xref: /openbmc/linux/kernel/time/posix-timers.c (revision 588b48ca)
1 /*
2  * linux/kernel/posix-timers.c
3  *
4  *
5  * 2002-10-15  Posix Clocks & timers
6  *                           by George Anzinger george@mvista.com
7  *
8  *			     Copyright (C) 2002 2003 by MontaVista Software.
9  *
10  * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11  *			     Copyright (C) 2004 Boris Hu
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or (at
16  * your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful, but
19  * WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21  * General Public License for more details.
22 
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26  *
27  * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28  */
29 
30 /* These are all the functions necessary to implement
31  * POSIX clocks & timers
32  */
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/slab.h>
36 #include <linux/time.h>
37 #include <linux/mutex.h>
38 
39 #include <asm/uaccess.h>
40 #include <linux/list.h>
41 #include <linux/init.h>
42 #include <linux/compiler.h>
43 #include <linux/hash.h>
44 #include <linux/posix-clock.h>
45 #include <linux/posix-timers.h>
46 #include <linux/syscalls.h>
47 #include <linux/wait.h>
48 #include <linux/workqueue.h>
49 #include <linux/export.h>
50 #include <linux/hashtable.h>
51 
52 #include "timekeeping.h"
53 
54 /*
55  * Management arrays for POSIX timers. Timers are now kept in static hash table
56  * with 512 entries.
57  * Timer ids are allocated by local routine, which selects proper hash head by
58  * key, constructed from current->signal address and per signal struct counter.
59  * This keeps timer ids unique per process, but now they can intersect between
60  * processes.
61  */
62 
63 /*
64  * Lets keep our timers in a slab cache :-)
65  */
66 static struct kmem_cache *posix_timers_cache;
67 
68 static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
69 static DEFINE_SPINLOCK(hash_lock);
70 
71 /*
72  * we assume that the new SIGEV_THREAD_ID shares no bits with the other
73  * SIGEV values.  Here we put out an error if this assumption fails.
74  */
75 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
76                        ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
77 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
78 #endif
79 
80 /*
81  * parisc wants ENOTSUP instead of EOPNOTSUPP
82  */
83 #ifndef ENOTSUP
84 # define ENANOSLEEP_NOTSUP EOPNOTSUPP
85 #else
86 # define ENANOSLEEP_NOTSUP ENOTSUP
87 #endif
88 
89 /*
90  * The timer ID is turned into a timer address by idr_find().
91  * Verifying a valid ID consists of:
92  *
93  * a) checking that idr_find() returns other than -1.
94  * b) checking that the timer id matches the one in the timer itself.
95  * c) that the timer owner is in the callers thread group.
96  */
97 
98 /*
99  * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
100  *	    to implement others.  This structure defines the various
101  *	    clocks.
102  *
103  * RESOLUTION: Clock resolution is used to round up timer and interval
104  *	    times, NOT to report clock times, which are reported with as
105  *	    much resolution as the system can muster.  In some cases this
106  *	    resolution may depend on the underlying clock hardware and
107  *	    may not be quantifiable until run time, and only then is the
108  *	    necessary code is written.	The standard says we should say
109  *	    something about this issue in the documentation...
110  *
111  * FUNCTIONS: The CLOCKs structure defines possible functions to
112  *	    handle various clock functions.
113  *
114  *	    The standard POSIX timer management code assumes the
115  *	    following: 1.) The k_itimer struct (sched.h) is used for
116  *	    the timer.  2.) The list, it_lock, it_clock, it_id and
117  *	    it_pid fields are not modified by timer code.
118  *
119  * Permissions: It is assumed that the clock_settime() function defined
120  *	    for each clock will take care of permission checks.	 Some
121  *	    clocks may be set able by any user (i.e. local process
122  *	    clocks) others not.	 Currently the only set able clock we
123  *	    have is CLOCK_REALTIME and its high res counter part, both of
124  *	    which we beg off on and pass to do_sys_settimeofday().
125  */
126 
127 static struct k_clock posix_clocks[MAX_CLOCKS];
128 
129 /*
130  * These ones are defined below.
131  */
132 static int common_nsleep(const clockid_t, int flags, struct timespec *t,
133 			 struct timespec __user *rmtp);
134 static int common_timer_create(struct k_itimer *new_timer);
135 static void common_timer_get(struct k_itimer *, struct itimerspec *);
136 static int common_timer_set(struct k_itimer *, int,
137 			    struct itimerspec *, struct itimerspec *);
138 static int common_timer_del(struct k_itimer *timer);
139 
140 static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
141 
142 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
143 
144 #define lock_timer(tid, flags)						   \
145 ({	struct k_itimer *__timr;					   \
146 	__cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags));  \
147 	__timr;								   \
148 })
149 
150 static int hash(struct signal_struct *sig, unsigned int nr)
151 {
152 	return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
153 }
154 
155 static struct k_itimer *__posix_timers_find(struct hlist_head *head,
156 					    struct signal_struct *sig,
157 					    timer_t id)
158 {
159 	struct k_itimer *timer;
160 
161 	hlist_for_each_entry_rcu(timer, head, t_hash) {
162 		if ((timer->it_signal == sig) && (timer->it_id == id))
163 			return timer;
164 	}
165 	return NULL;
166 }
167 
168 static struct k_itimer *posix_timer_by_id(timer_t id)
169 {
170 	struct signal_struct *sig = current->signal;
171 	struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
172 
173 	return __posix_timers_find(head, sig, id);
174 }
175 
176 static int posix_timer_add(struct k_itimer *timer)
177 {
178 	struct signal_struct *sig = current->signal;
179 	int first_free_id = sig->posix_timer_id;
180 	struct hlist_head *head;
181 	int ret = -ENOENT;
182 
183 	do {
184 		spin_lock(&hash_lock);
185 		head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
186 		if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
187 			hlist_add_head_rcu(&timer->t_hash, head);
188 			ret = sig->posix_timer_id;
189 		}
190 		if (++sig->posix_timer_id < 0)
191 			sig->posix_timer_id = 0;
192 		if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
193 			/* Loop over all possible ids completed */
194 			ret = -EAGAIN;
195 		spin_unlock(&hash_lock);
196 	} while (ret == -ENOENT);
197 	return ret;
198 }
199 
200 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
201 {
202 	spin_unlock_irqrestore(&timr->it_lock, flags);
203 }
204 
205 /* Get clock_realtime */
206 static int posix_clock_realtime_get(clockid_t which_clock, struct timespec *tp)
207 {
208 	ktime_get_real_ts(tp);
209 	return 0;
210 }
211 
212 /* Set clock_realtime */
213 static int posix_clock_realtime_set(const clockid_t which_clock,
214 				    const struct timespec *tp)
215 {
216 	return do_sys_settimeofday(tp, NULL);
217 }
218 
219 static int posix_clock_realtime_adj(const clockid_t which_clock,
220 				    struct timex *t)
221 {
222 	return do_adjtimex(t);
223 }
224 
225 /*
226  * Get monotonic time for posix timers
227  */
228 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
229 {
230 	ktime_get_ts(tp);
231 	return 0;
232 }
233 
234 /*
235  * Get monotonic-raw time for posix timers
236  */
237 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp)
238 {
239 	getrawmonotonic(tp);
240 	return 0;
241 }
242 
243 
244 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp)
245 {
246 	*tp = current_kernel_time();
247 	return 0;
248 }
249 
250 static int posix_get_monotonic_coarse(clockid_t which_clock,
251 						struct timespec *tp)
252 {
253 	*tp = get_monotonic_coarse();
254 	return 0;
255 }
256 
257 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp)
258 {
259 	*tp = ktime_to_timespec(KTIME_LOW_RES);
260 	return 0;
261 }
262 
263 static int posix_get_boottime(const clockid_t which_clock, struct timespec *tp)
264 {
265 	get_monotonic_boottime(tp);
266 	return 0;
267 }
268 
269 static int posix_get_tai(clockid_t which_clock, struct timespec *tp)
270 {
271 	timekeeping_clocktai(tp);
272 	return 0;
273 }
274 
275 /*
276  * Initialize everything, well, just everything in Posix clocks/timers ;)
277  */
278 static __init int init_posix_timers(void)
279 {
280 	struct k_clock clock_realtime = {
281 		.clock_getres	= hrtimer_get_res,
282 		.clock_get	= posix_clock_realtime_get,
283 		.clock_set	= posix_clock_realtime_set,
284 		.clock_adj	= posix_clock_realtime_adj,
285 		.nsleep		= common_nsleep,
286 		.nsleep_restart	= hrtimer_nanosleep_restart,
287 		.timer_create	= common_timer_create,
288 		.timer_set	= common_timer_set,
289 		.timer_get	= common_timer_get,
290 		.timer_del	= common_timer_del,
291 	};
292 	struct k_clock clock_monotonic = {
293 		.clock_getres	= hrtimer_get_res,
294 		.clock_get	= posix_ktime_get_ts,
295 		.nsleep		= common_nsleep,
296 		.nsleep_restart	= hrtimer_nanosleep_restart,
297 		.timer_create	= common_timer_create,
298 		.timer_set	= common_timer_set,
299 		.timer_get	= common_timer_get,
300 		.timer_del	= common_timer_del,
301 	};
302 	struct k_clock clock_monotonic_raw = {
303 		.clock_getres	= hrtimer_get_res,
304 		.clock_get	= posix_get_monotonic_raw,
305 	};
306 	struct k_clock clock_realtime_coarse = {
307 		.clock_getres	= posix_get_coarse_res,
308 		.clock_get	= posix_get_realtime_coarse,
309 	};
310 	struct k_clock clock_monotonic_coarse = {
311 		.clock_getres	= posix_get_coarse_res,
312 		.clock_get	= posix_get_monotonic_coarse,
313 	};
314 	struct k_clock clock_tai = {
315 		.clock_getres	= hrtimer_get_res,
316 		.clock_get	= posix_get_tai,
317 		.nsleep		= common_nsleep,
318 		.nsleep_restart	= hrtimer_nanosleep_restart,
319 		.timer_create	= common_timer_create,
320 		.timer_set	= common_timer_set,
321 		.timer_get	= common_timer_get,
322 		.timer_del	= common_timer_del,
323 	};
324 	struct k_clock clock_boottime = {
325 		.clock_getres	= hrtimer_get_res,
326 		.clock_get	= posix_get_boottime,
327 		.nsleep		= common_nsleep,
328 		.nsleep_restart	= hrtimer_nanosleep_restart,
329 		.timer_create	= common_timer_create,
330 		.timer_set	= common_timer_set,
331 		.timer_get	= common_timer_get,
332 		.timer_del	= common_timer_del,
333 	};
334 
335 	posix_timers_register_clock(CLOCK_REALTIME, &clock_realtime);
336 	posix_timers_register_clock(CLOCK_MONOTONIC, &clock_monotonic);
337 	posix_timers_register_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
338 	posix_timers_register_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse);
339 	posix_timers_register_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse);
340 	posix_timers_register_clock(CLOCK_BOOTTIME, &clock_boottime);
341 	posix_timers_register_clock(CLOCK_TAI, &clock_tai);
342 
343 	posix_timers_cache = kmem_cache_create("posix_timers_cache",
344 					sizeof (struct k_itimer), 0, SLAB_PANIC,
345 					NULL);
346 	return 0;
347 }
348 
349 __initcall(init_posix_timers);
350 
351 static void schedule_next_timer(struct k_itimer *timr)
352 {
353 	struct hrtimer *timer = &timr->it.real.timer;
354 
355 	if (timr->it.real.interval.tv64 == 0)
356 		return;
357 
358 	timr->it_overrun += (unsigned int) hrtimer_forward(timer,
359 						timer->base->get_time(),
360 						timr->it.real.interval);
361 
362 	timr->it_overrun_last = timr->it_overrun;
363 	timr->it_overrun = -1;
364 	++timr->it_requeue_pending;
365 	hrtimer_restart(timer);
366 }
367 
368 /*
369  * This function is exported for use by the signal deliver code.  It is
370  * called just prior to the info block being released and passes that
371  * block to us.  It's function is to update the overrun entry AND to
372  * restart the timer.  It should only be called if the timer is to be
373  * restarted (i.e. we have flagged this in the sys_private entry of the
374  * info block).
375  *
376  * To protect against the timer going away while the interrupt is queued,
377  * we require that the it_requeue_pending flag be set.
378  */
379 void do_schedule_next_timer(struct siginfo *info)
380 {
381 	struct k_itimer *timr;
382 	unsigned long flags;
383 
384 	timr = lock_timer(info->si_tid, &flags);
385 
386 	if (timr && timr->it_requeue_pending == info->si_sys_private) {
387 		if (timr->it_clock < 0)
388 			posix_cpu_timer_schedule(timr);
389 		else
390 			schedule_next_timer(timr);
391 
392 		info->si_overrun += timr->it_overrun_last;
393 	}
394 
395 	if (timr)
396 		unlock_timer(timr, flags);
397 }
398 
399 int posix_timer_event(struct k_itimer *timr, int si_private)
400 {
401 	struct task_struct *task;
402 	int shared, ret = -1;
403 	/*
404 	 * FIXME: if ->sigq is queued we can race with
405 	 * dequeue_signal()->do_schedule_next_timer().
406 	 *
407 	 * If dequeue_signal() sees the "right" value of
408 	 * si_sys_private it calls do_schedule_next_timer().
409 	 * We re-queue ->sigq and drop ->it_lock().
410 	 * do_schedule_next_timer() locks the timer
411 	 * and re-schedules it while ->sigq is pending.
412 	 * Not really bad, but not that we want.
413 	 */
414 	timr->sigq->info.si_sys_private = si_private;
415 
416 	rcu_read_lock();
417 	task = pid_task(timr->it_pid, PIDTYPE_PID);
418 	if (task) {
419 		shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
420 		ret = send_sigqueue(timr->sigq, task, shared);
421 	}
422 	rcu_read_unlock();
423 	/* If we failed to send the signal the timer stops. */
424 	return ret > 0;
425 }
426 EXPORT_SYMBOL_GPL(posix_timer_event);
427 
428 /*
429  * This function gets called when a POSIX.1b interval timer expires.  It
430  * is used as a callback from the kernel internal timer.  The
431  * run_timer_list code ALWAYS calls with interrupts on.
432 
433  * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
434  */
435 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
436 {
437 	struct k_itimer *timr;
438 	unsigned long flags;
439 	int si_private = 0;
440 	enum hrtimer_restart ret = HRTIMER_NORESTART;
441 
442 	timr = container_of(timer, struct k_itimer, it.real.timer);
443 	spin_lock_irqsave(&timr->it_lock, flags);
444 
445 	if (timr->it.real.interval.tv64 != 0)
446 		si_private = ++timr->it_requeue_pending;
447 
448 	if (posix_timer_event(timr, si_private)) {
449 		/*
450 		 * signal was not sent because of sig_ignor
451 		 * we will not get a call back to restart it AND
452 		 * it should be restarted.
453 		 */
454 		if (timr->it.real.interval.tv64 != 0) {
455 			ktime_t now = hrtimer_cb_get_time(timer);
456 
457 			/*
458 			 * FIXME: What we really want, is to stop this
459 			 * timer completely and restart it in case the
460 			 * SIG_IGN is removed. This is a non trivial
461 			 * change which involves sighand locking
462 			 * (sigh !), which we don't want to do late in
463 			 * the release cycle.
464 			 *
465 			 * For now we just let timers with an interval
466 			 * less than a jiffie expire every jiffie to
467 			 * avoid softirq starvation in case of SIG_IGN
468 			 * and a very small interval, which would put
469 			 * the timer right back on the softirq pending
470 			 * list. By moving now ahead of time we trick
471 			 * hrtimer_forward() to expire the timer
472 			 * later, while we still maintain the overrun
473 			 * accuracy, but have some inconsistency in
474 			 * the timer_gettime() case. This is at least
475 			 * better than a starved softirq. A more
476 			 * complex fix which solves also another related
477 			 * inconsistency is already in the pipeline.
478 			 */
479 #ifdef CONFIG_HIGH_RES_TIMERS
480 			{
481 				ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
482 
483 				if (timr->it.real.interval.tv64 < kj.tv64)
484 					now = ktime_add(now, kj);
485 			}
486 #endif
487 			timr->it_overrun += (unsigned int)
488 				hrtimer_forward(timer, now,
489 						timr->it.real.interval);
490 			ret = HRTIMER_RESTART;
491 			++timr->it_requeue_pending;
492 		}
493 	}
494 
495 	unlock_timer(timr, flags);
496 	return ret;
497 }
498 
499 static struct pid *good_sigevent(sigevent_t * event)
500 {
501 	struct task_struct *rtn = current->group_leader;
502 
503 	if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
504 		(!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
505 		 !same_thread_group(rtn, current) ||
506 		 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
507 		return NULL;
508 
509 	if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
510 	    ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
511 		return NULL;
512 
513 	return task_pid(rtn);
514 }
515 
516 void posix_timers_register_clock(const clockid_t clock_id,
517 				 struct k_clock *new_clock)
518 {
519 	if ((unsigned) clock_id >= MAX_CLOCKS) {
520 		printk(KERN_WARNING "POSIX clock register failed for clock_id %d\n",
521 		       clock_id);
522 		return;
523 	}
524 
525 	if (!new_clock->clock_get) {
526 		printk(KERN_WARNING "POSIX clock id %d lacks clock_get()\n",
527 		       clock_id);
528 		return;
529 	}
530 	if (!new_clock->clock_getres) {
531 		printk(KERN_WARNING "POSIX clock id %d lacks clock_getres()\n",
532 		       clock_id);
533 		return;
534 	}
535 
536 	posix_clocks[clock_id] = *new_clock;
537 }
538 EXPORT_SYMBOL_GPL(posix_timers_register_clock);
539 
540 static struct k_itimer * alloc_posix_timer(void)
541 {
542 	struct k_itimer *tmr;
543 	tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
544 	if (!tmr)
545 		return tmr;
546 	if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
547 		kmem_cache_free(posix_timers_cache, tmr);
548 		return NULL;
549 	}
550 	memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
551 	return tmr;
552 }
553 
554 static void k_itimer_rcu_free(struct rcu_head *head)
555 {
556 	struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);
557 
558 	kmem_cache_free(posix_timers_cache, tmr);
559 }
560 
561 #define IT_ID_SET	1
562 #define IT_ID_NOT_SET	0
563 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
564 {
565 	if (it_id_set) {
566 		unsigned long flags;
567 		spin_lock_irqsave(&hash_lock, flags);
568 		hlist_del_rcu(&tmr->t_hash);
569 		spin_unlock_irqrestore(&hash_lock, flags);
570 	}
571 	put_pid(tmr->it_pid);
572 	sigqueue_free(tmr->sigq);
573 	call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
574 }
575 
576 static struct k_clock *clockid_to_kclock(const clockid_t id)
577 {
578 	if (id < 0)
579 		return (id & CLOCKFD_MASK) == CLOCKFD ?
580 			&clock_posix_dynamic : &clock_posix_cpu;
581 
582 	if (id >= MAX_CLOCKS || !posix_clocks[id].clock_getres)
583 		return NULL;
584 	return &posix_clocks[id];
585 }
586 
587 static int common_timer_create(struct k_itimer *new_timer)
588 {
589 	hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
590 	return 0;
591 }
592 
593 /* Create a POSIX.1b interval timer. */
594 
595 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
596 		struct sigevent __user *, timer_event_spec,
597 		timer_t __user *, created_timer_id)
598 {
599 	struct k_clock *kc = clockid_to_kclock(which_clock);
600 	struct k_itimer *new_timer;
601 	int error, new_timer_id;
602 	sigevent_t event;
603 	int it_id_set = IT_ID_NOT_SET;
604 
605 	if (!kc)
606 		return -EINVAL;
607 	if (!kc->timer_create)
608 		return -EOPNOTSUPP;
609 
610 	new_timer = alloc_posix_timer();
611 	if (unlikely(!new_timer))
612 		return -EAGAIN;
613 
614 	spin_lock_init(&new_timer->it_lock);
615 	new_timer_id = posix_timer_add(new_timer);
616 	if (new_timer_id < 0) {
617 		error = new_timer_id;
618 		goto out;
619 	}
620 
621 	it_id_set = IT_ID_SET;
622 	new_timer->it_id = (timer_t) new_timer_id;
623 	new_timer->it_clock = which_clock;
624 	new_timer->it_overrun = -1;
625 
626 	if (timer_event_spec) {
627 		if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
628 			error = -EFAULT;
629 			goto out;
630 		}
631 		rcu_read_lock();
632 		new_timer->it_pid = get_pid(good_sigevent(&event));
633 		rcu_read_unlock();
634 		if (!new_timer->it_pid) {
635 			error = -EINVAL;
636 			goto out;
637 		}
638 	} else {
639 		event.sigev_notify = SIGEV_SIGNAL;
640 		event.sigev_signo = SIGALRM;
641 		event.sigev_value.sival_int = new_timer->it_id;
642 		new_timer->it_pid = get_pid(task_tgid(current));
643 	}
644 
645 	new_timer->it_sigev_notify     = event.sigev_notify;
646 	new_timer->sigq->info.si_signo = event.sigev_signo;
647 	new_timer->sigq->info.si_value = event.sigev_value;
648 	new_timer->sigq->info.si_tid   = new_timer->it_id;
649 	new_timer->sigq->info.si_code  = SI_TIMER;
650 
651 	if (copy_to_user(created_timer_id,
652 			 &new_timer_id, sizeof (new_timer_id))) {
653 		error = -EFAULT;
654 		goto out;
655 	}
656 
657 	error = kc->timer_create(new_timer);
658 	if (error)
659 		goto out;
660 
661 	spin_lock_irq(&current->sighand->siglock);
662 	new_timer->it_signal = current->signal;
663 	list_add(&new_timer->list, &current->signal->posix_timers);
664 	spin_unlock_irq(&current->sighand->siglock);
665 
666 	return 0;
667 	/*
668 	 * In the case of the timer belonging to another task, after
669 	 * the task is unlocked, the timer is owned by the other task
670 	 * and may cease to exist at any time.  Don't use or modify
671 	 * new_timer after the unlock call.
672 	 */
673 out:
674 	release_posix_timer(new_timer, it_id_set);
675 	return error;
676 }
677 
678 /*
679  * Locking issues: We need to protect the result of the id look up until
680  * we get the timer locked down so it is not deleted under us.  The
681  * removal is done under the idr spinlock so we use that here to bridge
682  * the find to the timer lock.  To avoid a dead lock, the timer id MUST
683  * be release with out holding the timer lock.
684  */
685 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
686 {
687 	struct k_itimer *timr;
688 
689 	/*
690 	 * timer_t could be any type >= int and we want to make sure any
691 	 * @timer_id outside positive int range fails lookup.
692 	 */
693 	if ((unsigned long long)timer_id > INT_MAX)
694 		return NULL;
695 
696 	rcu_read_lock();
697 	timr = posix_timer_by_id(timer_id);
698 	if (timr) {
699 		spin_lock_irqsave(&timr->it_lock, *flags);
700 		if (timr->it_signal == current->signal) {
701 			rcu_read_unlock();
702 			return timr;
703 		}
704 		spin_unlock_irqrestore(&timr->it_lock, *flags);
705 	}
706 	rcu_read_unlock();
707 
708 	return NULL;
709 }
710 
711 /*
712  * Get the time remaining on a POSIX.1b interval timer.  This function
713  * is ALWAYS called with spin_lock_irq on the timer, thus it must not
714  * mess with irq.
715  *
716  * We have a couple of messes to clean up here.  First there is the case
717  * of a timer that has a requeue pending.  These timers should appear to
718  * be in the timer list with an expiry as if we were to requeue them
719  * now.
720  *
721  * The second issue is the SIGEV_NONE timer which may be active but is
722  * not really ever put in the timer list (to save system resources).
723  * This timer may be expired, and if so, we will do it here.  Otherwise
724  * it is the same as a requeue pending timer WRT to what we should
725  * report.
726  */
727 static void
728 common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
729 {
730 	ktime_t now, remaining, iv;
731 	struct hrtimer *timer = &timr->it.real.timer;
732 
733 	memset(cur_setting, 0, sizeof(struct itimerspec));
734 
735 	iv = timr->it.real.interval;
736 
737 	/* interval timer ? */
738 	if (iv.tv64)
739 		cur_setting->it_interval = ktime_to_timespec(iv);
740 	else if (!hrtimer_active(timer) &&
741 		 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
742 		return;
743 
744 	now = timer->base->get_time();
745 
746 	/*
747 	 * When a requeue is pending or this is a SIGEV_NONE
748 	 * timer move the expiry time forward by intervals, so
749 	 * expiry is > now.
750 	 */
751 	if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
752 	    (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
753 		timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
754 
755 	remaining = ktime_sub(hrtimer_get_expires(timer), now);
756 	/* Return 0 only, when the timer is expired and not pending */
757 	if (remaining.tv64 <= 0) {
758 		/*
759 		 * A single shot SIGEV_NONE timer must return 0, when
760 		 * it is expired !
761 		 */
762 		if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
763 			cur_setting->it_value.tv_nsec = 1;
764 	} else
765 		cur_setting->it_value = ktime_to_timespec(remaining);
766 }
767 
768 /* Get the time remaining on a POSIX.1b interval timer. */
769 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
770 		struct itimerspec __user *, setting)
771 {
772 	struct itimerspec cur_setting;
773 	struct k_itimer *timr;
774 	struct k_clock *kc;
775 	unsigned long flags;
776 	int ret = 0;
777 
778 	timr = lock_timer(timer_id, &flags);
779 	if (!timr)
780 		return -EINVAL;
781 
782 	kc = clockid_to_kclock(timr->it_clock);
783 	if (WARN_ON_ONCE(!kc || !kc->timer_get))
784 		ret = -EINVAL;
785 	else
786 		kc->timer_get(timr, &cur_setting);
787 
788 	unlock_timer(timr, flags);
789 
790 	if (!ret && copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
791 		return -EFAULT;
792 
793 	return ret;
794 }
795 
796 /*
797  * Get the number of overruns of a POSIX.1b interval timer.  This is to
798  * be the overrun of the timer last delivered.  At the same time we are
799  * accumulating overruns on the next timer.  The overrun is frozen when
800  * the signal is delivered, either at the notify time (if the info block
801  * is not queued) or at the actual delivery time (as we are informed by
802  * the call back to do_schedule_next_timer().  So all we need to do is
803  * to pick up the frozen overrun.
804  */
805 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
806 {
807 	struct k_itimer *timr;
808 	int overrun;
809 	unsigned long flags;
810 
811 	timr = lock_timer(timer_id, &flags);
812 	if (!timr)
813 		return -EINVAL;
814 
815 	overrun = timr->it_overrun_last;
816 	unlock_timer(timr, flags);
817 
818 	return overrun;
819 }
820 
821 /* Set a POSIX.1b interval timer. */
822 /* timr->it_lock is taken. */
823 static int
824 common_timer_set(struct k_itimer *timr, int flags,
825 		 struct itimerspec *new_setting, struct itimerspec *old_setting)
826 {
827 	struct hrtimer *timer = &timr->it.real.timer;
828 	enum hrtimer_mode mode;
829 
830 	if (old_setting)
831 		common_timer_get(timr, old_setting);
832 
833 	/* disable the timer */
834 	timr->it.real.interval.tv64 = 0;
835 	/*
836 	 * careful here.  If smp we could be in the "fire" routine which will
837 	 * be spinning as we hold the lock.  But this is ONLY an SMP issue.
838 	 */
839 	if (hrtimer_try_to_cancel(timer) < 0)
840 		return TIMER_RETRY;
841 
842 	timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
843 		~REQUEUE_PENDING;
844 	timr->it_overrun_last = 0;
845 
846 	/* switch off the timer when it_value is zero */
847 	if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
848 		return 0;
849 
850 	mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
851 	hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
852 	timr->it.real.timer.function = posix_timer_fn;
853 
854 	hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value));
855 
856 	/* Convert interval */
857 	timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
858 
859 	/* SIGEV_NONE timers are not queued ! See common_timer_get */
860 	if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
861 		/* Setup correct expiry time for relative timers */
862 		if (mode == HRTIMER_MODE_REL) {
863 			hrtimer_add_expires(timer, timer->base->get_time());
864 		}
865 		return 0;
866 	}
867 
868 	hrtimer_start_expires(timer, mode);
869 	return 0;
870 }
871 
872 /* Set a POSIX.1b interval timer */
873 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
874 		const struct itimerspec __user *, new_setting,
875 		struct itimerspec __user *, old_setting)
876 {
877 	struct k_itimer *timr;
878 	struct itimerspec new_spec, old_spec;
879 	int error = 0;
880 	unsigned long flag;
881 	struct itimerspec *rtn = old_setting ? &old_spec : NULL;
882 	struct k_clock *kc;
883 
884 	if (!new_setting)
885 		return -EINVAL;
886 
887 	if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
888 		return -EFAULT;
889 
890 	if (!timespec_valid(&new_spec.it_interval) ||
891 	    !timespec_valid(&new_spec.it_value))
892 		return -EINVAL;
893 retry:
894 	timr = lock_timer(timer_id, &flag);
895 	if (!timr)
896 		return -EINVAL;
897 
898 	kc = clockid_to_kclock(timr->it_clock);
899 	if (WARN_ON_ONCE(!kc || !kc->timer_set))
900 		error = -EINVAL;
901 	else
902 		error = kc->timer_set(timr, flags, &new_spec, rtn);
903 
904 	unlock_timer(timr, flag);
905 	if (error == TIMER_RETRY) {
906 		rtn = NULL;	// We already got the old time...
907 		goto retry;
908 	}
909 
910 	if (old_setting && !error &&
911 	    copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
912 		error = -EFAULT;
913 
914 	return error;
915 }
916 
917 static int common_timer_del(struct k_itimer *timer)
918 {
919 	timer->it.real.interval.tv64 = 0;
920 
921 	if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
922 		return TIMER_RETRY;
923 	return 0;
924 }
925 
926 static inline int timer_delete_hook(struct k_itimer *timer)
927 {
928 	struct k_clock *kc = clockid_to_kclock(timer->it_clock);
929 
930 	if (WARN_ON_ONCE(!kc || !kc->timer_del))
931 		return -EINVAL;
932 	return kc->timer_del(timer);
933 }
934 
935 /* Delete a POSIX.1b interval timer. */
936 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
937 {
938 	struct k_itimer *timer;
939 	unsigned long flags;
940 
941 retry_delete:
942 	timer = lock_timer(timer_id, &flags);
943 	if (!timer)
944 		return -EINVAL;
945 
946 	if (timer_delete_hook(timer) == TIMER_RETRY) {
947 		unlock_timer(timer, flags);
948 		goto retry_delete;
949 	}
950 
951 	spin_lock(&current->sighand->siglock);
952 	list_del(&timer->list);
953 	spin_unlock(&current->sighand->siglock);
954 	/*
955 	 * This keeps any tasks waiting on the spin lock from thinking
956 	 * they got something (see the lock code above).
957 	 */
958 	timer->it_signal = NULL;
959 
960 	unlock_timer(timer, flags);
961 	release_posix_timer(timer, IT_ID_SET);
962 	return 0;
963 }
964 
965 /*
966  * return timer owned by the process, used by exit_itimers
967  */
968 static void itimer_delete(struct k_itimer *timer)
969 {
970 	unsigned long flags;
971 
972 retry_delete:
973 	spin_lock_irqsave(&timer->it_lock, flags);
974 
975 	if (timer_delete_hook(timer) == TIMER_RETRY) {
976 		unlock_timer(timer, flags);
977 		goto retry_delete;
978 	}
979 	list_del(&timer->list);
980 	/*
981 	 * This keeps any tasks waiting on the spin lock from thinking
982 	 * they got something (see the lock code above).
983 	 */
984 	timer->it_signal = NULL;
985 
986 	unlock_timer(timer, flags);
987 	release_posix_timer(timer, IT_ID_SET);
988 }
989 
990 /*
991  * This is called by do_exit or de_thread, only when there are no more
992  * references to the shared signal_struct.
993  */
994 void exit_itimers(struct signal_struct *sig)
995 {
996 	struct k_itimer *tmr;
997 
998 	while (!list_empty(&sig->posix_timers)) {
999 		tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
1000 		itimer_delete(tmr);
1001 	}
1002 }
1003 
1004 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1005 		const struct timespec __user *, tp)
1006 {
1007 	struct k_clock *kc = clockid_to_kclock(which_clock);
1008 	struct timespec new_tp;
1009 
1010 	if (!kc || !kc->clock_set)
1011 		return -EINVAL;
1012 
1013 	if (copy_from_user(&new_tp, tp, sizeof (*tp)))
1014 		return -EFAULT;
1015 
1016 	return kc->clock_set(which_clock, &new_tp);
1017 }
1018 
1019 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1020 		struct timespec __user *,tp)
1021 {
1022 	struct k_clock *kc = clockid_to_kclock(which_clock);
1023 	struct timespec kernel_tp;
1024 	int error;
1025 
1026 	if (!kc)
1027 		return -EINVAL;
1028 
1029 	error = kc->clock_get(which_clock, &kernel_tp);
1030 
1031 	if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
1032 		error = -EFAULT;
1033 
1034 	return error;
1035 }
1036 
1037 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1038 		struct timex __user *, utx)
1039 {
1040 	struct k_clock *kc = clockid_to_kclock(which_clock);
1041 	struct timex ktx;
1042 	int err;
1043 
1044 	if (!kc)
1045 		return -EINVAL;
1046 	if (!kc->clock_adj)
1047 		return -EOPNOTSUPP;
1048 
1049 	if (copy_from_user(&ktx, utx, sizeof(ktx)))
1050 		return -EFAULT;
1051 
1052 	err = kc->clock_adj(which_clock, &ktx);
1053 
1054 	if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1055 		return -EFAULT;
1056 
1057 	return err;
1058 }
1059 
1060 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1061 		struct timespec __user *, tp)
1062 {
1063 	struct k_clock *kc = clockid_to_kclock(which_clock);
1064 	struct timespec rtn_tp;
1065 	int error;
1066 
1067 	if (!kc)
1068 		return -EINVAL;
1069 
1070 	error = kc->clock_getres(which_clock, &rtn_tp);
1071 
1072 	if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp)))
1073 		error = -EFAULT;
1074 
1075 	return error;
1076 }
1077 
1078 /*
1079  * nanosleep for monotonic and realtime clocks
1080  */
1081 static int common_nsleep(const clockid_t which_clock, int flags,
1082 			 struct timespec *tsave, struct timespec __user *rmtp)
1083 {
1084 	return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
1085 				 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1086 				 which_clock);
1087 }
1088 
1089 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1090 		const struct timespec __user *, rqtp,
1091 		struct timespec __user *, rmtp)
1092 {
1093 	struct k_clock *kc = clockid_to_kclock(which_clock);
1094 	struct timespec t;
1095 
1096 	if (!kc)
1097 		return -EINVAL;
1098 	if (!kc->nsleep)
1099 		return -ENANOSLEEP_NOTSUP;
1100 
1101 	if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1102 		return -EFAULT;
1103 
1104 	if (!timespec_valid(&t))
1105 		return -EINVAL;
1106 
1107 	return kc->nsleep(which_clock, flags, &t, rmtp);
1108 }
1109 
1110 /*
1111  * This will restart clock_nanosleep. This is required only by
1112  * compat_clock_nanosleep_restart for now.
1113  */
1114 long clock_nanosleep_restart(struct restart_block *restart_block)
1115 {
1116 	clockid_t which_clock = restart_block->nanosleep.clockid;
1117 	struct k_clock *kc = clockid_to_kclock(which_clock);
1118 
1119 	if (WARN_ON_ONCE(!kc || !kc->nsleep_restart))
1120 		return -EINVAL;
1121 
1122 	return kc->nsleep_restart(restart_block);
1123 }
1124