1 /* 2 * Implement CPU time clocks for the POSIX clock interface. 3 */ 4 5 #include <linux/sched.h> 6 #include <linux/posix-timers.h> 7 #include <linux/errno.h> 8 #include <linux/math64.h> 9 #include <asm/uaccess.h> 10 #include <linux/kernel_stat.h> 11 #include <trace/events/timer.h> 12 #include <linux/random.h> 13 #include <linux/tick.h> 14 #include <linux/workqueue.h> 15 16 /* 17 * Called after updating RLIMIT_CPU to run cpu timer and update 18 * tsk->signal->cputime_expires expiration cache if necessary. Needs 19 * siglock protection since other code may update expiration cache as 20 * well. 21 */ 22 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new) 23 { 24 cputime_t cputime = secs_to_cputime(rlim_new); 25 26 spin_lock_irq(&task->sighand->siglock); 27 set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL); 28 spin_unlock_irq(&task->sighand->siglock); 29 } 30 31 static int check_clock(const clockid_t which_clock) 32 { 33 int error = 0; 34 struct task_struct *p; 35 const pid_t pid = CPUCLOCK_PID(which_clock); 36 37 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX) 38 return -EINVAL; 39 40 if (pid == 0) 41 return 0; 42 43 rcu_read_lock(); 44 p = find_task_by_vpid(pid); 45 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ? 46 same_thread_group(p, current) : has_group_leader_pid(p))) { 47 error = -EINVAL; 48 } 49 rcu_read_unlock(); 50 51 return error; 52 } 53 54 static inline unsigned long long 55 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp) 56 { 57 unsigned long long ret; 58 59 ret = 0; /* high half always zero when .cpu used */ 60 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { 61 ret = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec; 62 } else { 63 ret = cputime_to_expires(timespec_to_cputime(tp)); 64 } 65 return ret; 66 } 67 68 static void sample_to_timespec(const clockid_t which_clock, 69 unsigned long long expires, 70 struct timespec *tp) 71 { 72 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) 73 *tp = ns_to_timespec(expires); 74 else 75 cputime_to_timespec((__force cputime_t)expires, tp); 76 } 77 78 /* 79 * Update expiry time from increment, and increase overrun count, 80 * given the current clock sample. 81 */ 82 static void bump_cpu_timer(struct k_itimer *timer, 83 unsigned long long now) 84 { 85 int i; 86 unsigned long long delta, incr; 87 88 if (timer->it.cpu.incr == 0) 89 return; 90 91 if (now < timer->it.cpu.expires) 92 return; 93 94 incr = timer->it.cpu.incr; 95 delta = now + incr - timer->it.cpu.expires; 96 97 /* Don't use (incr*2 < delta), incr*2 might overflow. */ 98 for (i = 0; incr < delta - incr; i++) 99 incr = incr << 1; 100 101 for (; i >= 0; incr >>= 1, i--) { 102 if (delta < incr) 103 continue; 104 105 timer->it.cpu.expires += incr; 106 timer->it_overrun += 1 << i; 107 delta -= incr; 108 } 109 } 110 111 /** 112 * task_cputime_zero - Check a task_cputime struct for all zero fields. 113 * 114 * @cputime: The struct to compare. 115 * 116 * Checks @cputime to see if all fields are zero. Returns true if all fields 117 * are zero, false if any field is nonzero. 118 */ 119 static inline int task_cputime_zero(const struct task_cputime *cputime) 120 { 121 if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime) 122 return 1; 123 return 0; 124 } 125 126 static inline unsigned long long prof_ticks(struct task_struct *p) 127 { 128 cputime_t utime, stime; 129 130 task_cputime(p, &utime, &stime); 131 132 return cputime_to_expires(utime + stime); 133 } 134 static inline unsigned long long virt_ticks(struct task_struct *p) 135 { 136 cputime_t utime; 137 138 task_cputime(p, &utime, NULL); 139 140 return cputime_to_expires(utime); 141 } 142 143 static int 144 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp) 145 { 146 int error = check_clock(which_clock); 147 if (!error) { 148 tp->tv_sec = 0; 149 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ); 150 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { 151 /* 152 * If sched_clock is using a cycle counter, we 153 * don't have any idea of its true resolution 154 * exported, but it is much more than 1s/HZ. 155 */ 156 tp->tv_nsec = 1; 157 } 158 } 159 return error; 160 } 161 162 static int 163 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp) 164 { 165 /* 166 * You can never reset a CPU clock, but we check for other errors 167 * in the call before failing with EPERM. 168 */ 169 int error = check_clock(which_clock); 170 if (error == 0) { 171 error = -EPERM; 172 } 173 return error; 174 } 175 176 177 /* 178 * Sample a per-thread clock for the given task. 179 */ 180 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p, 181 unsigned long long *sample) 182 { 183 switch (CPUCLOCK_WHICH(which_clock)) { 184 default: 185 return -EINVAL; 186 case CPUCLOCK_PROF: 187 *sample = prof_ticks(p); 188 break; 189 case CPUCLOCK_VIRT: 190 *sample = virt_ticks(p); 191 break; 192 case CPUCLOCK_SCHED: 193 *sample = task_sched_runtime(p); 194 break; 195 } 196 return 0; 197 } 198 199 static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b) 200 { 201 if (b->utime > a->utime) 202 a->utime = b->utime; 203 204 if (b->stime > a->stime) 205 a->stime = b->stime; 206 207 if (b->sum_exec_runtime > a->sum_exec_runtime) 208 a->sum_exec_runtime = b->sum_exec_runtime; 209 } 210 211 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times) 212 { 213 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; 214 struct task_cputime sum; 215 unsigned long flags; 216 217 if (!cputimer->running) { 218 /* 219 * The POSIX timer interface allows for absolute time expiry 220 * values through the TIMER_ABSTIME flag, therefore we have 221 * to synchronize the timer to the clock every time we start 222 * it. 223 */ 224 thread_group_cputime(tsk, &sum); 225 raw_spin_lock_irqsave(&cputimer->lock, flags); 226 cputimer->running = 1; 227 update_gt_cputime(&cputimer->cputime, &sum); 228 } else 229 raw_spin_lock_irqsave(&cputimer->lock, flags); 230 *times = cputimer->cputime; 231 raw_spin_unlock_irqrestore(&cputimer->lock, flags); 232 } 233 234 /* 235 * Sample a process (thread group) clock for the given group_leader task. 236 * Must be called with task sighand lock held for safe while_each_thread() 237 * traversal. 238 */ 239 static int cpu_clock_sample_group(const clockid_t which_clock, 240 struct task_struct *p, 241 unsigned long long *sample) 242 { 243 struct task_cputime cputime; 244 245 switch (CPUCLOCK_WHICH(which_clock)) { 246 default: 247 return -EINVAL; 248 case CPUCLOCK_PROF: 249 thread_group_cputime(p, &cputime); 250 *sample = cputime_to_expires(cputime.utime + cputime.stime); 251 break; 252 case CPUCLOCK_VIRT: 253 thread_group_cputime(p, &cputime); 254 *sample = cputime_to_expires(cputime.utime); 255 break; 256 case CPUCLOCK_SCHED: 257 thread_group_cputime(p, &cputime); 258 *sample = cputime.sum_exec_runtime; 259 break; 260 } 261 return 0; 262 } 263 264 static int posix_cpu_clock_get_task(struct task_struct *tsk, 265 const clockid_t which_clock, 266 struct timespec *tp) 267 { 268 int err = -EINVAL; 269 unsigned long long rtn; 270 271 if (CPUCLOCK_PERTHREAD(which_clock)) { 272 if (same_thread_group(tsk, current)) 273 err = cpu_clock_sample(which_clock, tsk, &rtn); 274 } else { 275 if (tsk == current || thread_group_leader(tsk)) 276 err = cpu_clock_sample_group(which_clock, tsk, &rtn); 277 } 278 279 if (!err) 280 sample_to_timespec(which_clock, rtn, tp); 281 282 return err; 283 } 284 285 286 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp) 287 { 288 const pid_t pid = CPUCLOCK_PID(which_clock); 289 int err = -EINVAL; 290 291 if (pid == 0) { 292 /* 293 * Special case constant value for our own clocks. 294 * We don't have to do any lookup to find ourselves. 295 */ 296 err = posix_cpu_clock_get_task(current, which_clock, tp); 297 } else { 298 /* 299 * Find the given PID, and validate that the caller 300 * should be able to see it. 301 */ 302 struct task_struct *p; 303 rcu_read_lock(); 304 p = find_task_by_vpid(pid); 305 if (p) 306 err = posix_cpu_clock_get_task(p, which_clock, tp); 307 rcu_read_unlock(); 308 } 309 310 return err; 311 } 312 313 314 /* 315 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer. 316 * This is called from sys_timer_create() and do_cpu_nanosleep() with the 317 * new timer already all-zeros initialized. 318 */ 319 static int posix_cpu_timer_create(struct k_itimer *new_timer) 320 { 321 int ret = 0; 322 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock); 323 struct task_struct *p; 324 325 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX) 326 return -EINVAL; 327 328 INIT_LIST_HEAD(&new_timer->it.cpu.entry); 329 330 rcu_read_lock(); 331 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) { 332 if (pid == 0) { 333 p = current; 334 } else { 335 p = find_task_by_vpid(pid); 336 if (p && !same_thread_group(p, current)) 337 p = NULL; 338 } 339 } else { 340 if (pid == 0) { 341 p = current->group_leader; 342 } else { 343 p = find_task_by_vpid(pid); 344 if (p && !has_group_leader_pid(p)) 345 p = NULL; 346 } 347 } 348 new_timer->it.cpu.task = p; 349 if (p) { 350 get_task_struct(p); 351 } else { 352 ret = -EINVAL; 353 } 354 rcu_read_unlock(); 355 356 return ret; 357 } 358 359 /* 360 * Clean up a CPU-clock timer that is about to be destroyed. 361 * This is called from timer deletion with the timer already locked. 362 * If we return TIMER_RETRY, it's necessary to release the timer's lock 363 * and try again. (This happens when the timer is in the middle of firing.) 364 */ 365 static int posix_cpu_timer_del(struct k_itimer *timer) 366 { 367 int ret = 0; 368 unsigned long flags; 369 struct sighand_struct *sighand; 370 struct task_struct *p = timer->it.cpu.task; 371 372 WARN_ON_ONCE(p == NULL); 373 374 /* 375 * Protect against sighand release/switch in exit/exec and process/ 376 * thread timer list entry concurrent read/writes. 377 */ 378 sighand = lock_task_sighand(p, &flags); 379 if (unlikely(sighand == NULL)) { 380 /* 381 * We raced with the reaping of the task. 382 * The deletion should have cleared us off the list. 383 */ 384 WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry)); 385 } else { 386 if (timer->it.cpu.firing) 387 ret = TIMER_RETRY; 388 else 389 list_del(&timer->it.cpu.entry); 390 391 unlock_task_sighand(p, &flags); 392 } 393 394 if (!ret) 395 put_task_struct(p); 396 397 return ret; 398 } 399 400 static void cleanup_timers_list(struct list_head *head) 401 { 402 struct cpu_timer_list *timer, *next; 403 404 list_for_each_entry_safe(timer, next, head, entry) 405 list_del_init(&timer->entry); 406 } 407 408 /* 409 * Clean out CPU timers still ticking when a thread exited. The task 410 * pointer is cleared, and the expiry time is replaced with the residual 411 * time for later timer_gettime calls to return. 412 * This must be called with the siglock held. 413 */ 414 static void cleanup_timers(struct list_head *head) 415 { 416 cleanup_timers_list(head); 417 cleanup_timers_list(++head); 418 cleanup_timers_list(++head); 419 } 420 421 /* 422 * These are both called with the siglock held, when the current thread 423 * is being reaped. When the final (leader) thread in the group is reaped, 424 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit. 425 */ 426 void posix_cpu_timers_exit(struct task_struct *tsk) 427 { 428 add_device_randomness((const void*) &tsk->se.sum_exec_runtime, 429 sizeof(unsigned long long)); 430 cleanup_timers(tsk->cpu_timers); 431 432 } 433 void posix_cpu_timers_exit_group(struct task_struct *tsk) 434 { 435 cleanup_timers(tsk->signal->cpu_timers); 436 } 437 438 static inline int expires_gt(cputime_t expires, cputime_t new_exp) 439 { 440 return expires == 0 || expires > new_exp; 441 } 442 443 /* 444 * Insert the timer on the appropriate list before any timers that 445 * expire later. This must be called with the sighand lock held. 446 */ 447 static void arm_timer(struct k_itimer *timer) 448 { 449 struct task_struct *p = timer->it.cpu.task; 450 struct list_head *head, *listpos; 451 struct task_cputime *cputime_expires; 452 struct cpu_timer_list *const nt = &timer->it.cpu; 453 struct cpu_timer_list *next; 454 455 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 456 head = p->cpu_timers; 457 cputime_expires = &p->cputime_expires; 458 } else { 459 head = p->signal->cpu_timers; 460 cputime_expires = &p->signal->cputime_expires; 461 } 462 head += CPUCLOCK_WHICH(timer->it_clock); 463 464 listpos = head; 465 list_for_each_entry(next, head, entry) { 466 if (nt->expires < next->expires) 467 break; 468 listpos = &next->entry; 469 } 470 list_add(&nt->entry, listpos); 471 472 if (listpos == head) { 473 unsigned long long exp = nt->expires; 474 475 /* 476 * We are the new earliest-expiring POSIX 1.b timer, hence 477 * need to update expiration cache. Take into account that 478 * for process timers we share expiration cache with itimers 479 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME. 480 */ 481 482 switch (CPUCLOCK_WHICH(timer->it_clock)) { 483 case CPUCLOCK_PROF: 484 if (expires_gt(cputime_expires->prof_exp, expires_to_cputime(exp))) 485 cputime_expires->prof_exp = expires_to_cputime(exp); 486 break; 487 case CPUCLOCK_VIRT: 488 if (expires_gt(cputime_expires->virt_exp, expires_to_cputime(exp))) 489 cputime_expires->virt_exp = expires_to_cputime(exp); 490 break; 491 case CPUCLOCK_SCHED: 492 if (cputime_expires->sched_exp == 0 || 493 cputime_expires->sched_exp > exp) 494 cputime_expires->sched_exp = exp; 495 break; 496 } 497 } 498 } 499 500 /* 501 * The timer is locked, fire it and arrange for its reload. 502 */ 503 static void cpu_timer_fire(struct k_itimer *timer) 504 { 505 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { 506 /* 507 * User don't want any signal. 508 */ 509 timer->it.cpu.expires = 0; 510 } else if (unlikely(timer->sigq == NULL)) { 511 /* 512 * This a special case for clock_nanosleep, 513 * not a normal timer from sys_timer_create. 514 */ 515 wake_up_process(timer->it_process); 516 timer->it.cpu.expires = 0; 517 } else if (timer->it.cpu.incr == 0) { 518 /* 519 * One-shot timer. Clear it as soon as it's fired. 520 */ 521 posix_timer_event(timer, 0); 522 timer->it.cpu.expires = 0; 523 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) { 524 /* 525 * The signal did not get queued because the signal 526 * was ignored, so we won't get any callback to 527 * reload the timer. But we need to keep it 528 * ticking in case the signal is deliverable next time. 529 */ 530 posix_cpu_timer_schedule(timer); 531 } 532 } 533 534 /* 535 * Sample a process (thread group) timer for the given group_leader task. 536 * Must be called with task sighand lock held for safe while_each_thread() 537 * traversal. 538 */ 539 static int cpu_timer_sample_group(const clockid_t which_clock, 540 struct task_struct *p, 541 unsigned long long *sample) 542 { 543 struct task_cputime cputime; 544 545 thread_group_cputimer(p, &cputime); 546 switch (CPUCLOCK_WHICH(which_clock)) { 547 default: 548 return -EINVAL; 549 case CPUCLOCK_PROF: 550 *sample = cputime_to_expires(cputime.utime + cputime.stime); 551 break; 552 case CPUCLOCK_VIRT: 553 *sample = cputime_to_expires(cputime.utime); 554 break; 555 case CPUCLOCK_SCHED: 556 *sample = cputime.sum_exec_runtime; 557 break; 558 } 559 return 0; 560 } 561 562 #ifdef CONFIG_NO_HZ_FULL 563 static void nohz_kick_work_fn(struct work_struct *work) 564 { 565 tick_nohz_full_kick_all(); 566 } 567 568 static DECLARE_WORK(nohz_kick_work, nohz_kick_work_fn); 569 570 /* 571 * We need the IPIs to be sent from sane process context. 572 * The posix cpu timers are always set with irqs disabled. 573 */ 574 static void posix_cpu_timer_kick_nohz(void) 575 { 576 if (context_tracking_is_enabled()) 577 schedule_work(&nohz_kick_work); 578 } 579 580 bool posix_cpu_timers_can_stop_tick(struct task_struct *tsk) 581 { 582 if (!task_cputime_zero(&tsk->cputime_expires)) 583 return false; 584 585 if (tsk->signal->cputimer.running) 586 return false; 587 588 return true; 589 } 590 #else 591 static inline void posix_cpu_timer_kick_nohz(void) { } 592 #endif 593 594 /* 595 * Guts of sys_timer_settime for CPU timers. 596 * This is called with the timer locked and interrupts disabled. 597 * If we return TIMER_RETRY, it's necessary to release the timer's lock 598 * and try again. (This happens when the timer is in the middle of firing.) 599 */ 600 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags, 601 struct itimerspec *new, struct itimerspec *old) 602 { 603 unsigned long flags; 604 struct sighand_struct *sighand; 605 struct task_struct *p = timer->it.cpu.task; 606 unsigned long long old_expires, new_expires, old_incr, val; 607 int ret; 608 609 WARN_ON_ONCE(p == NULL); 610 611 new_expires = timespec_to_sample(timer->it_clock, &new->it_value); 612 613 /* 614 * Protect against sighand release/switch in exit/exec and p->cpu_timers 615 * and p->signal->cpu_timers read/write in arm_timer() 616 */ 617 sighand = lock_task_sighand(p, &flags); 618 /* 619 * If p has just been reaped, we can no 620 * longer get any information about it at all. 621 */ 622 if (unlikely(sighand == NULL)) { 623 return -ESRCH; 624 } 625 626 /* 627 * Disarm any old timer after extracting its expiry time. 628 */ 629 WARN_ON_ONCE(!irqs_disabled()); 630 631 ret = 0; 632 old_incr = timer->it.cpu.incr; 633 old_expires = timer->it.cpu.expires; 634 if (unlikely(timer->it.cpu.firing)) { 635 timer->it.cpu.firing = -1; 636 ret = TIMER_RETRY; 637 } else 638 list_del_init(&timer->it.cpu.entry); 639 640 /* 641 * We need to sample the current value to convert the new 642 * value from to relative and absolute, and to convert the 643 * old value from absolute to relative. To set a process 644 * timer, we need a sample to balance the thread expiry 645 * times (in arm_timer). With an absolute time, we must 646 * check if it's already passed. In short, we need a sample. 647 */ 648 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 649 cpu_clock_sample(timer->it_clock, p, &val); 650 } else { 651 cpu_timer_sample_group(timer->it_clock, p, &val); 652 } 653 654 if (old) { 655 if (old_expires == 0) { 656 old->it_value.tv_sec = 0; 657 old->it_value.tv_nsec = 0; 658 } else { 659 /* 660 * Update the timer in case it has 661 * overrun already. If it has, 662 * we'll report it as having overrun 663 * and with the next reloaded timer 664 * already ticking, though we are 665 * swallowing that pending 666 * notification here to install the 667 * new setting. 668 */ 669 bump_cpu_timer(timer, val); 670 if (val < timer->it.cpu.expires) { 671 old_expires = timer->it.cpu.expires - val; 672 sample_to_timespec(timer->it_clock, 673 old_expires, 674 &old->it_value); 675 } else { 676 old->it_value.tv_nsec = 1; 677 old->it_value.tv_sec = 0; 678 } 679 } 680 } 681 682 if (unlikely(ret)) { 683 /* 684 * We are colliding with the timer actually firing. 685 * Punt after filling in the timer's old value, and 686 * disable this firing since we are already reporting 687 * it as an overrun (thanks to bump_cpu_timer above). 688 */ 689 unlock_task_sighand(p, &flags); 690 goto out; 691 } 692 693 if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) { 694 new_expires += val; 695 } 696 697 /* 698 * Install the new expiry time (or zero). 699 * For a timer with no notification action, we don't actually 700 * arm the timer (we'll just fake it for timer_gettime). 701 */ 702 timer->it.cpu.expires = new_expires; 703 if (new_expires != 0 && val < new_expires) { 704 arm_timer(timer); 705 } 706 707 unlock_task_sighand(p, &flags); 708 /* 709 * Install the new reload setting, and 710 * set up the signal and overrun bookkeeping. 711 */ 712 timer->it.cpu.incr = timespec_to_sample(timer->it_clock, 713 &new->it_interval); 714 715 /* 716 * This acts as a modification timestamp for the timer, 717 * so any automatic reload attempt will punt on seeing 718 * that we have reset the timer manually. 719 */ 720 timer->it_requeue_pending = (timer->it_requeue_pending + 2) & 721 ~REQUEUE_PENDING; 722 timer->it_overrun_last = 0; 723 timer->it_overrun = -1; 724 725 if (new_expires != 0 && !(val < new_expires)) { 726 /* 727 * The designated time already passed, so we notify 728 * immediately, even if the thread never runs to 729 * accumulate more time on this clock. 730 */ 731 cpu_timer_fire(timer); 732 } 733 734 ret = 0; 735 out: 736 if (old) { 737 sample_to_timespec(timer->it_clock, 738 old_incr, &old->it_interval); 739 } 740 if (!ret) 741 posix_cpu_timer_kick_nohz(); 742 return ret; 743 } 744 745 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp) 746 { 747 unsigned long long now; 748 struct task_struct *p = timer->it.cpu.task; 749 750 WARN_ON_ONCE(p == NULL); 751 752 /* 753 * Easy part: convert the reload time. 754 */ 755 sample_to_timespec(timer->it_clock, 756 timer->it.cpu.incr, &itp->it_interval); 757 758 if (timer->it.cpu.expires == 0) { /* Timer not armed at all. */ 759 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0; 760 return; 761 } 762 763 /* 764 * Sample the clock to take the difference with the expiry time. 765 */ 766 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 767 cpu_clock_sample(timer->it_clock, p, &now); 768 } else { 769 struct sighand_struct *sighand; 770 unsigned long flags; 771 772 /* 773 * Protect against sighand release/switch in exit/exec and 774 * also make timer sampling safe if it ends up calling 775 * thread_group_cputime(). 776 */ 777 sighand = lock_task_sighand(p, &flags); 778 if (unlikely(sighand == NULL)) { 779 /* 780 * The process has been reaped. 781 * We can't even collect a sample any more. 782 * Call the timer disarmed, nothing else to do. 783 */ 784 timer->it.cpu.expires = 0; 785 sample_to_timespec(timer->it_clock, timer->it.cpu.expires, 786 &itp->it_value); 787 } else { 788 cpu_timer_sample_group(timer->it_clock, p, &now); 789 unlock_task_sighand(p, &flags); 790 } 791 } 792 793 if (now < timer->it.cpu.expires) { 794 sample_to_timespec(timer->it_clock, 795 timer->it.cpu.expires - now, 796 &itp->it_value); 797 } else { 798 /* 799 * The timer should have expired already, but the firing 800 * hasn't taken place yet. Say it's just about to expire. 801 */ 802 itp->it_value.tv_nsec = 1; 803 itp->it_value.tv_sec = 0; 804 } 805 } 806 807 static unsigned long long 808 check_timers_list(struct list_head *timers, 809 struct list_head *firing, 810 unsigned long long curr) 811 { 812 int maxfire = 20; 813 814 while (!list_empty(timers)) { 815 struct cpu_timer_list *t; 816 817 t = list_first_entry(timers, struct cpu_timer_list, entry); 818 819 if (!--maxfire || curr < t->expires) 820 return t->expires; 821 822 t->firing = 1; 823 list_move_tail(&t->entry, firing); 824 } 825 826 return 0; 827 } 828 829 /* 830 * Check for any per-thread CPU timers that have fired and move them off 831 * the tsk->cpu_timers[N] list onto the firing list. Here we update the 832 * tsk->it_*_expires values to reflect the remaining thread CPU timers. 833 */ 834 static void check_thread_timers(struct task_struct *tsk, 835 struct list_head *firing) 836 { 837 struct list_head *timers = tsk->cpu_timers; 838 struct signal_struct *const sig = tsk->signal; 839 struct task_cputime *tsk_expires = &tsk->cputime_expires; 840 unsigned long long expires; 841 unsigned long soft; 842 843 expires = check_timers_list(timers, firing, prof_ticks(tsk)); 844 tsk_expires->prof_exp = expires_to_cputime(expires); 845 846 expires = check_timers_list(++timers, firing, virt_ticks(tsk)); 847 tsk_expires->virt_exp = expires_to_cputime(expires); 848 849 tsk_expires->sched_exp = check_timers_list(++timers, firing, 850 tsk->se.sum_exec_runtime); 851 852 /* 853 * Check for the special case thread timers. 854 */ 855 soft = ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur); 856 if (soft != RLIM_INFINITY) { 857 unsigned long hard = 858 ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max); 859 860 if (hard != RLIM_INFINITY && 861 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) { 862 /* 863 * At the hard limit, we just die. 864 * No need to calculate anything else now. 865 */ 866 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); 867 return; 868 } 869 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) { 870 /* 871 * At the soft limit, send a SIGXCPU every second. 872 */ 873 if (soft < hard) { 874 soft += USEC_PER_SEC; 875 sig->rlim[RLIMIT_RTTIME].rlim_cur = soft; 876 } 877 printk(KERN_INFO 878 "RT Watchdog Timeout: %s[%d]\n", 879 tsk->comm, task_pid_nr(tsk)); 880 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); 881 } 882 } 883 } 884 885 static void stop_process_timers(struct signal_struct *sig) 886 { 887 struct thread_group_cputimer *cputimer = &sig->cputimer; 888 unsigned long flags; 889 890 raw_spin_lock_irqsave(&cputimer->lock, flags); 891 cputimer->running = 0; 892 raw_spin_unlock_irqrestore(&cputimer->lock, flags); 893 } 894 895 static u32 onecputick; 896 897 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it, 898 unsigned long long *expires, 899 unsigned long long cur_time, int signo) 900 { 901 if (!it->expires) 902 return; 903 904 if (cur_time >= it->expires) { 905 if (it->incr) { 906 it->expires += it->incr; 907 it->error += it->incr_error; 908 if (it->error >= onecputick) { 909 it->expires -= cputime_one_jiffy; 910 it->error -= onecputick; 911 } 912 } else { 913 it->expires = 0; 914 } 915 916 trace_itimer_expire(signo == SIGPROF ? 917 ITIMER_PROF : ITIMER_VIRTUAL, 918 tsk->signal->leader_pid, cur_time); 919 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk); 920 } 921 922 if (it->expires && (!*expires || it->expires < *expires)) { 923 *expires = it->expires; 924 } 925 } 926 927 /* 928 * Check for any per-thread CPU timers that have fired and move them 929 * off the tsk->*_timers list onto the firing list. Per-thread timers 930 * have already been taken off. 931 */ 932 static void check_process_timers(struct task_struct *tsk, 933 struct list_head *firing) 934 { 935 struct signal_struct *const sig = tsk->signal; 936 unsigned long long utime, ptime, virt_expires, prof_expires; 937 unsigned long long sum_sched_runtime, sched_expires; 938 struct list_head *timers = sig->cpu_timers; 939 struct task_cputime cputime; 940 unsigned long soft; 941 942 /* 943 * Collect the current process totals. 944 */ 945 thread_group_cputimer(tsk, &cputime); 946 utime = cputime_to_expires(cputime.utime); 947 ptime = utime + cputime_to_expires(cputime.stime); 948 sum_sched_runtime = cputime.sum_exec_runtime; 949 950 prof_expires = check_timers_list(timers, firing, ptime); 951 virt_expires = check_timers_list(++timers, firing, utime); 952 sched_expires = check_timers_list(++timers, firing, sum_sched_runtime); 953 954 /* 955 * Check for the special case process timers. 956 */ 957 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime, 958 SIGPROF); 959 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime, 960 SIGVTALRM); 961 soft = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 962 if (soft != RLIM_INFINITY) { 963 unsigned long psecs = cputime_to_secs(ptime); 964 unsigned long hard = 965 ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_max); 966 cputime_t x; 967 if (psecs >= hard) { 968 /* 969 * At the hard limit, we just die. 970 * No need to calculate anything else now. 971 */ 972 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); 973 return; 974 } 975 if (psecs >= soft) { 976 /* 977 * At the soft limit, send a SIGXCPU every second. 978 */ 979 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); 980 if (soft < hard) { 981 soft++; 982 sig->rlim[RLIMIT_CPU].rlim_cur = soft; 983 } 984 } 985 x = secs_to_cputime(soft); 986 if (!prof_expires || x < prof_expires) { 987 prof_expires = x; 988 } 989 } 990 991 sig->cputime_expires.prof_exp = expires_to_cputime(prof_expires); 992 sig->cputime_expires.virt_exp = expires_to_cputime(virt_expires); 993 sig->cputime_expires.sched_exp = sched_expires; 994 if (task_cputime_zero(&sig->cputime_expires)) 995 stop_process_timers(sig); 996 } 997 998 /* 999 * This is called from the signal code (via do_schedule_next_timer) 1000 * when the last timer signal was delivered and we have to reload the timer. 1001 */ 1002 void posix_cpu_timer_schedule(struct k_itimer *timer) 1003 { 1004 struct sighand_struct *sighand; 1005 unsigned long flags; 1006 struct task_struct *p = timer->it.cpu.task; 1007 unsigned long long now; 1008 1009 WARN_ON_ONCE(p == NULL); 1010 1011 /* 1012 * Fetch the current sample and update the timer's expiry time. 1013 */ 1014 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 1015 cpu_clock_sample(timer->it_clock, p, &now); 1016 bump_cpu_timer(timer, now); 1017 if (unlikely(p->exit_state)) 1018 goto out; 1019 1020 /* Protect timer list r/w in arm_timer() */ 1021 sighand = lock_task_sighand(p, &flags); 1022 if (!sighand) 1023 goto out; 1024 } else { 1025 /* 1026 * Protect arm_timer() and timer sampling in case of call to 1027 * thread_group_cputime(). 1028 */ 1029 sighand = lock_task_sighand(p, &flags); 1030 if (unlikely(sighand == NULL)) { 1031 /* 1032 * The process has been reaped. 1033 * We can't even collect a sample any more. 1034 */ 1035 timer->it.cpu.expires = 0; 1036 goto out; 1037 } else if (unlikely(p->exit_state) && thread_group_empty(p)) { 1038 unlock_task_sighand(p, &flags); 1039 /* Optimizations: if the process is dying, no need to rearm */ 1040 goto out; 1041 } 1042 cpu_timer_sample_group(timer->it_clock, p, &now); 1043 bump_cpu_timer(timer, now); 1044 /* Leave the sighand locked for the call below. */ 1045 } 1046 1047 /* 1048 * Now re-arm for the new expiry time. 1049 */ 1050 WARN_ON_ONCE(!irqs_disabled()); 1051 arm_timer(timer); 1052 unlock_task_sighand(p, &flags); 1053 1054 /* Kick full dynticks CPUs in case they need to tick on the new timer */ 1055 posix_cpu_timer_kick_nohz(); 1056 out: 1057 timer->it_overrun_last = timer->it_overrun; 1058 timer->it_overrun = -1; 1059 ++timer->it_requeue_pending; 1060 } 1061 1062 /** 1063 * task_cputime_expired - Compare two task_cputime entities. 1064 * 1065 * @sample: The task_cputime structure to be checked for expiration. 1066 * @expires: Expiration times, against which @sample will be checked. 1067 * 1068 * Checks @sample against @expires to see if any field of @sample has expired. 1069 * Returns true if any field of the former is greater than the corresponding 1070 * field of the latter if the latter field is set. Otherwise returns false. 1071 */ 1072 static inline int task_cputime_expired(const struct task_cputime *sample, 1073 const struct task_cputime *expires) 1074 { 1075 if (expires->utime && sample->utime >= expires->utime) 1076 return 1; 1077 if (expires->stime && sample->utime + sample->stime >= expires->stime) 1078 return 1; 1079 if (expires->sum_exec_runtime != 0 && 1080 sample->sum_exec_runtime >= expires->sum_exec_runtime) 1081 return 1; 1082 return 0; 1083 } 1084 1085 /** 1086 * fastpath_timer_check - POSIX CPU timers fast path. 1087 * 1088 * @tsk: The task (thread) being checked. 1089 * 1090 * Check the task and thread group timers. If both are zero (there are no 1091 * timers set) return false. Otherwise snapshot the task and thread group 1092 * timers and compare them with the corresponding expiration times. Return 1093 * true if a timer has expired, else return false. 1094 */ 1095 static inline int fastpath_timer_check(struct task_struct *tsk) 1096 { 1097 struct signal_struct *sig; 1098 cputime_t utime, stime; 1099 1100 task_cputime(tsk, &utime, &stime); 1101 1102 if (!task_cputime_zero(&tsk->cputime_expires)) { 1103 struct task_cputime task_sample = { 1104 .utime = utime, 1105 .stime = stime, 1106 .sum_exec_runtime = tsk->se.sum_exec_runtime 1107 }; 1108 1109 if (task_cputime_expired(&task_sample, &tsk->cputime_expires)) 1110 return 1; 1111 } 1112 1113 sig = tsk->signal; 1114 if (sig->cputimer.running) { 1115 struct task_cputime group_sample; 1116 1117 raw_spin_lock(&sig->cputimer.lock); 1118 group_sample = sig->cputimer.cputime; 1119 raw_spin_unlock(&sig->cputimer.lock); 1120 1121 if (task_cputime_expired(&group_sample, &sig->cputime_expires)) 1122 return 1; 1123 } 1124 1125 return 0; 1126 } 1127 1128 /* 1129 * This is called from the timer interrupt handler. The irq handler has 1130 * already updated our counts. We need to check if any timers fire now. 1131 * Interrupts are disabled. 1132 */ 1133 void run_posix_cpu_timers(struct task_struct *tsk) 1134 { 1135 LIST_HEAD(firing); 1136 struct k_itimer *timer, *next; 1137 unsigned long flags; 1138 1139 WARN_ON_ONCE(!irqs_disabled()); 1140 1141 /* 1142 * The fast path checks that there are no expired thread or thread 1143 * group timers. If that's so, just return. 1144 */ 1145 if (!fastpath_timer_check(tsk)) 1146 return; 1147 1148 if (!lock_task_sighand(tsk, &flags)) 1149 return; 1150 /* 1151 * Here we take off tsk->signal->cpu_timers[N] and 1152 * tsk->cpu_timers[N] all the timers that are firing, and 1153 * put them on the firing list. 1154 */ 1155 check_thread_timers(tsk, &firing); 1156 /* 1157 * If there are any active process wide timers (POSIX 1.b, itimers, 1158 * RLIMIT_CPU) cputimer must be running. 1159 */ 1160 if (tsk->signal->cputimer.running) 1161 check_process_timers(tsk, &firing); 1162 1163 /* 1164 * We must release these locks before taking any timer's lock. 1165 * There is a potential race with timer deletion here, as the 1166 * siglock now protects our private firing list. We have set 1167 * the firing flag in each timer, so that a deletion attempt 1168 * that gets the timer lock before we do will give it up and 1169 * spin until we've taken care of that timer below. 1170 */ 1171 unlock_task_sighand(tsk, &flags); 1172 1173 /* 1174 * Now that all the timers on our list have the firing flag, 1175 * no one will touch their list entries but us. We'll take 1176 * each timer's lock before clearing its firing flag, so no 1177 * timer call will interfere. 1178 */ 1179 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) { 1180 int cpu_firing; 1181 1182 spin_lock(&timer->it_lock); 1183 list_del_init(&timer->it.cpu.entry); 1184 cpu_firing = timer->it.cpu.firing; 1185 timer->it.cpu.firing = 0; 1186 /* 1187 * The firing flag is -1 if we collided with a reset 1188 * of the timer, which already reported this 1189 * almost-firing as an overrun. So don't generate an event. 1190 */ 1191 if (likely(cpu_firing >= 0)) 1192 cpu_timer_fire(timer); 1193 spin_unlock(&timer->it_lock); 1194 } 1195 } 1196 1197 /* 1198 * Set one of the process-wide special case CPU timers or RLIMIT_CPU. 1199 * The tsk->sighand->siglock must be held by the caller. 1200 */ 1201 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx, 1202 cputime_t *newval, cputime_t *oldval) 1203 { 1204 unsigned long long now; 1205 1206 WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED); 1207 cpu_timer_sample_group(clock_idx, tsk, &now); 1208 1209 if (oldval) { 1210 /* 1211 * We are setting itimer. The *oldval is absolute and we update 1212 * it to be relative, *newval argument is relative and we update 1213 * it to be absolute. 1214 */ 1215 if (*oldval) { 1216 if (*oldval <= now) { 1217 /* Just about to fire. */ 1218 *oldval = cputime_one_jiffy; 1219 } else { 1220 *oldval -= now; 1221 } 1222 } 1223 1224 if (!*newval) 1225 goto out; 1226 *newval += now; 1227 } 1228 1229 /* 1230 * Update expiration cache if we are the earliest timer, or eventually 1231 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire. 1232 */ 1233 switch (clock_idx) { 1234 case CPUCLOCK_PROF: 1235 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval)) 1236 tsk->signal->cputime_expires.prof_exp = *newval; 1237 break; 1238 case CPUCLOCK_VIRT: 1239 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval)) 1240 tsk->signal->cputime_expires.virt_exp = *newval; 1241 break; 1242 } 1243 out: 1244 posix_cpu_timer_kick_nohz(); 1245 } 1246 1247 static int do_cpu_nanosleep(const clockid_t which_clock, int flags, 1248 struct timespec *rqtp, struct itimerspec *it) 1249 { 1250 struct k_itimer timer; 1251 int error; 1252 1253 /* 1254 * Set up a temporary timer and then wait for it to go off. 1255 */ 1256 memset(&timer, 0, sizeof timer); 1257 spin_lock_init(&timer.it_lock); 1258 timer.it_clock = which_clock; 1259 timer.it_overrun = -1; 1260 error = posix_cpu_timer_create(&timer); 1261 timer.it_process = current; 1262 if (!error) { 1263 static struct itimerspec zero_it; 1264 1265 memset(it, 0, sizeof *it); 1266 it->it_value = *rqtp; 1267 1268 spin_lock_irq(&timer.it_lock); 1269 error = posix_cpu_timer_set(&timer, flags, it, NULL); 1270 if (error) { 1271 spin_unlock_irq(&timer.it_lock); 1272 return error; 1273 } 1274 1275 while (!signal_pending(current)) { 1276 if (timer.it.cpu.expires == 0) { 1277 /* 1278 * Our timer fired and was reset, below 1279 * deletion can not fail. 1280 */ 1281 posix_cpu_timer_del(&timer); 1282 spin_unlock_irq(&timer.it_lock); 1283 return 0; 1284 } 1285 1286 /* 1287 * Block until cpu_timer_fire (or a signal) wakes us. 1288 */ 1289 __set_current_state(TASK_INTERRUPTIBLE); 1290 spin_unlock_irq(&timer.it_lock); 1291 schedule(); 1292 spin_lock_irq(&timer.it_lock); 1293 } 1294 1295 /* 1296 * We were interrupted by a signal. 1297 */ 1298 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp); 1299 error = posix_cpu_timer_set(&timer, 0, &zero_it, it); 1300 if (!error) { 1301 /* 1302 * Timer is now unarmed, deletion can not fail. 1303 */ 1304 posix_cpu_timer_del(&timer); 1305 } 1306 spin_unlock_irq(&timer.it_lock); 1307 1308 while (error == TIMER_RETRY) { 1309 /* 1310 * We need to handle case when timer was or is in the 1311 * middle of firing. In other cases we already freed 1312 * resources. 1313 */ 1314 spin_lock_irq(&timer.it_lock); 1315 error = posix_cpu_timer_del(&timer); 1316 spin_unlock_irq(&timer.it_lock); 1317 } 1318 1319 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) { 1320 /* 1321 * It actually did fire already. 1322 */ 1323 return 0; 1324 } 1325 1326 error = -ERESTART_RESTARTBLOCK; 1327 } 1328 1329 return error; 1330 } 1331 1332 static long posix_cpu_nsleep_restart(struct restart_block *restart_block); 1333 1334 static int posix_cpu_nsleep(const clockid_t which_clock, int flags, 1335 struct timespec *rqtp, struct timespec __user *rmtp) 1336 { 1337 struct restart_block *restart_block = 1338 ¤t_thread_info()->restart_block; 1339 struct itimerspec it; 1340 int error; 1341 1342 /* 1343 * Diagnose required errors first. 1344 */ 1345 if (CPUCLOCK_PERTHREAD(which_clock) && 1346 (CPUCLOCK_PID(which_clock) == 0 || 1347 CPUCLOCK_PID(which_clock) == current->pid)) 1348 return -EINVAL; 1349 1350 error = do_cpu_nanosleep(which_clock, flags, rqtp, &it); 1351 1352 if (error == -ERESTART_RESTARTBLOCK) { 1353 1354 if (flags & TIMER_ABSTIME) 1355 return -ERESTARTNOHAND; 1356 /* 1357 * Report back to the user the time still remaining. 1358 */ 1359 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp)) 1360 return -EFAULT; 1361 1362 restart_block->fn = posix_cpu_nsleep_restart; 1363 restart_block->nanosleep.clockid = which_clock; 1364 restart_block->nanosleep.rmtp = rmtp; 1365 restart_block->nanosleep.expires = timespec_to_ns(rqtp); 1366 } 1367 return error; 1368 } 1369 1370 static long posix_cpu_nsleep_restart(struct restart_block *restart_block) 1371 { 1372 clockid_t which_clock = restart_block->nanosleep.clockid; 1373 struct timespec t; 1374 struct itimerspec it; 1375 int error; 1376 1377 t = ns_to_timespec(restart_block->nanosleep.expires); 1378 1379 error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it); 1380 1381 if (error == -ERESTART_RESTARTBLOCK) { 1382 struct timespec __user *rmtp = restart_block->nanosleep.rmtp; 1383 /* 1384 * Report back to the user the time still remaining. 1385 */ 1386 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp)) 1387 return -EFAULT; 1388 1389 restart_block->nanosleep.expires = timespec_to_ns(&t); 1390 } 1391 return error; 1392 1393 } 1394 1395 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED) 1396 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED) 1397 1398 static int process_cpu_clock_getres(const clockid_t which_clock, 1399 struct timespec *tp) 1400 { 1401 return posix_cpu_clock_getres(PROCESS_CLOCK, tp); 1402 } 1403 static int process_cpu_clock_get(const clockid_t which_clock, 1404 struct timespec *tp) 1405 { 1406 return posix_cpu_clock_get(PROCESS_CLOCK, tp); 1407 } 1408 static int process_cpu_timer_create(struct k_itimer *timer) 1409 { 1410 timer->it_clock = PROCESS_CLOCK; 1411 return posix_cpu_timer_create(timer); 1412 } 1413 static int process_cpu_nsleep(const clockid_t which_clock, int flags, 1414 struct timespec *rqtp, 1415 struct timespec __user *rmtp) 1416 { 1417 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp); 1418 } 1419 static long process_cpu_nsleep_restart(struct restart_block *restart_block) 1420 { 1421 return -EINVAL; 1422 } 1423 static int thread_cpu_clock_getres(const clockid_t which_clock, 1424 struct timespec *tp) 1425 { 1426 return posix_cpu_clock_getres(THREAD_CLOCK, tp); 1427 } 1428 static int thread_cpu_clock_get(const clockid_t which_clock, 1429 struct timespec *tp) 1430 { 1431 return posix_cpu_clock_get(THREAD_CLOCK, tp); 1432 } 1433 static int thread_cpu_timer_create(struct k_itimer *timer) 1434 { 1435 timer->it_clock = THREAD_CLOCK; 1436 return posix_cpu_timer_create(timer); 1437 } 1438 1439 struct k_clock clock_posix_cpu = { 1440 .clock_getres = posix_cpu_clock_getres, 1441 .clock_set = posix_cpu_clock_set, 1442 .clock_get = posix_cpu_clock_get, 1443 .timer_create = posix_cpu_timer_create, 1444 .nsleep = posix_cpu_nsleep, 1445 .nsleep_restart = posix_cpu_nsleep_restart, 1446 .timer_set = posix_cpu_timer_set, 1447 .timer_del = posix_cpu_timer_del, 1448 .timer_get = posix_cpu_timer_get, 1449 }; 1450 1451 static __init int init_posix_cpu_timers(void) 1452 { 1453 struct k_clock process = { 1454 .clock_getres = process_cpu_clock_getres, 1455 .clock_get = process_cpu_clock_get, 1456 .timer_create = process_cpu_timer_create, 1457 .nsleep = process_cpu_nsleep, 1458 .nsleep_restart = process_cpu_nsleep_restart, 1459 }; 1460 struct k_clock thread = { 1461 .clock_getres = thread_cpu_clock_getres, 1462 .clock_get = thread_cpu_clock_get, 1463 .timer_create = thread_cpu_timer_create, 1464 }; 1465 struct timespec ts; 1466 1467 posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process); 1468 posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread); 1469 1470 cputime_to_timespec(cputime_one_jiffy, &ts); 1471 onecputick = ts.tv_nsec; 1472 WARN_ON(ts.tv_sec != 0); 1473 1474 return 0; 1475 } 1476 __initcall(init_posix_cpu_timers); 1477