1 /* 2 * Implement CPU time clocks for the POSIX clock interface. 3 */ 4 5 #include <linux/sched.h> 6 #include <linux/posix-timers.h> 7 #include <linux/errno.h> 8 #include <linux/math64.h> 9 #include <asm/uaccess.h> 10 #include <linux/kernel_stat.h> 11 #include <trace/events/timer.h> 12 #include <linux/random.h> 13 #include <linux/tick.h> 14 #include <linux/workqueue.h> 15 16 /* 17 * Called after updating RLIMIT_CPU to run cpu timer and update 18 * tsk->signal->cputime_expires expiration cache if necessary. Needs 19 * siglock protection since other code may update expiration cache as 20 * well. 21 */ 22 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new) 23 { 24 cputime_t cputime = secs_to_cputime(rlim_new); 25 26 spin_lock_irq(&task->sighand->siglock); 27 set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL); 28 spin_unlock_irq(&task->sighand->siglock); 29 } 30 31 static int check_clock(const clockid_t which_clock) 32 { 33 int error = 0; 34 struct task_struct *p; 35 const pid_t pid = CPUCLOCK_PID(which_clock); 36 37 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX) 38 return -EINVAL; 39 40 if (pid == 0) 41 return 0; 42 43 rcu_read_lock(); 44 p = find_task_by_vpid(pid); 45 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ? 46 same_thread_group(p, current) : has_group_leader_pid(p))) { 47 error = -EINVAL; 48 } 49 rcu_read_unlock(); 50 51 return error; 52 } 53 54 static inline unsigned long long 55 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp) 56 { 57 unsigned long long ret; 58 59 ret = 0; /* high half always zero when .cpu used */ 60 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { 61 ret = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec; 62 } else { 63 ret = cputime_to_expires(timespec_to_cputime(tp)); 64 } 65 return ret; 66 } 67 68 static void sample_to_timespec(const clockid_t which_clock, 69 unsigned long long expires, 70 struct timespec *tp) 71 { 72 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) 73 *tp = ns_to_timespec(expires); 74 else 75 cputime_to_timespec((__force cputime_t)expires, tp); 76 } 77 78 /* 79 * Update expiry time from increment, and increase overrun count, 80 * given the current clock sample. 81 */ 82 static void bump_cpu_timer(struct k_itimer *timer, 83 unsigned long long now) 84 { 85 int i; 86 unsigned long long delta, incr; 87 88 if (timer->it.cpu.incr == 0) 89 return; 90 91 if (now < timer->it.cpu.expires) 92 return; 93 94 incr = timer->it.cpu.incr; 95 delta = now + incr - timer->it.cpu.expires; 96 97 /* Don't use (incr*2 < delta), incr*2 might overflow. */ 98 for (i = 0; incr < delta - incr; i++) 99 incr = incr << 1; 100 101 for (; i >= 0; incr >>= 1, i--) { 102 if (delta < incr) 103 continue; 104 105 timer->it.cpu.expires += incr; 106 timer->it_overrun += 1 << i; 107 delta -= incr; 108 } 109 } 110 111 /** 112 * task_cputime_zero - Check a task_cputime struct for all zero fields. 113 * 114 * @cputime: The struct to compare. 115 * 116 * Checks @cputime to see if all fields are zero. Returns true if all fields 117 * are zero, false if any field is nonzero. 118 */ 119 static inline int task_cputime_zero(const struct task_cputime *cputime) 120 { 121 if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime) 122 return 1; 123 return 0; 124 } 125 126 static inline unsigned long long prof_ticks(struct task_struct *p) 127 { 128 cputime_t utime, stime; 129 130 task_cputime(p, &utime, &stime); 131 132 return cputime_to_expires(utime + stime); 133 } 134 static inline unsigned long long virt_ticks(struct task_struct *p) 135 { 136 cputime_t utime; 137 138 task_cputime(p, &utime, NULL); 139 140 return cputime_to_expires(utime); 141 } 142 143 static int 144 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp) 145 { 146 int error = check_clock(which_clock); 147 if (!error) { 148 tp->tv_sec = 0; 149 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ); 150 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { 151 /* 152 * If sched_clock is using a cycle counter, we 153 * don't have any idea of its true resolution 154 * exported, but it is much more than 1s/HZ. 155 */ 156 tp->tv_nsec = 1; 157 } 158 } 159 return error; 160 } 161 162 static int 163 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp) 164 { 165 /* 166 * You can never reset a CPU clock, but we check for other errors 167 * in the call before failing with EPERM. 168 */ 169 int error = check_clock(which_clock); 170 if (error == 0) { 171 error = -EPERM; 172 } 173 return error; 174 } 175 176 177 /* 178 * Sample a per-thread clock for the given task. 179 */ 180 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p, 181 unsigned long long *sample) 182 { 183 switch (CPUCLOCK_WHICH(which_clock)) { 184 default: 185 return -EINVAL; 186 case CPUCLOCK_PROF: 187 *sample = prof_ticks(p); 188 break; 189 case CPUCLOCK_VIRT: 190 *sample = virt_ticks(p); 191 break; 192 case CPUCLOCK_SCHED: 193 *sample = task_sched_runtime(p); 194 break; 195 } 196 return 0; 197 } 198 199 /* 200 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg 201 * to avoid race conditions with concurrent updates to cputime. 202 */ 203 static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime) 204 { 205 u64 curr_cputime; 206 retry: 207 curr_cputime = atomic64_read(cputime); 208 if (sum_cputime > curr_cputime) { 209 if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime) 210 goto retry; 211 } 212 } 213 214 static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum) 215 { 216 __update_gt_cputime(&cputime_atomic->utime, sum->utime); 217 __update_gt_cputime(&cputime_atomic->stime, sum->stime); 218 __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime); 219 } 220 221 /* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */ 222 static inline void sample_cputime_atomic(struct task_cputime *times, 223 struct task_cputime_atomic *atomic_times) 224 { 225 times->utime = atomic64_read(&atomic_times->utime); 226 times->stime = atomic64_read(&atomic_times->stime); 227 times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime); 228 } 229 230 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times) 231 { 232 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; 233 struct task_cputime sum; 234 235 /* Check if cputimer isn't running. This is accessed without locking. */ 236 if (!READ_ONCE(cputimer->running)) { 237 /* 238 * The POSIX timer interface allows for absolute time expiry 239 * values through the TIMER_ABSTIME flag, therefore we have 240 * to synchronize the timer to the clock every time we start it. 241 */ 242 thread_group_cputime(tsk, &sum); 243 update_gt_cputime(&cputimer->cputime_atomic, &sum); 244 245 /* 246 * We're setting cputimer->running without a lock. Ensure 247 * this only gets written to in one operation. We set 248 * running after update_gt_cputime() as a small optimization, 249 * but barriers are not required because update_gt_cputime() 250 * can handle concurrent updates. 251 */ 252 WRITE_ONCE(cputimer->running, 1); 253 } 254 sample_cputime_atomic(times, &cputimer->cputime_atomic); 255 } 256 257 /* 258 * Sample a process (thread group) clock for the given group_leader task. 259 * Must be called with task sighand lock held for safe while_each_thread() 260 * traversal. 261 */ 262 static int cpu_clock_sample_group(const clockid_t which_clock, 263 struct task_struct *p, 264 unsigned long long *sample) 265 { 266 struct task_cputime cputime; 267 268 switch (CPUCLOCK_WHICH(which_clock)) { 269 default: 270 return -EINVAL; 271 case CPUCLOCK_PROF: 272 thread_group_cputime(p, &cputime); 273 *sample = cputime_to_expires(cputime.utime + cputime.stime); 274 break; 275 case CPUCLOCK_VIRT: 276 thread_group_cputime(p, &cputime); 277 *sample = cputime_to_expires(cputime.utime); 278 break; 279 case CPUCLOCK_SCHED: 280 thread_group_cputime(p, &cputime); 281 *sample = cputime.sum_exec_runtime; 282 break; 283 } 284 return 0; 285 } 286 287 static int posix_cpu_clock_get_task(struct task_struct *tsk, 288 const clockid_t which_clock, 289 struct timespec *tp) 290 { 291 int err = -EINVAL; 292 unsigned long long rtn; 293 294 if (CPUCLOCK_PERTHREAD(which_clock)) { 295 if (same_thread_group(tsk, current)) 296 err = cpu_clock_sample(which_clock, tsk, &rtn); 297 } else { 298 if (tsk == current || thread_group_leader(tsk)) 299 err = cpu_clock_sample_group(which_clock, tsk, &rtn); 300 } 301 302 if (!err) 303 sample_to_timespec(which_clock, rtn, tp); 304 305 return err; 306 } 307 308 309 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp) 310 { 311 const pid_t pid = CPUCLOCK_PID(which_clock); 312 int err = -EINVAL; 313 314 if (pid == 0) { 315 /* 316 * Special case constant value for our own clocks. 317 * We don't have to do any lookup to find ourselves. 318 */ 319 err = posix_cpu_clock_get_task(current, which_clock, tp); 320 } else { 321 /* 322 * Find the given PID, and validate that the caller 323 * should be able to see it. 324 */ 325 struct task_struct *p; 326 rcu_read_lock(); 327 p = find_task_by_vpid(pid); 328 if (p) 329 err = posix_cpu_clock_get_task(p, which_clock, tp); 330 rcu_read_unlock(); 331 } 332 333 return err; 334 } 335 336 337 /* 338 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer. 339 * This is called from sys_timer_create() and do_cpu_nanosleep() with the 340 * new timer already all-zeros initialized. 341 */ 342 static int posix_cpu_timer_create(struct k_itimer *new_timer) 343 { 344 int ret = 0; 345 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock); 346 struct task_struct *p; 347 348 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX) 349 return -EINVAL; 350 351 INIT_LIST_HEAD(&new_timer->it.cpu.entry); 352 353 rcu_read_lock(); 354 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) { 355 if (pid == 0) { 356 p = current; 357 } else { 358 p = find_task_by_vpid(pid); 359 if (p && !same_thread_group(p, current)) 360 p = NULL; 361 } 362 } else { 363 if (pid == 0) { 364 p = current->group_leader; 365 } else { 366 p = find_task_by_vpid(pid); 367 if (p && !has_group_leader_pid(p)) 368 p = NULL; 369 } 370 } 371 new_timer->it.cpu.task = p; 372 if (p) { 373 get_task_struct(p); 374 } else { 375 ret = -EINVAL; 376 } 377 rcu_read_unlock(); 378 379 return ret; 380 } 381 382 /* 383 * Clean up a CPU-clock timer that is about to be destroyed. 384 * This is called from timer deletion with the timer already locked. 385 * If we return TIMER_RETRY, it's necessary to release the timer's lock 386 * and try again. (This happens when the timer is in the middle of firing.) 387 */ 388 static int posix_cpu_timer_del(struct k_itimer *timer) 389 { 390 int ret = 0; 391 unsigned long flags; 392 struct sighand_struct *sighand; 393 struct task_struct *p = timer->it.cpu.task; 394 395 WARN_ON_ONCE(p == NULL); 396 397 /* 398 * Protect against sighand release/switch in exit/exec and process/ 399 * thread timer list entry concurrent read/writes. 400 */ 401 sighand = lock_task_sighand(p, &flags); 402 if (unlikely(sighand == NULL)) { 403 /* 404 * We raced with the reaping of the task. 405 * The deletion should have cleared us off the list. 406 */ 407 WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry)); 408 } else { 409 if (timer->it.cpu.firing) 410 ret = TIMER_RETRY; 411 else 412 list_del(&timer->it.cpu.entry); 413 414 unlock_task_sighand(p, &flags); 415 } 416 417 if (!ret) 418 put_task_struct(p); 419 420 return ret; 421 } 422 423 static void cleanup_timers_list(struct list_head *head) 424 { 425 struct cpu_timer_list *timer, *next; 426 427 list_for_each_entry_safe(timer, next, head, entry) 428 list_del_init(&timer->entry); 429 } 430 431 /* 432 * Clean out CPU timers still ticking when a thread exited. The task 433 * pointer is cleared, and the expiry time is replaced with the residual 434 * time for later timer_gettime calls to return. 435 * This must be called with the siglock held. 436 */ 437 static void cleanup_timers(struct list_head *head) 438 { 439 cleanup_timers_list(head); 440 cleanup_timers_list(++head); 441 cleanup_timers_list(++head); 442 } 443 444 /* 445 * These are both called with the siglock held, when the current thread 446 * is being reaped. When the final (leader) thread in the group is reaped, 447 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit. 448 */ 449 void posix_cpu_timers_exit(struct task_struct *tsk) 450 { 451 add_device_randomness((const void*) &tsk->se.sum_exec_runtime, 452 sizeof(unsigned long long)); 453 cleanup_timers(tsk->cpu_timers); 454 455 } 456 void posix_cpu_timers_exit_group(struct task_struct *tsk) 457 { 458 cleanup_timers(tsk->signal->cpu_timers); 459 } 460 461 static inline int expires_gt(cputime_t expires, cputime_t new_exp) 462 { 463 return expires == 0 || expires > new_exp; 464 } 465 466 /* 467 * Insert the timer on the appropriate list before any timers that 468 * expire later. This must be called with the sighand lock held. 469 */ 470 static void arm_timer(struct k_itimer *timer) 471 { 472 struct task_struct *p = timer->it.cpu.task; 473 struct list_head *head, *listpos; 474 struct task_cputime *cputime_expires; 475 struct cpu_timer_list *const nt = &timer->it.cpu; 476 struct cpu_timer_list *next; 477 478 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 479 head = p->cpu_timers; 480 cputime_expires = &p->cputime_expires; 481 } else { 482 head = p->signal->cpu_timers; 483 cputime_expires = &p->signal->cputime_expires; 484 } 485 head += CPUCLOCK_WHICH(timer->it_clock); 486 487 listpos = head; 488 list_for_each_entry(next, head, entry) { 489 if (nt->expires < next->expires) 490 break; 491 listpos = &next->entry; 492 } 493 list_add(&nt->entry, listpos); 494 495 if (listpos == head) { 496 unsigned long long exp = nt->expires; 497 498 /* 499 * We are the new earliest-expiring POSIX 1.b timer, hence 500 * need to update expiration cache. Take into account that 501 * for process timers we share expiration cache with itimers 502 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME. 503 */ 504 505 switch (CPUCLOCK_WHICH(timer->it_clock)) { 506 case CPUCLOCK_PROF: 507 if (expires_gt(cputime_expires->prof_exp, expires_to_cputime(exp))) 508 cputime_expires->prof_exp = expires_to_cputime(exp); 509 break; 510 case CPUCLOCK_VIRT: 511 if (expires_gt(cputime_expires->virt_exp, expires_to_cputime(exp))) 512 cputime_expires->virt_exp = expires_to_cputime(exp); 513 break; 514 case CPUCLOCK_SCHED: 515 if (cputime_expires->sched_exp == 0 || 516 cputime_expires->sched_exp > exp) 517 cputime_expires->sched_exp = exp; 518 break; 519 } 520 } 521 } 522 523 /* 524 * The timer is locked, fire it and arrange for its reload. 525 */ 526 static void cpu_timer_fire(struct k_itimer *timer) 527 { 528 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { 529 /* 530 * User don't want any signal. 531 */ 532 timer->it.cpu.expires = 0; 533 } else if (unlikely(timer->sigq == NULL)) { 534 /* 535 * This a special case for clock_nanosleep, 536 * not a normal timer from sys_timer_create. 537 */ 538 wake_up_process(timer->it_process); 539 timer->it.cpu.expires = 0; 540 } else if (timer->it.cpu.incr == 0) { 541 /* 542 * One-shot timer. Clear it as soon as it's fired. 543 */ 544 posix_timer_event(timer, 0); 545 timer->it.cpu.expires = 0; 546 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) { 547 /* 548 * The signal did not get queued because the signal 549 * was ignored, so we won't get any callback to 550 * reload the timer. But we need to keep it 551 * ticking in case the signal is deliverable next time. 552 */ 553 posix_cpu_timer_schedule(timer); 554 } 555 } 556 557 /* 558 * Sample a process (thread group) timer for the given group_leader task. 559 * Must be called with task sighand lock held for safe while_each_thread() 560 * traversal. 561 */ 562 static int cpu_timer_sample_group(const clockid_t which_clock, 563 struct task_struct *p, 564 unsigned long long *sample) 565 { 566 struct task_cputime cputime; 567 568 thread_group_cputimer(p, &cputime); 569 switch (CPUCLOCK_WHICH(which_clock)) { 570 default: 571 return -EINVAL; 572 case CPUCLOCK_PROF: 573 *sample = cputime_to_expires(cputime.utime + cputime.stime); 574 break; 575 case CPUCLOCK_VIRT: 576 *sample = cputime_to_expires(cputime.utime); 577 break; 578 case CPUCLOCK_SCHED: 579 *sample = cputime.sum_exec_runtime; 580 break; 581 } 582 return 0; 583 } 584 585 #ifdef CONFIG_NO_HZ_FULL 586 static void nohz_kick_work_fn(struct work_struct *work) 587 { 588 tick_nohz_full_kick_all(); 589 } 590 591 static DECLARE_WORK(nohz_kick_work, nohz_kick_work_fn); 592 593 /* 594 * We need the IPIs to be sent from sane process context. 595 * The posix cpu timers are always set with irqs disabled. 596 */ 597 static void posix_cpu_timer_kick_nohz(void) 598 { 599 if (context_tracking_is_enabled()) 600 schedule_work(&nohz_kick_work); 601 } 602 603 bool posix_cpu_timers_can_stop_tick(struct task_struct *tsk) 604 { 605 if (!task_cputime_zero(&tsk->cputime_expires)) 606 return false; 607 608 /* Check if cputimer is running. This is accessed without locking. */ 609 if (READ_ONCE(tsk->signal->cputimer.running)) 610 return false; 611 612 return true; 613 } 614 #else 615 static inline void posix_cpu_timer_kick_nohz(void) { } 616 #endif 617 618 /* 619 * Guts of sys_timer_settime for CPU timers. 620 * This is called with the timer locked and interrupts disabled. 621 * If we return TIMER_RETRY, it's necessary to release the timer's lock 622 * and try again. (This happens when the timer is in the middle of firing.) 623 */ 624 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags, 625 struct itimerspec *new, struct itimerspec *old) 626 { 627 unsigned long flags; 628 struct sighand_struct *sighand; 629 struct task_struct *p = timer->it.cpu.task; 630 unsigned long long old_expires, new_expires, old_incr, val; 631 int ret; 632 633 WARN_ON_ONCE(p == NULL); 634 635 new_expires = timespec_to_sample(timer->it_clock, &new->it_value); 636 637 /* 638 * Protect against sighand release/switch in exit/exec and p->cpu_timers 639 * and p->signal->cpu_timers read/write in arm_timer() 640 */ 641 sighand = lock_task_sighand(p, &flags); 642 /* 643 * If p has just been reaped, we can no 644 * longer get any information about it at all. 645 */ 646 if (unlikely(sighand == NULL)) { 647 return -ESRCH; 648 } 649 650 /* 651 * Disarm any old timer after extracting its expiry time. 652 */ 653 WARN_ON_ONCE(!irqs_disabled()); 654 655 ret = 0; 656 old_incr = timer->it.cpu.incr; 657 old_expires = timer->it.cpu.expires; 658 if (unlikely(timer->it.cpu.firing)) { 659 timer->it.cpu.firing = -1; 660 ret = TIMER_RETRY; 661 } else 662 list_del_init(&timer->it.cpu.entry); 663 664 /* 665 * We need to sample the current value to convert the new 666 * value from to relative and absolute, and to convert the 667 * old value from absolute to relative. To set a process 668 * timer, we need a sample to balance the thread expiry 669 * times (in arm_timer). With an absolute time, we must 670 * check if it's already passed. In short, we need a sample. 671 */ 672 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 673 cpu_clock_sample(timer->it_clock, p, &val); 674 } else { 675 cpu_timer_sample_group(timer->it_clock, p, &val); 676 } 677 678 if (old) { 679 if (old_expires == 0) { 680 old->it_value.tv_sec = 0; 681 old->it_value.tv_nsec = 0; 682 } else { 683 /* 684 * Update the timer in case it has 685 * overrun already. If it has, 686 * we'll report it as having overrun 687 * and with the next reloaded timer 688 * already ticking, though we are 689 * swallowing that pending 690 * notification here to install the 691 * new setting. 692 */ 693 bump_cpu_timer(timer, val); 694 if (val < timer->it.cpu.expires) { 695 old_expires = timer->it.cpu.expires - val; 696 sample_to_timespec(timer->it_clock, 697 old_expires, 698 &old->it_value); 699 } else { 700 old->it_value.tv_nsec = 1; 701 old->it_value.tv_sec = 0; 702 } 703 } 704 } 705 706 if (unlikely(ret)) { 707 /* 708 * We are colliding with the timer actually firing. 709 * Punt after filling in the timer's old value, and 710 * disable this firing since we are already reporting 711 * it as an overrun (thanks to bump_cpu_timer above). 712 */ 713 unlock_task_sighand(p, &flags); 714 goto out; 715 } 716 717 if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) { 718 new_expires += val; 719 } 720 721 /* 722 * Install the new expiry time (or zero). 723 * For a timer with no notification action, we don't actually 724 * arm the timer (we'll just fake it for timer_gettime). 725 */ 726 timer->it.cpu.expires = new_expires; 727 if (new_expires != 0 && val < new_expires) { 728 arm_timer(timer); 729 } 730 731 unlock_task_sighand(p, &flags); 732 /* 733 * Install the new reload setting, and 734 * set up the signal and overrun bookkeeping. 735 */ 736 timer->it.cpu.incr = timespec_to_sample(timer->it_clock, 737 &new->it_interval); 738 739 /* 740 * This acts as a modification timestamp for the timer, 741 * so any automatic reload attempt will punt on seeing 742 * that we have reset the timer manually. 743 */ 744 timer->it_requeue_pending = (timer->it_requeue_pending + 2) & 745 ~REQUEUE_PENDING; 746 timer->it_overrun_last = 0; 747 timer->it_overrun = -1; 748 749 if (new_expires != 0 && !(val < new_expires)) { 750 /* 751 * The designated time already passed, so we notify 752 * immediately, even if the thread never runs to 753 * accumulate more time on this clock. 754 */ 755 cpu_timer_fire(timer); 756 } 757 758 ret = 0; 759 out: 760 if (old) { 761 sample_to_timespec(timer->it_clock, 762 old_incr, &old->it_interval); 763 } 764 if (!ret) 765 posix_cpu_timer_kick_nohz(); 766 return ret; 767 } 768 769 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp) 770 { 771 unsigned long long now; 772 struct task_struct *p = timer->it.cpu.task; 773 774 WARN_ON_ONCE(p == NULL); 775 776 /* 777 * Easy part: convert the reload time. 778 */ 779 sample_to_timespec(timer->it_clock, 780 timer->it.cpu.incr, &itp->it_interval); 781 782 if (timer->it.cpu.expires == 0) { /* Timer not armed at all. */ 783 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0; 784 return; 785 } 786 787 /* 788 * Sample the clock to take the difference with the expiry time. 789 */ 790 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 791 cpu_clock_sample(timer->it_clock, p, &now); 792 } else { 793 struct sighand_struct *sighand; 794 unsigned long flags; 795 796 /* 797 * Protect against sighand release/switch in exit/exec and 798 * also make timer sampling safe if it ends up calling 799 * thread_group_cputime(). 800 */ 801 sighand = lock_task_sighand(p, &flags); 802 if (unlikely(sighand == NULL)) { 803 /* 804 * The process has been reaped. 805 * We can't even collect a sample any more. 806 * Call the timer disarmed, nothing else to do. 807 */ 808 timer->it.cpu.expires = 0; 809 sample_to_timespec(timer->it_clock, timer->it.cpu.expires, 810 &itp->it_value); 811 } else { 812 cpu_timer_sample_group(timer->it_clock, p, &now); 813 unlock_task_sighand(p, &flags); 814 } 815 } 816 817 if (now < timer->it.cpu.expires) { 818 sample_to_timespec(timer->it_clock, 819 timer->it.cpu.expires - now, 820 &itp->it_value); 821 } else { 822 /* 823 * The timer should have expired already, but the firing 824 * hasn't taken place yet. Say it's just about to expire. 825 */ 826 itp->it_value.tv_nsec = 1; 827 itp->it_value.tv_sec = 0; 828 } 829 } 830 831 static unsigned long long 832 check_timers_list(struct list_head *timers, 833 struct list_head *firing, 834 unsigned long long curr) 835 { 836 int maxfire = 20; 837 838 while (!list_empty(timers)) { 839 struct cpu_timer_list *t; 840 841 t = list_first_entry(timers, struct cpu_timer_list, entry); 842 843 if (!--maxfire || curr < t->expires) 844 return t->expires; 845 846 t->firing = 1; 847 list_move_tail(&t->entry, firing); 848 } 849 850 return 0; 851 } 852 853 /* 854 * Check for any per-thread CPU timers that have fired and move them off 855 * the tsk->cpu_timers[N] list onto the firing list. Here we update the 856 * tsk->it_*_expires values to reflect the remaining thread CPU timers. 857 */ 858 static void check_thread_timers(struct task_struct *tsk, 859 struct list_head *firing) 860 { 861 struct list_head *timers = tsk->cpu_timers; 862 struct signal_struct *const sig = tsk->signal; 863 struct task_cputime *tsk_expires = &tsk->cputime_expires; 864 unsigned long long expires; 865 unsigned long soft; 866 867 expires = check_timers_list(timers, firing, prof_ticks(tsk)); 868 tsk_expires->prof_exp = expires_to_cputime(expires); 869 870 expires = check_timers_list(++timers, firing, virt_ticks(tsk)); 871 tsk_expires->virt_exp = expires_to_cputime(expires); 872 873 tsk_expires->sched_exp = check_timers_list(++timers, firing, 874 tsk->se.sum_exec_runtime); 875 876 /* 877 * Check for the special case thread timers. 878 */ 879 soft = READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur); 880 if (soft != RLIM_INFINITY) { 881 unsigned long hard = 882 READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max); 883 884 if (hard != RLIM_INFINITY && 885 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) { 886 /* 887 * At the hard limit, we just die. 888 * No need to calculate anything else now. 889 */ 890 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); 891 return; 892 } 893 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) { 894 /* 895 * At the soft limit, send a SIGXCPU every second. 896 */ 897 if (soft < hard) { 898 soft += USEC_PER_SEC; 899 sig->rlim[RLIMIT_RTTIME].rlim_cur = soft; 900 } 901 printk(KERN_INFO 902 "RT Watchdog Timeout: %s[%d]\n", 903 tsk->comm, task_pid_nr(tsk)); 904 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); 905 } 906 } 907 } 908 909 static inline void stop_process_timers(struct signal_struct *sig) 910 { 911 struct thread_group_cputimer *cputimer = &sig->cputimer; 912 913 /* Turn off cputimer->running. This is done without locking. */ 914 WRITE_ONCE(cputimer->running, 0); 915 } 916 917 static u32 onecputick; 918 919 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it, 920 unsigned long long *expires, 921 unsigned long long cur_time, int signo) 922 { 923 if (!it->expires) 924 return; 925 926 if (cur_time >= it->expires) { 927 if (it->incr) { 928 it->expires += it->incr; 929 it->error += it->incr_error; 930 if (it->error >= onecputick) { 931 it->expires -= cputime_one_jiffy; 932 it->error -= onecputick; 933 } 934 } else { 935 it->expires = 0; 936 } 937 938 trace_itimer_expire(signo == SIGPROF ? 939 ITIMER_PROF : ITIMER_VIRTUAL, 940 tsk->signal->leader_pid, cur_time); 941 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk); 942 } 943 944 if (it->expires && (!*expires || it->expires < *expires)) { 945 *expires = it->expires; 946 } 947 } 948 949 /* 950 * Check for any per-thread CPU timers that have fired and move them 951 * off the tsk->*_timers list onto the firing list. Per-thread timers 952 * have already been taken off. 953 */ 954 static void check_process_timers(struct task_struct *tsk, 955 struct list_head *firing) 956 { 957 struct signal_struct *const sig = tsk->signal; 958 unsigned long long utime, ptime, virt_expires, prof_expires; 959 unsigned long long sum_sched_runtime, sched_expires; 960 struct list_head *timers = sig->cpu_timers; 961 struct task_cputime cputime; 962 unsigned long soft; 963 964 /* 965 * Collect the current process totals. 966 */ 967 thread_group_cputimer(tsk, &cputime); 968 utime = cputime_to_expires(cputime.utime); 969 ptime = utime + cputime_to_expires(cputime.stime); 970 sum_sched_runtime = cputime.sum_exec_runtime; 971 972 prof_expires = check_timers_list(timers, firing, ptime); 973 virt_expires = check_timers_list(++timers, firing, utime); 974 sched_expires = check_timers_list(++timers, firing, sum_sched_runtime); 975 976 /* 977 * Check for the special case process timers. 978 */ 979 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime, 980 SIGPROF); 981 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime, 982 SIGVTALRM); 983 soft = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 984 if (soft != RLIM_INFINITY) { 985 unsigned long psecs = cputime_to_secs(ptime); 986 unsigned long hard = 987 READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_max); 988 cputime_t x; 989 if (psecs >= hard) { 990 /* 991 * At the hard limit, we just die. 992 * No need to calculate anything else now. 993 */ 994 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); 995 return; 996 } 997 if (psecs >= soft) { 998 /* 999 * At the soft limit, send a SIGXCPU every second. 1000 */ 1001 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); 1002 if (soft < hard) { 1003 soft++; 1004 sig->rlim[RLIMIT_CPU].rlim_cur = soft; 1005 } 1006 } 1007 x = secs_to_cputime(soft); 1008 if (!prof_expires || x < prof_expires) { 1009 prof_expires = x; 1010 } 1011 } 1012 1013 sig->cputime_expires.prof_exp = expires_to_cputime(prof_expires); 1014 sig->cputime_expires.virt_exp = expires_to_cputime(virt_expires); 1015 sig->cputime_expires.sched_exp = sched_expires; 1016 if (task_cputime_zero(&sig->cputime_expires)) 1017 stop_process_timers(sig); 1018 } 1019 1020 /* 1021 * This is called from the signal code (via do_schedule_next_timer) 1022 * when the last timer signal was delivered and we have to reload the timer. 1023 */ 1024 void posix_cpu_timer_schedule(struct k_itimer *timer) 1025 { 1026 struct sighand_struct *sighand; 1027 unsigned long flags; 1028 struct task_struct *p = timer->it.cpu.task; 1029 unsigned long long now; 1030 1031 WARN_ON_ONCE(p == NULL); 1032 1033 /* 1034 * Fetch the current sample and update the timer's expiry time. 1035 */ 1036 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 1037 cpu_clock_sample(timer->it_clock, p, &now); 1038 bump_cpu_timer(timer, now); 1039 if (unlikely(p->exit_state)) 1040 goto out; 1041 1042 /* Protect timer list r/w in arm_timer() */ 1043 sighand = lock_task_sighand(p, &flags); 1044 if (!sighand) 1045 goto out; 1046 } else { 1047 /* 1048 * Protect arm_timer() and timer sampling in case of call to 1049 * thread_group_cputime(). 1050 */ 1051 sighand = lock_task_sighand(p, &flags); 1052 if (unlikely(sighand == NULL)) { 1053 /* 1054 * The process has been reaped. 1055 * We can't even collect a sample any more. 1056 */ 1057 timer->it.cpu.expires = 0; 1058 goto out; 1059 } else if (unlikely(p->exit_state) && thread_group_empty(p)) { 1060 unlock_task_sighand(p, &flags); 1061 /* Optimizations: if the process is dying, no need to rearm */ 1062 goto out; 1063 } 1064 cpu_timer_sample_group(timer->it_clock, p, &now); 1065 bump_cpu_timer(timer, now); 1066 /* Leave the sighand locked for the call below. */ 1067 } 1068 1069 /* 1070 * Now re-arm for the new expiry time. 1071 */ 1072 WARN_ON_ONCE(!irqs_disabled()); 1073 arm_timer(timer); 1074 unlock_task_sighand(p, &flags); 1075 1076 /* Kick full dynticks CPUs in case they need to tick on the new timer */ 1077 posix_cpu_timer_kick_nohz(); 1078 out: 1079 timer->it_overrun_last = timer->it_overrun; 1080 timer->it_overrun = -1; 1081 ++timer->it_requeue_pending; 1082 } 1083 1084 /** 1085 * task_cputime_expired - Compare two task_cputime entities. 1086 * 1087 * @sample: The task_cputime structure to be checked for expiration. 1088 * @expires: Expiration times, against which @sample will be checked. 1089 * 1090 * Checks @sample against @expires to see if any field of @sample has expired. 1091 * Returns true if any field of the former is greater than the corresponding 1092 * field of the latter if the latter field is set. Otherwise returns false. 1093 */ 1094 static inline int task_cputime_expired(const struct task_cputime *sample, 1095 const struct task_cputime *expires) 1096 { 1097 if (expires->utime && sample->utime >= expires->utime) 1098 return 1; 1099 if (expires->stime && sample->utime + sample->stime >= expires->stime) 1100 return 1; 1101 if (expires->sum_exec_runtime != 0 && 1102 sample->sum_exec_runtime >= expires->sum_exec_runtime) 1103 return 1; 1104 return 0; 1105 } 1106 1107 /** 1108 * fastpath_timer_check - POSIX CPU timers fast path. 1109 * 1110 * @tsk: The task (thread) being checked. 1111 * 1112 * Check the task and thread group timers. If both are zero (there are no 1113 * timers set) return false. Otherwise snapshot the task and thread group 1114 * timers and compare them with the corresponding expiration times. Return 1115 * true if a timer has expired, else return false. 1116 */ 1117 static inline int fastpath_timer_check(struct task_struct *tsk) 1118 { 1119 struct signal_struct *sig; 1120 cputime_t utime, stime; 1121 1122 task_cputime(tsk, &utime, &stime); 1123 1124 if (!task_cputime_zero(&tsk->cputime_expires)) { 1125 struct task_cputime task_sample = { 1126 .utime = utime, 1127 .stime = stime, 1128 .sum_exec_runtime = tsk->se.sum_exec_runtime 1129 }; 1130 1131 if (task_cputime_expired(&task_sample, &tsk->cputime_expires)) 1132 return 1; 1133 } 1134 1135 sig = tsk->signal; 1136 /* Check if cputimer is running. This is accessed without locking. */ 1137 if (READ_ONCE(sig->cputimer.running)) { 1138 struct task_cputime group_sample; 1139 1140 sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic); 1141 1142 if (task_cputime_expired(&group_sample, &sig->cputime_expires)) 1143 return 1; 1144 } 1145 1146 return 0; 1147 } 1148 1149 /* 1150 * This is called from the timer interrupt handler. The irq handler has 1151 * already updated our counts. We need to check if any timers fire now. 1152 * Interrupts are disabled. 1153 */ 1154 void run_posix_cpu_timers(struct task_struct *tsk) 1155 { 1156 LIST_HEAD(firing); 1157 struct k_itimer *timer, *next; 1158 unsigned long flags; 1159 1160 WARN_ON_ONCE(!irqs_disabled()); 1161 1162 /* 1163 * The fast path checks that there are no expired thread or thread 1164 * group timers. If that's so, just return. 1165 */ 1166 if (!fastpath_timer_check(tsk)) 1167 return; 1168 1169 if (!lock_task_sighand(tsk, &flags)) 1170 return; 1171 /* 1172 * Here we take off tsk->signal->cpu_timers[N] and 1173 * tsk->cpu_timers[N] all the timers that are firing, and 1174 * put them on the firing list. 1175 */ 1176 check_thread_timers(tsk, &firing); 1177 /* 1178 * If there are any active process wide timers (POSIX 1.b, itimers, 1179 * RLIMIT_CPU) cputimer must be running. 1180 */ 1181 if (READ_ONCE(tsk->signal->cputimer.running)) 1182 check_process_timers(tsk, &firing); 1183 1184 /* 1185 * We must release these locks before taking any timer's lock. 1186 * There is a potential race with timer deletion here, as the 1187 * siglock now protects our private firing list. We have set 1188 * the firing flag in each timer, so that a deletion attempt 1189 * that gets the timer lock before we do will give it up and 1190 * spin until we've taken care of that timer below. 1191 */ 1192 unlock_task_sighand(tsk, &flags); 1193 1194 /* 1195 * Now that all the timers on our list have the firing flag, 1196 * no one will touch their list entries but us. We'll take 1197 * each timer's lock before clearing its firing flag, so no 1198 * timer call will interfere. 1199 */ 1200 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) { 1201 int cpu_firing; 1202 1203 spin_lock(&timer->it_lock); 1204 list_del_init(&timer->it.cpu.entry); 1205 cpu_firing = timer->it.cpu.firing; 1206 timer->it.cpu.firing = 0; 1207 /* 1208 * The firing flag is -1 if we collided with a reset 1209 * of the timer, which already reported this 1210 * almost-firing as an overrun. So don't generate an event. 1211 */ 1212 if (likely(cpu_firing >= 0)) 1213 cpu_timer_fire(timer); 1214 spin_unlock(&timer->it_lock); 1215 } 1216 } 1217 1218 /* 1219 * Set one of the process-wide special case CPU timers or RLIMIT_CPU. 1220 * The tsk->sighand->siglock must be held by the caller. 1221 */ 1222 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx, 1223 cputime_t *newval, cputime_t *oldval) 1224 { 1225 unsigned long long now; 1226 1227 WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED); 1228 cpu_timer_sample_group(clock_idx, tsk, &now); 1229 1230 if (oldval) { 1231 /* 1232 * We are setting itimer. The *oldval is absolute and we update 1233 * it to be relative, *newval argument is relative and we update 1234 * it to be absolute. 1235 */ 1236 if (*oldval) { 1237 if (*oldval <= now) { 1238 /* Just about to fire. */ 1239 *oldval = cputime_one_jiffy; 1240 } else { 1241 *oldval -= now; 1242 } 1243 } 1244 1245 if (!*newval) 1246 goto out; 1247 *newval += now; 1248 } 1249 1250 /* 1251 * Update expiration cache if we are the earliest timer, or eventually 1252 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire. 1253 */ 1254 switch (clock_idx) { 1255 case CPUCLOCK_PROF: 1256 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval)) 1257 tsk->signal->cputime_expires.prof_exp = *newval; 1258 break; 1259 case CPUCLOCK_VIRT: 1260 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval)) 1261 tsk->signal->cputime_expires.virt_exp = *newval; 1262 break; 1263 } 1264 out: 1265 posix_cpu_timer_kick_nohz(); 1266 } 1267 1268 static int do_cpu_nanosleep(const clockid_t which_clock, int flags, 1269 struct timespec *rqtp, struct itimerspec *it) 1270 { 1271 struct k_itimer timer; 1272 int error; 1273 1274 /* 1275 * Set up a temporary timer and then wait for it to go off. 1276 */ 1277 memset(&timer, 0, sizeof timer); 1278 spin_lock_init(&timer.it_lock); 1279 timer.it_clock = which_clock; 1280 timer.it_overrun = -1; 1281 error = posix_cpu_timer_create(&timer); 1282 timer.it_process = current; 1283 if (!error) { 1284 static struct itimerspec zero_it; 1285 1286 memset(it, 0, sizeof *it); 1287 it->it_value = *rqtp; 1288 1289 spin_lock_irq(&timer.it_lock); 1290 error = posix_cpu_timer_set(&timer, flags, it, NULL); 1291 if (error) { 1292 spin_unlock_irq(&timer.it_lock); 1293 return error; 1294 } 1295 1296 while (!signal_pending(current)) { 1297 if (timer.it.cpu.expires == 0) { 1298 /* 1299 * Our timer fired and was reset, below 1300 * deletion can not fail. 1301 */ 1302 posix_cpu_timer_del(&timer); 1303 spin_unlock_irq(&timer.it_lock); 1304 return 0; 1305 } 1306 1307 /* 1308 * Block until cpu_timer_fire (or a signal) wakes us. 1309 */ 1310 __set_current_state(TASK_INTERRUPTIBLE); 1311 spin_unlock_irq(&timer.it_lock); 1312 schedule(); 1313 spin_lock_irq(&timer.it_lock); 1314 } 1315 1316 /* 1317 * We were interrupted by a signal. 1318 */ 1319 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp); 1320 error = posix_cpu_timer_set(&timer, 0, &zero_it, it); 1321 if (!error) { 1322 /* 1323 * Timer is now unarmed, deletion can not fail. 1324 */ 1325 posix_cpu_timer_del(&timer); 1326 } 1327 spin_unlock_irq(&timer.it_lock); 1328 1329 while (error == TIMER_RETRY) { 1330 /* 1331 * We need to handle case when timer was or is in the 1332 * middle of firing. In other cases we already freed 1333 * resources. 1334 */ 1335 spin_lock_irq(&timer.it_lock); 1336 error = posix_cpu_timer_del(&timer); 1337 spin_unlock_irq(&timer.it_lock); 1338 } 1339 1340 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) { 1341 /* 1342 * It actually did fire already. 1343 */ 1344 return 0; 1345 } 1346 1347 error = -ERESTART_RESTARTBLOCK; 1348 } 1349 1350 return error; 1351 } 1352 1353 static long posix_cpu_nsleep_restart(struct restart_block *restart_block); 1354 1355 static int posix_cpu_nsleep(const clockid_t which_clock, int flags, 1356 struct timespec *rqtp, struct timespec __user *rmtp) 1357 { 1358 struct restart_block *restart_block = ¤t->restart_block; 1359 struct itimerspec it; 1360 int error; 1361 1362 /* 1363 * Diagnose required errors first. 1364 */ 1365 if (CPUCLOCK_PERTHREAD(which_clock) && 1366 (CPUCLOCK_PID(which_clock) == 0 || 1367 CPUCLOCK_PID(which_clock) == current->pid)) 1368 return -EINVAL; 1369 1370 error = do_cpu_nanosleep(which_clock, flags, rqtp, &it); 1371 1372 if (error == -ERESTART_RESTARTBLOCK) { 1373 1374 if (flags & TIMER_ABSTIME) 1375 return -ERESTARTNOHAND; 1376 /* 1377 * Report back to the user the time still remaining. 1378 */ 1379 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp)) 1380 return -EFAULT; 1381 1382 restart_block->fn = posix_cpu_nsleep_restart; 1383 restart_block->nanosleep.clockid = which_clock; 1384 restart_block->nanosleep.rmtp = rmtp; 1385 restart_block->nanosleep.expires = timespec_to_ns(rqtp); 1386 } 1387 return error; 1388 } 1389 1390 static long posix_cpu_nsleep_restart(struct restart_block *restart_block) 1391 { 1392 clockid_t which_clock = restart_block->nanosleep.clockid; 1393 struct timespec t; 1394 struct itimerspec it; 1395 int error; 1396 1397 t = ns_to_timespec(restart_block->nanosleep.expires); 1398 1399 error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it); 1400 1401 if (error == -ERESTART_RESTARTBLOCK) { 1402 struct timespec __user *rmtp = restart_block->nanosleep.rmtp; 1403 /* 1404 * Report back to the user the time still remaining. 1405 */ 1406 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp)) 1407 return -EFAULT; 1408 1409 restart_block->nanosleep.expires = timespec_to_ns(&t); 1410 } 1411 return error; 1412 1413 } 1414 1415 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED) 1416 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED) 1417 1418 static int process_cpu_clock_getres(const clockid_t which_clock, 1419 struct timespec *tp) 1420 { 1421 return posix_cpu_clock_getres(PROCESS_CLOCK, tp); 1422 } 1423 static int process_cpu_clock_get(const clockid_t which_clock, 1424 struct timespec *tp) 1425 { 1426 return posix_cpu_clock_get(PROCESS_CLOCK, tp); 1427 } 1428 static int process_cpu_timer_create(struct k_itimer *timer) 1429 { 1430 timer->it_clock = PROCESS_CLOCK; 1431 return posix_cpu_timer_create(timer); 1432 } 1433 static int process_cpu_nsleep(const clockid_t which_clock, int flags, 1434 struct timespec *rqtp, 1435 struct timespec __user *rmtp) 1436 { 1437 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp); 1438 } 1439 static long process_cpu_nsleep_restart(struct restart_block *restart_block) 1440 { 1441 return -EINVAL; 1442 } 1443 static int thread_cpu_clock_getres(const clockid_t which_clock, 1444 struct timespec *tp) 1445 { 1446 return posix_cpu_clock_getres(THREAD_CLOCK, tp); 1447 } 1448 static int thread_cpu_clock_get(const clockid_t which_clock, 1449 struct timespec *tp) 1450 { 1451 return posix_cpu_clock_get(THREAD_CLOCK, tp); 1452 } 1453 static int thread_cpu_timer_create(struct k_itimer *timer) 1454 { 1455 timer->it_clock = THREAD_CLOCK; 1456 return posix_cpu_timer_create(timer); 1457 } 1458 1459 struct k_clock clock_posix_cpu = { 1460 .clock_getres = posix_cpu_clock_getres, 1461 .clock_set = posix_cpu_clock_set, 1462 .clock_get = posix_cpu_clock_get, 1463 .timer_create = posix_cpu_timer_create, 1464 .nsleep = posix_cpu_nsleep, 1465 .nsleep_restart = posix_cpu_nsleep_restart, 1466 .timer_set = posix_cpu_timer_set, 1467 .timer_del = posix_cpu_timer_del, 1468 .timer_get = posix_cpu_timer_get, 1469 }; 1470 1471 static __init int init_posix_cpu_timers(void) 1472 { 1473 struct k_clock process = { 1474 .clock_getres = process_cpu_clock_getres, 1475 .clock_get = process_cpu_clock_get, 1476 .timer_create = process_cpu_timer_create, 1477 .nsleep = process_cpu_nsleep, 1478 .nsleep_restart = process_cpu_nsleep_restart, 1479 }; 1480 struct k_clock thread = { 1481 .clock_getres = thread_cpu_clock_getres, 1482 .clock_get = thread_cpu_clock_get, 1483 .timer_create = thread_cpu_timer_create, 1484 }; 1485 struct timespec ts; 1486 1487 posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process); 1488 posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread); 1489 1490 cputime_to_timespec(cputime_one_jiffy, &ts); 1491 onecputick = ts.tv_nsec; 1492 WARN_ON(ts.tv_sec != 0); 1493 1494 return 0; 1495 } 1496 __initcall(init_posix_cpu_timers); 1497