POSIX.1b interval timer expires. It 363 * is used as a callback from the kernel internal timer. The 364 * run_timer_list code ALWAYS calls with interrupts on. 365 366 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers. 367 */ 368 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer) 369 { 370 struct k_itimer *timr; 371 unsigned long flags; 372 int si_private = 0; 373 enum hrtimer_restart ret = HRTIMER_NORESTART; 374 375 timr = container_of(timer, struct k_itimer, it.real.timer); 376 spin_lock_irqsave(&timr->it_lock, flags); 377 378 timr->it_active = 0; 379 if (timr->it_interval != 0) 380 si_private = ++timr->it_requeue_pending; 381 382 if (posix_timer_event(timr, si_private)) { 383 /* 384 * signal was not sent because of sig_ignor 385 * we will not get a call back to restart it AND 386 * it should be restarted. 387 */ 388 if (timr->it_interval != 0) { 389 ktime_t now = hrtimer_cb_get_time(timer); 390 391 /* 392 * FIXME: What we really want, is to stop this 393 * timer completely and restart it in case the 394 * SIG_IGN is removed. This is a non trivial 395 * change which involves sighand locking 396 * (sigh !), which we don't want to do late in 397 * the release cycle. 398 * 399 * For now we just let timers with an interval 400 * less than a jiffie expire every jiffie to 401 * avoid softirq starvation in case of SIG_IGN 402 * and a very small interval, which would put 403 * the timer right back on the softirq pending 404 * list. By moving now ahead of time we trick 405 * hrtimer_forward() to expire the timer 406 * later, while we still maintain the overrun 407 * accuracy, but have some inconsistency in 408 * the timer_gettime() case. This is at least 409 * better than a starved softirq. A more 410 * complex fix which solves also another related 411 * inconsistency is already in the pipeline. 412 */ 413 #ifdef CONFIG_HIGH_RES_TIMERS 414 { 415 ktime_t kj = NSEC_PER_SEC / HZ; 416 417 if (timr->it_interval < kj) 418 now = ktime_add(now, kj); 419 } 420 #endif 421 timr->it_overrun += (unsigned int) 422 hrtimer_forward(timer, now, 423 timr->it_interval); 424 ret = HRTIMER_RESTART; 425 ++timr->it_requeue_pending; 426 timr->it_active = 1; 427 } 428 } 429 430 unlock_timer(timr, flags); 431 return ret; 432 } 433 434 static struct pid *good_sigevent(sigevent_t * event) 435 { 436 struct task_struct *rtn = current->group_leader; 437 438 switch (event->sigev_notify) { 439 case SIGEV_SIGNAL | SIGEV_THREAD_ID: 440 rtn = find_task_by_vpid(event->sigev_notify_thread_id); 441 if (!rtn || !same_thread_group(rtn, current)) 442 return NULL; 443 /* FALLTHRU */ 444 case SIGEV_SIGNAL: 445 case SIGEV_THREAD: 446 if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX) 447 return NULL; 448 /* FALLTHRU */ 449 case SIGEV_NONE: 450 return task_pid(rtn); 451 default: 452 return NULL; 453 } 454 } 455 456 static struct k_itimer * alloc_posix_timer(void) 457 { 458 struct k_itimer *tmr; 459 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL); 460 if (!tmr) 461 return tmr; 462 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) { 463 kmem_cache_free(posix_timers_cache, tmr); 464 return NULL; 465 } 466 clear_siginfo(&tmr->sigq->info); 467 return tmr; 468 } 469 470 static void k_itimer_rcu_free(struct rcu_head *head) 471 { 472 struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu); 473 474 kmem_cache_free(posix_timers_cache, tmr); 475 } 476 477 #define IT_ID_SET 1 478 #define IT_ID_NOT_SET 0 479 static void release_posix_timer(struct k_itimer *tmr, int it_id_set) 480 { 481 if (it_id_set) { 482 unsigned long flags; 483 spin_lock_irqsave(&hash_lock, flags); 484 hlist_del_rcu(&tmr->t_hash); 485 spin_unlock_irqrestore(&hash_lock, flags); 486 } 487 put_pid(tmr->it_pid); 488 sigqueue_free(tmr->sigq); 489 call_rcu(&tmr->it.rcu, k_itimer_rcu_free); 490 } 491 492 static int common_timer_create(struct k_itimer *new_timer) 493 { 494 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0); 495 return 0; 496 } 497 498 /* Create a POSIX.1b interval timer. */ 499 static int do_timer_create(clockid_t which_clock, struct sigevent *event, 500 timer_t __user *created_timer_id) 501 { 502 const struct k_clock *kc = clockid_to_kclock(which_clock); 503 struct k_itimer *new_timer; 504 int error, new_timer_id; 505 int it_id_set = IT_ID_NOT_SET; 506 507 if (!kc) 508 return -EINVAL; 509 if (!kc->timer_create) 510 return -EOPNOTSUPP; 511 512 new_timer = alloc_posix_timer(); 513 if (unlikely(!new_timer)) 514 return -EAGAIN; 515 516 spin_lock_init(&new_timer->it_lock); 517 new_timer_id = posix_timer_add(new_timer); 518 if (new_timer_id < 0) { 519 error = new_timer_id; 520 goto out; 521 } 522 523 it_id_set = IT_ID_SET; 524 new_timer->it_id = (timer_t) new_timer_id; 525 new_timer->it_clock = which_clock; 526 new_timer->kclock = kc; 527 new_timer->it_overrun = -1; 528 529 if (event) { 530 rcu_read_lock(); 531 new_timer->it_pid = get_pid(good_sigevent(event)); 532 rcu_read_unlock(); 533 if (!new_timer->it_pid) { 534 error = -EINVAL; 535 goto out; 536 } 537 new_timer->it_sigev_notify = event->sigev_notify; 538 new_timer->sigq->info.si_signo = event->sigev_signo; 539 new_timer->sigq->info.si_value = event->sigev_value; 540 } else { 541 new_timer->it_sigev_notify = SIGEV_SIGNAL; 542 new_timer->sigq->info.si_signo = SIGALRM; 543 memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t)); 544 new_timer->sigq->info.si_value.sival_int = new_timer->it_id; 545 new_timer->it_pid = get_pid(task_tgid(current)); 546 } 547 548 new_timer->sigq->info.si_tid = new_timer->it_id; 549 new_timer->sigq->info.si_code = SI_TIMER; 550 551 if (copy_to_user(created_timer_id, 552 &new_timer_id, sizeof (new_timer_id))) { 553 error = -EFAULT; 554 goto out; 555 } 556 557 error = kc->timer_create(new_timer); 558 if (error) 559 goto out; 560 561 spin_lock_irq(¤t->sighand->siglock); 562 new_timer->it_signal = current->signal; 563 list_add(&new_timer->list, ¤t->signal->posix_timers); 564 spin_unlock_irq(¤t->sighand->siglock); 565 566 return 0; 567 /* 568 * In the case of the timer belonging to another task, after 569 * the task is unlocked, the timer is owned by the other task 570 * and may cease to exist at any time. Don't use or modify 571 * new_timer after the unlock call. 572 */ 573 out: 574 release_posix_timer(new_timer, it_id_set); 575 return error; 576 } 577 578 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock, 579 struct sigevent __user *, timer_event_spec, 580 timer_t __user *, created_timer_id) 581 { 582 if (timer_event_spec) { 583 sigevent_t event; 584 585 if (copy_from_user(&event, timer_event_spec, sizeof (event))) 586 return -EFAULT; 587 return do_timer_create(which_clock, &event, created_timer_id); 588 } 589 return do_timer_create(which_clock, NULL, created_timer_id); 590 } 591 592 #ifdef CONFIG_COMPAT 593 COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock, 594 struct compat_sigevent __user *, timer_event_spec, 595 timer_t __user *, created_timer_id) 596 { 597 if (timer_event_spec) { 598 sigevent_t event; 599 600 if (get_compat_sigevent(&event, timer_event_spec)) 601 return -EFAULT; 602 return do_timer_create(which_clock, &event, created_timer_id); 603 } 604 return do_timer_create(which_clock, NULL, created_timer_id); 605 } 606 #endif 607 608 /* 609 * Locking issues: We need to protect the result of the id look up until 610 * we get the timer locked down so it is not deleted under us. The 611 * removal is done under the idr spinlock so we use that here to bridge 612 * the find to the timer lock. To avoid a dead lock, the timer id MUST 613 * be release with out holding the timer lock. 614 */ 615 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags) 616 { 617 struct k_itimer *timr; 618 619 /* 620 * timer_t could be any type >= int and we want to make sure any 621 * @timer_id outside positive int range fails lookup. 622 */ 623 if ((unsigned long long)timer_id > INT_MAX) 624 return NULL; 625 626 rcu_read_lock(); 627 timr = posix_timer_by_id(timer_id); 628 if (timr) { 629 spin_lock_irqsave(&timr->it_lock, *flags); 630 if (timr->it_signal == current->signal) { 631 rcu_read_unlock(); 632 return timr; 633 } 634 spin_unlock_irqrestore(&timr->it_lock, *flags); 635 } 636 rcu_read_unlock(); 637 638 return NULL; 639 } 640 641 static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now) 642 { 643 struct hrtimer *timer = &timr->it.real.timer; 644 645 return __hrtimer_expires_remaining_adjusted(timer, now); 646 } 647 648 static int common_hrtimer_forward(struct k_itimer *timr, ktime_t now) 649 { 650 struct hrtimer *timer = &timr->it.real.timer; 651 652 return (int)hrtimer_forward(timer, now, timr->it_interval); 653 } 654 655 /* 656 * Get the time remaining on a POSIX.1b interval timer. This function 657 * is ALWAYS called with spin_lock_irq on the timer, thus it must not 658 * mess with irq. 659 * 660 * We have a couple of messes to clean up here. First there is the case 661 * of a timer that has a requeue pending. These timers should appear to 662 * be in the timer list with an expiry as if we were to requeue them 663 * now. 664 * 665 * The second issue is the SIGEV_NONE timer which may be active but is 666 * not really ever put in the timer list (to save system resources). 667 * This timer may be expired, and if so, we will do it here. Otherwise 668 * it is the same as a requeue pending timer WRT to what we should 669 * report. 670 */ 671 void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting) 672 { 673 const struct k_clock *kc = timr->kclock; 674 ktime_t now, remaining, iv; 675 struct timespec64 ts64; 676 bool sig_none; 677 678 sig_none = timr->it_sigev_notify == SIGEV_NONE; 679 iv = timr->it_interval; 680 681 /* interval timer ? */ 682 if (iv) { 683 cur_setting->it_interval = ktime_to_timespec64(iv); 684 } else if (!timr->it_active) { 685 /* 686 * SIGEV_NONE oneshot timers are never queued. Check them 687 * below. 688 */ 689 if (!sig_none) 690 return; 691 } 692 693 /* 694 * The timespec64 based conversion is suboptimal, but it's not 695 * worth to implement yet another callback. 696 */ 697 kc->clock_get(timr->it_clock, &ts64); 698 now = timespec64_to_ktime(ts64); 699 700 /* 701 * When a requeue is pending or this is a SIGEV_NONE timer move the 702 * expiry time forward by intervals, so expiry is > now. 703 */ 704 if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none)) 705 timr->it_overrun += kc->timer_forward(timr, now); 706 707 remaining = kc->timer_remaining(timr, now); 708 /* Return 0 only, when the timer is expired and not pending */ 709 if (remaining <= 0) { 710 /* 711 * A single shot SIGEV_NONE timer must return 0, when 712 * it is expired ! 713 */ 714 if (!sig_none) 715 cur_setting->it_value.tv_nsec = 1; 716 } else { 717 cur_setting->it_value = ktime_to_timespec64(remaining); 718 } 719 } 720 721 /* Get the time remaining on a POSIX.1b interval timer. */ 722 static int do_timer_gettime(timer_t timer_id, struct itimerspec64 *setting) 723 { 724 struct k_itimer *timr; 725 const struct k_clock *kc; 726 unsigned long flags; 727 int ret = 0; 728 729 timr = lock_timer(timer_id, &flags); 730 if (!timr) 731 return -EINVAL; 732 733 memset(setting, 0, sizeof(*setting)); 734 kc = timr->kclock; 735 if (WARN_ON_ONCE(!kc || !kc->timer_get)) 736 ret = -EINVAL; 737 else 738 kc->timer_get(timr, setting); 739 740 unlock_timer(timr, flags); 741 return ret; 742 } 743 744 /* Get the time remaining on a POSIX.1b interval timer. */ 745 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id, 746 struct itimerspec __user *, setting) 747 { 748 struct itimerspec64 cur_setting; 749 750 int ret = do_timer_gettime(timer_id, &cur_setting); 751 if (!ret) { 752 if (put_itimerspec64(&cur_setting, setting)) 753 ret = -EFAULT; 754 } 755 return ret; 756 } 757 758 #ifdef CONFIG_COMPAT 759 COMPAT_SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id, 760 struct compat_itimerspec __user *, setting) 761 { 762 struct itimerspec64 cur_setting; 763 764 int ret = do_timer_gettime(timer_id, &cur_setting); 765 if (!ret) { 766 if (put_compat_itimerspec64(&cur_setting, setting)) 767 ret = -EFAULT; 768 } 769 return ret; 770 } 771 #endif 772 773 /* 774 * Get the number of overruns of a POSIX.1b interval timer. This is to 775 * be the overrun of the timer last delivered. At the same time we are 776 * accumulating overruns on the next timer. The overrun is frozen when 777 * the signal is delivered, either at the notify time (if the info block 778 * is not queued) or at the actual delivery time (as we are informed by 779 * the call back to posixtimer_rearm(). So all we need to do is 780 * to pick up the frozen overrun. 781 */ 782 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id) 783 { 784 struct k_itimer *timr; 785 int overrun; 786 unsigned long flags; 787 788 timr = lock_timer(timer_id, &flags); 789 if (!timr) 790 return -EINVAL; 791 792 overrun = timr->it_overrun_last; 793 unlock_timer(timr, flags); 794 795 return overrun; 796 } 797 798 static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires, 799 bool absolute, bool sigev_none) 800 { 801 struct hrtimer *timer = &timr->it.real.timer; 802 enum hrtimer_mode mode; 803 804 mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL; 805 /* 806 * Posix magic: Relative CLOCK_REALTIME timers are not affected by 807 * clock modifications, so they become CLOCK_MONOTONIC based under the 808 * hood. See hrtimer_init(). Update timr->kclock, so the generic 809 * functions which use timr->kclock->clock_get() work. 810 * 811 * Note: it_clock stays unmodified, because the next timer_set() might 812 * use ABSTIME, so it needs to switch back. 813 */ 814 if (timr->it_clock == CLOCK_REALTIME) 815 timr->kclock = absolute ? &clock_realtime : &clock_monotonic; 816 817 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode); 818 timr->it.real.timer.function = posix_timer_fn; 819 820 if (!absolute) 821 expires = ktime_add_safe(expires, timer->base->get_time()); 822 hrtimer_set_expires(timer, expires); 823 824 if (!sigev_none) 825 hrtimer_start_expires(timer, HRTIMER_MODE_ABS); 826 } 827 828 static int common_hrtimer_try_to_cancel(struct k_itimer *timr) 829 { 830 return hrtimer_try_to_cancel(&timr->it.real.timer); 831 } 832 833 /* Set a POSIX.1b interval timer. */ 834 int common_timer_set(struct k_itimer *timr, int flags, 835 struct itimerspec64 *new_setting, 836 struct itimerspec64 *old_setting) 837 { 838 const struct k_clock *kc = timr->kclock; 839 bool sigev_none; 840 ktime_t expires; 841 842 if (old_setting) 843 common_timer_get(timr, old_setting); 844 845 /* Prevent rearming by clearing the interval */ 846 timr->it_interval = 0; 847 /* 848 * Careful here. On SMP systems the timer expiry function could be 849 * active and spinning on timr->it_lock. 850 */ 851 if (kc->timer_try_to_cancel(timr) < 0) 852 return TIMER_RETRY; 853 854 timr->it_active = 0; 855 timr->it_requeue_pending = (timr->it_requeue_pending + 2) & 856 ~REQUEUE_PENDING; 857 timr->it_overrun_last = 0; 858 859 /* Switch off the timer when it_value is zero */ 860 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) 861 return 0; 862 863 timr->it_interval = timespec64_to_ktime(new_setting->it_interval); 864 expires = timespec64_to_ktime(new_setting->it_value); 865 sigev_none = timr->it_sigev_notify == SIGEV_NONE; 866 867 kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none); 868 timr->it_active = !sigev_none; 869 return 0; 870 } 871 872 static int do_timer_settime(timer_t timer_id, int flags, 873 struct itimerspec64 *new_spec64, 874 struct itimerspec64 *old_spec64) 875 { 876 const struct k_clock *kc; 877 struct k_itimer *timr; 878 unsigned long flag; 879 int error = 0; 880 881 if (!timespec64_valid(&new_spec64->it_interval) || 882 !timespec64_valid(&new_spec64->it_value)) 883 return -EINVAL; 884 885 if (old_spec64) 886 memset(old_spec64, 0, sizeof(*old_spec64)); 887 retry: 888 timr = lock_timer(timer_id, &flag); 889 if (!timr) 890 return -EINVAL; 891 892 kc = timr->kclock; 893 if (WARN_ON_ONCE(!kc || !kc->timer_set)) 894 error = -EINVAL; 895 else 896 error = kc->timer_set(timr, flags, new_spec64, old_spec64); 897 898 unlock_timer(timr, flag); 899 if (error == TIMER_RETRY) { 900 old_spec64 = NULL; // We already got the old time... 901 goto retry; 902 } 903 904 return error; 905 } 906 907 /* Set a POSIX.1b interval timer */ 908 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags, 909 const struct itimerspec __user *, new_setting, 910 struct itimerspec __user *, old_setting) 911 { 912 struct itimerspec64 new_spec, old_spec; 913 struct itimerspec64 *rtn = old_setting ? &old_spec : NULL; 914 int error = 0; 915 916 if (!new_setting) 917 return -EINVAL; 918 919 if (get_itimerspec64(&new_spec, new_setting)) 920 return -EFAULT; 921 922 error = do_timer_settime(timer_id, flags, &new_spec, rtn); 923 if (!error && old_setting) { 924 if (put_itimerspec64(&old_spec, old_setting)) 925 error = -EFAULT; 926 } 927 return error; 928 } 929 930 #ifdef CONFIG_COMPAT 931 COMPAT_SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags, 932 struct compat_itimerspec __user *, new, 933 struct compat_itimerspec __user *, old) 934 { 935 struct itimerspec64 new_spec, old_spec; 936 struct itimerspec64 *rtn = old ? &old_spec : NULL; 937 int error = 0; 938 939 if (!new) 940 return -EINVAL; 941 if (get_compat_itimerspec64(&new_spec, new)) 942 return -EFAULT; 943 944 error = do_timer_settime(timer_id, flags, &new_spec, rtn); 945 if (!error && old) { 946 if (put_compat_itimerspec64(&old_spec, old)) 947 error = -EFAULT; 948 } 949 return error; 950 } 951 #endif 952 953 int common_timer_del(struct k_itimer *timer) 954 { 955 const struct k_clock *kc = timer->kclock; 956 957 timer->it_interval = 0; 958 if (kc->timer_try_to_cancel(timer) < 0) 959 return TIMER_RETRY; 960 timer->it_active = 0; 961 return 0; 962 } 963 964 static inline int timer_delete_hook(struct k_itimer *timer) 965 { 966 const struct k_clock *kc = timer->kclock; 967 968 if (WARN_ON_ONCE(!kc || !kc->timer_del)) 969 return -EINVAL; 970 return kc->timer_del(timer); 971 } 972 973 /* Delete a POSIX.1b interval timer. */ 974 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id) 975 { 976 struct k_itimer *timer; 977 unsigned long flags; 978 979 retry_delete: 980 timer = lock_timer(timer_id, &flags); 981 if (!timer) 982 return -EINVAL; 983 984 if (timer_delete_hook(timer) == TIMER_RETRY) { 985 unlock_timer(timer, flags); 986 goto retry_delete; 987 } 988 989 spin_lock(¤t->sighand->siglock); 990 list_del(&timer->list); 991 spin_unlock(¤t->sighand->siglock); 992 /* 993 * This keeps any tasks waiting on the spin lock from thinking 994 * they got something (see the lock code above). 995 */ 996 timer->it_signal = NULL; 997 998 unlock_timer(timer, flags); 999 release_posix_timer(timer, IT_ID_SET); 1000 return 0; 1001 } 1002 1003 /* 1004 * return timer owned by the process, used by exit_itimers 1005 */ 1006 static void itimer_delete(struct k_itimer *timer) 1007 { 1008 unsigned long flags; 1009 1010 retry_delete: 1011 spin_lock_irqsave(&timer->it_lock, flags); 1012 1013 if (timer_delete_hook(timer) == TIMER_RETRY) { 1014 unlock_timer(timer, flags); 1015 goto retry_delete; 1016 } 1017 list_del(&timer->list); 1018 /* 1019 * This keeps any tasks waiting on the spin lock from thinking 1020 * they got something (see the lock code above). 1021 */ 1022 timer->it_signal = NULL; 1023 1024 unlock_timer(timer, flags); 1025 release_posix_timer(timer, IT_ID_SET); 1026 } 1027 1028 /* 1029 * This is called by do_exit or de_thread, only when there are no more 1030 * references to the shared signal_struct. 1031 */ 1032 void exit_itimers(struct signal_struct *sig) 1033 { 1034 struct k_itimer *tmr; 1035 1036 while (!list_empty(&sig->posix_timers)) { 1037 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list); 1038 itimer_delete(tmr); 1039 } 1040 } 1041 1042 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock, 1043 const struct timespec __user *, tp) 1044 { 1045 const struct k_clock *kc = clockid_to_kclock(which_clock); 1046 struct timespec64 new_tp; 1047 1048 if (!kc || !kc->clock_set) 1049 return -EINVAL; 1050 1051 if (get_timespec64(&new_tp, tp)) 1052 return -EFAULT; 1053 1054 return kc->clock_set(which_clock, &new_tp); 1055 } 1056 1057 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock, 1058 struct timespec __user *,tp) 1059 { 1060 const struct k_clock *kc = clockid_to_kclock(which_clock); 1061 struct timespec64 kernel_tp; 1062 int error; 1063 1064 if (!kc) 1065 return -EINVAL; 1066 1067 error = kc->clock_get(which_clock, &kernel_tp); 1068 1069 if (!error && put_timespec64(&kernel_tp, tp)) 1070 error = -EFAULT; 1071 1072 return error; 1073 } 1074 1075 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock, 1076 struct timex __user *, utx) 1077 { 1078 const struct k_clock *kc = clockid_to_kclock(which_clock); 1079 struct timex ktx; 1080 int err; 1081 1082 if (!kc) 1083 return -EINVAL; 1084 if (!kc->clock_adj) 1085 return -EOPNOTSUPP; 1086 1087 if (copy_from_user(&ktx, utx, sizeof(ktx))) 1088 return -EFAULT; 1089 1090 err = kc->clock_adj(which_clock, &ktx); 1091 1092 if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx))) 1093 return -EFAULT; 1094 1095 return err; 1096 } 1097 1098 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock, 1099 struct timespec __user *, tp) 1100 { 1101 const struct k_clock *kc = clockid_to_kclock(which_clock); 1102 struct timespec64 rtn_tp; 1103 int error; 1104 1105 if (!kc) 1106 return -EINVAL; 1107 1108 error = kc->clock_getres(which_clock, &rtn_tp); 1109 1110 if (!error && tp && put_timespec64(&rtn_tp, tp)) 1111 error = -EFAULT; 1112 1113 return error; 1114 } 1115 1116 #ifdef CONFIG_COMPAT 1117 1118 COMPAT_SYSCALL_DEFINE2(clock_settime, clockid_t, which_clock, 1119 struct compat_timespec __user *, tp) 1120 { 1121 const struct k_clock *kc = clockid_to_kclock(which_clock); 1122 struct timespec64 ts; 1123 1124 if (!kc || !kc->clock_set) 1125 return -EINVAL; 1126 1127 if (compat_get_timespec64(&ts, tp)) 1128 return -EFAULT; 1129 1130 return kc->clock_set(which_clock, &ts); 1131 } 1132 1133 COMPAT_SYSCALL_DEFINE2(clock_gettime, clockid_t, which_clock, 1134 struct compat_timespec __user *, tp) 1135 { 1136 const struct k_clock *kc = clockid_to_kclock(which_clock); 1137 struct timespec64 ts; 1138 int err; 1139 1140 if (!kc) 1141 return -EINVAL; 1142 1143 err = kc->clock_get(which_clock, &ts); 1144 1145 if (!err && compat_put_timespec64(&ts, tp)) 1146 err = -EFAULT; 1147 1148 return err; 1149 } 1150 1151 COMPAT_SYSCALL_DEFINE2(clock_adjtime, clockid_t, which_clock, 1152 struct compat_timex __user *, utp) 1153 { 1154 const struct k_clock *kc = clockid_to_kclock(which_clock); 1155 struct timex ktx; 1156 int err; 1157 1158 if (!kc) 1159 return -EINVAL; 1160 if (!kc->clock_adj) 1161 return -EOPNOTSUPP; 1162 1163 err = compat_get_timex(&ktx, utp); 1164 if (err) 1165 return err; 1166 1167 err = kc->clock_adj(which_clock, &ktx); 1168 1169 if (err >= 0) 1170 err = compat_put_timex(utp, &ktx); 1171 1172 return err; 1173 } 1174 1175 COMPAT_SYSCALL_DEFINE2(clock_getres, clockid_t, which_clock, 1176 struct compat_timespec __user *, tp) 1177 { 1178 const struct k_clock *kc = clockid_to_kclock(which_clock); 1179 struct timespec64 ts; 1180 int err; 1181 1182 if (!kc) 1183 return -EINVAL; 1184 1185 err = kc->clock_getres(which_clock, &ts); 1186 if (!err && tp && compat_put_timespec64(&ts, tp)) 1187 return -EFAULT; 1188 1189 return err; 1190 } 1191 1192 #endif 1193 1194 /* 1195 * nanosleep for monotonic and realtime clocks 1196 */ 1197 static int common_nsleep(const clockid_t which_clock, int flags, 1198 const struct timespec64 *rqtp) 1199 { 1200 return hrtimer_nanosleep(rqtp, flags & TIMER_ABSTIME ? 1201 HRTIMER_MODE_ABS : HRTIMER_MODE_REL, 1202 which_clock); 1203 } 1204 1205 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags, 1206 const struct timespec __user *, rqtp, 1207 struct timespec __user *, rmtp) 1208 { 1209 const struct k_clock *kc = clockid_to_kclock(which_clock); 1210 struct timespec64 t; 1211 1212 if (!kc) 1213 return -EINVAL; 1214 if (!kc->nsleep) 1215 return -ENANOSLEEP_NOTSUP; 1216 1217 if (get_timespec64(&t, rqtp)) 1218 return -EFAULT; 1219 1220 if (!timespec64_valid(&t)) 1221 return -EINVAL; 1222 if (flags & TIMER_ABSTIME) 1223 rmtp = NULL; 1224 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; 1225 current->restart_block.nanosleep.rmtp = rmtp; 1226 1227 return kc->nsleep(which_clock, flags, &t); 1228 } 1229 1230 #ifdef CONFIG_COMPAT 1231 COMPAT_SYSCALL_DEFINE4(clock_nanosleep, clockid_t, which_clock, int, flags, 1232 struct compat_timespec __user *, rqtp, 1233 struct compat_timespec __user *, rmtp) 1234 { 1235 const struct k_clock *kc = clockid_to_kclock(which_clock); 1236 struct timespec64 t; 1237 1238 if (!kc) 1239 return -EINVAL; 1240 if (!kc->nsleep) 1241 return -ENANOSLEEP_NOTSUP; 1242 1243 if (compat_get_timespec64(&t, rqtp)) 1244 return -EFAULT; 1245 1246 if (!timespec64_valid(&t)) 1247 return -EINVAL; 1248 if (flags & TIMER_ABSTIME) 1249 rmtp = NULL; 1250 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; 1251 current->restart_block.nanosleep.compat_rmtp = rmtp; 1252 1253 return kc->nsleep(which_clock, flags, &t); 1254 } 1255 #endif 1256 1257 static const struct k_clock clock_realtime = { 1258 .clock_getres = posix_get_hrtimer_res, 1259 .clock_get = posix_clock_realtime_get, 1260 .clock_set = posix_clock_realtime_set, 1261 .clock_adj = posix_clock_realtime_adj, 1262 .nsleep = common_nsleep, 1263 .timer_create = common_timer_create, 1264 .timer_set = common_timer_set, 1265 .timer_get = common_timer_get, 1266 .timer_del = common_timer_del, 1267 .timer_rearm = common_hrtimer_rearm, 1268 .timer_forward = common_hrtimer_forward, 1269 .timer_remaining = common_hrtimer_remaining, 1270 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1271 .timer_arm = common_hrtimer_arm, 1272 }; 1273 1274 static const struct k_clock clock_monotonic = { 1275 .clock_getres = posix_get_hrtimer_res, 1276 .clock_get = posix_ktime_get_ts, 1277 .nsleep = common_nsleep, 1278 .timer_create = common_timer_create, 1279 .timer_set = common_timer_set, 1280 .timer_get = common_timer_get, 1281 .timer_del = common_timer_del, 1282 .timer_rearm = common_hrtimer_rearm, 1283 .timer_forward = common_hrtimer_forward, 1284 .timer_remaining = common_hrtimer_remaining, 1285 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1286 .timer_arm = common_hrtimer_arm, 1287 }; 1288 1289 static const struct k_clock clock_monotonic_raw = { 1290 .clock_getres = posix_get_hrtimer_res, 1291 .clock_get = posix_get_monotonic_raw, 1292 }; 1293 1294 static const struct k_clock clock_realtime_coarse = { 1295 .clock_getres = posix_get_coarse_res, 1296 .clock_get = posix_get_realtime_coarse, 1297 }; 1298 1299 static const struct k_clock clock_monotonic_coarse = { 1300 .clock_getres = posix_get_coarse_res, 1301 .clock_get = posix_get_monotonic_coarse, 1302 }; 1303 1304 static const struct k_clock clock_tai = { 1305 .clock_getres = posix_get_hrtimer_res, 1306 .clock_get = posix_get_tai, 1307 .nsleep = common_nsleep, 1308 .timer_create = common_timer_create, 1309 .timer_set = common_timer_set, 1310 .timer_get = common_timer_get, 1311 .timer_del = common_timer_del, 1312 .timer_rearm = common_hrtimer_rearm, 1313 .timer_forward = common_hrtimer_forward, 1314 .timer_remaining = common_hrtimer_remaining, 1315 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1316 .timer_arm = common_hrtimer_arm, 1317 }; 1318 1319 static const struct k_clock clock_boottime = { 1320 .clock_getres = posix_get_hrtimer_res, 1321 .clock_get = posix_get_boottime, 1322 .nsleep = common_nsleep, 1323 .timer_create = common_timer_create, 1324 .timer_set = common_timer_set, 1325 .timer_get = common_timer_get, 1326 .timer_del = common_timer_del, 1327 .timer_rearm = common_hrtimer_rearm, 1328 .timer_forward = common_hrtimer_forward, 1329 .timer_remaining = common_hrtimer_remaining, 1330 .timer_try_to_cancel = common_hrtimer_try_to_cancel, 1331 .timer_arm = common_hrtimer_arm, 1332 }; 1333 1334 static const struct k_clock * const posix_clocks[] = { 1335 [CLOCK_REALTIME] = &clock_realtime, 1336 [CLOCK_MONOTONIC] = &clock_monotonic, 1337 [CLOCK_PROCESS_CPUTIME_ID] = &clock_process, 1338 [CLOCK_THREAD_CPUTIME_ID] = &clock_thread, 1339 [CLOCK_MONOTONIC_RAW] = &clock_monotonic_raw, 1340 [CLOCK_REALTIME_COARSE] = &clock_realtime_coarse, 1341 [CLOCK_MONOTONIC_COARSE] = &clock_monotonic_coarse, 1342 [CLOCK_BOOTTIME] = &clock_boottime, 1343 [CLOCK_REALTIME_ALARM] = &alarm_clock, 1344 [CLOCK_BOOTTIME_ALARM] = &alarm_clock, 1345 [CLOCK_TAI] = &clock_tai, 1346 }; 1347 1348 static const struct k_clock *clockid_to_kclock(const clockid_t id) 1349 { 1350 clockid_t idx = id; 1351 1352 if (id < 0) { 1353 return (id & CLOCKFD_MASK) == CLOCKFD ? 1354 &clock_posix_dynamic : &clock_posix_cpu; 1355 } 1356 1357 if (id >= ARRAY_SIZE(posix_clocks)) 1358 return NULL; 1359 1360 return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))]; 1361 } 1362