1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Implement CPU time clocks for the POSIX clock interface. 4 */ 5 6 #include <linux/sched/signal.h> 7 #include <linux/sched/cputime.h> 8 #include <linux/posix-timers.h> 9 #include <linux/errno.h> 10 #include <linux/math64.h> 11 #include <linux/uaccess.h> 12 #include <linux/kernel_stat.h> 13 #include <trace/events/timer.h> 14 #include <linux/tick.h> 15 #include <linux/workqueue.h> 16 #include <linux/compat.h> 17 #include <linux/sched/deadline.h> 18 19 #include "posix-timers.h" 20 21 static void posix_cpu_timer_rearm(struct k_itimer *timer); 22 23 void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit) 24 { 25 posix_cputimers_init(pct); 26 if (cpu_limit != RLIM_INFINITY) { 27 pct->bases[CPUCLOCK_PROF].nextevt = cpu_limit * NSEC_PER_SEC; 28 pct->timers_active = true; 29 } 30 } 31 32 /* 33 * Called after updating RLIMIT_CPU to run cpu timer and update 34 * tsk->signal->posix_cputimers.bases[clock].nextevt expiration cache if 35 * necessary. Needs siglock protection since other code may update the 36 * expiration cache as well. 37 */ 38 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new) 39 { 40 u64 nsecs = rlim_new * NSEC_PER_SEC; 41 42 spin_lock_irq(&task->sighand->siglock); 43 set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL); 44 spin_unlock_irq(&task->sighand->siglock); 45 } 46 47 /* 48 * Functions for validating access to tasks. 49 */ 50 static struct pid *pid_for_clock(const clockid_t clock, bool gettime) 51 { 52 const bool thread = !!CPUCLOCK_PERTHREAD(clock); 53 const pid_t upid = CPUCLOCK_PID(clock); 54 struct pid *pid; 55 56 if (CPUCLOCK_WHICH(clock) >= CPUCLOCK_MAX) 57 return NULL; 58 59 /* 60 * If the encoded PID is 0, then the timer is targeted at current 61 * or the process to which current belongs. 62 */ 63 if (upid == 0) 64 return thread ? task_pid(current) : task_tgid(current); 65 66 pid = find_vpid(upid); 67 if (!pid) 68 return NULL; 69 70 if (thread) { 71 struct task_struct *tsk = pid_task(pid, PIDTYPE_PID); 72 return (tsk && same_thread_group(tsk, current)) ? pid : NULL; 73 } 74 75 /* 76 * For clock_gettime(PROCESS) allow finding the process by 77 * with the pid of the current task. The code needs the tgid 78 * of the process so that pid_task(pid, PIDTYPE_TGID) can be 79 * used to find the process. 80 */ 81 if (gettime && (pid == task_pid(current))) 82 return task_tgid(current); 83 84 /* 85 * For processes require that pid identifies a process. 86 */ 87 return pid_has_task(pid, PIDTYPE_TGID) ? pid : NULL; 88 } 89 90 static inline int validate_clock_permissions(const clockid_t clock) 91 { 92 int ret; 93 94 rcu_read_lock(); 95 ret = pid_for_clock(clock, false) ? 0 : -EINVAL; 96 rcu_read_unlock(); 97 98 return ret; 99 } 100 101 static inline enum pid_type clock_pid_type(const clockid_t clock) 102 { 103 return CPUCLOCK_PERTHREAD(clock) ? PIDTYPE_PID : PIDTYPE_TGID; 104 } 105 106 static inline struct task_struct *cpu_timer_task_rcu(struct k_itimer *timer) 107 { 108 return pid_task(timer->it.cpu.pid, clock_pid_type(timer->it_clock)); 109 } 110 111 /* 112 * Update expiry time from increment, and increase overrun count, 113 * given the current clock sample. 114 */ 115 static u64 bump_cpu_timer(struct k_itimer *timer, u64 now) 116 { 117 u64 delta, incr, expires = timer->it.cpu.node.expires; 118 int i; 119 120 if (!timer->it_interval) 121 return expires; 122 123 if (now < expires) 124 return expires; 125 126 incr = timer->it_interval; 127 delta = now + incr - expires; 128 129 /* Don't use (incr*2 < delta), incr*2 might overflow. */ 130 for (i = 0; incr < delta - incr; i++) 131 incr = incr << 1; 132 133 for (; i >= 0; incr >>= 1, i--) { 134 if (delta < incr) 135 continue; 136 137 timer->it.cpu.node.expires += incr; 138 timer->it_overrun += 1LL << i; 139 delta -= incr; 140 } 141 return timer->it.cpu.node.expires; 142 } 143 144 /* Check whether all cache entries contain U64_MAX, i.e. eternal expiry time */ 145 static inline bool expiry_cache_is_inactive(const struct posix_cputimers *pct) 146 { 147 return !(~pct->bases[CPUCLOCK_PROF].nextevt | 148 ~pct->bases[CPUCLOCK_VIRT].nextevt | 149 ~pct->bases[CPUCLOCK_SCHED].nextevt); 150 } 151 152 static int 153 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp) 154 { 155 int error = validate_clock_permissions(which_clock); 156 157 if (!error) { 158 tp->tv_sec = 0; 159 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ); 160 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { 161 /* 162 * If sched_clock is using a cycle counter, we 163 * don't have any idea of its true resolution 164 * exported, but it is much more than 1s/HZ. 165 */ 166 tp->tv_nsec = 1; 167 } 168 } 169 return error; 170 } 171 172 static int 173 posix_cpu_clock_set(const clockid_t clock, const struct timespec64 *tp) 174 { 175 int error = validate_clock_permissions(clock); 176 177 /* 178 * You can never reset a CPU clock, but we check for other errors 179 * in the call before failing with EPERM. 180 */ 181 return error ? : -EPERM; 182 } 183 184 /* 185 * Sample a per-thread clock for the given task. clkid is validated. 186 */ 187 static u64 cpu_clock_sample(const clockid_t clkid, struct task_struct *p) 188 { 189 u64 utime, stime; 190 191 if (clkid == CPUCLOCK_SCHED) 192 return task_sched_runtime(p); 193 194 task_cputime(p, &utime, &stime); 195 196 switch (clkid) { 197 case CPUCLOCK_PROF: 198 return utime + stime; 199 case CPUCLOCK_VIRT: 200 return utime; 201 default: 202 WARN_ON_ONCE(1); 203 } 204 return 0; 205 } 206 207 static inline void store_samples(u64 *samples, u64 stime, u64 utime, u64 rtime) 208 { 209 samples[CPUCLOCK_PROF] = stime + utime; 210 samples[CPUCLOCK_VIRT] = utime; 211 samples[CPUCLOCK_SCHED] = rtime; 212 } 213 214 static void task_sample_cputime(struct task_struct *p, u64 *samples) 215 { 216 u64 stime, utime; 217 218 task_cputime(p, &utime, &stime); 219 store_samples(samples, stime, utime, p->se.sum_exec_runtime); 220 } 221 222 static void proc_sample_cputime_atomic(struct task_cputime_atomic *at, 223 u64 *samples) 224 { 225 u64 stime, utime, rtime; 226 227 utime = atomic64_read(&at->utime); 228 stime = atomic64_read(&at->stime); 229 rtime = atomic64_read(&at->sum_exec_runtime); 230 store_samples(samples, stime, utime, rtime); 231 } 232 233 /* 234 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg 235 * to avoid race conditions with concurrent updates to cputime. 236 */ 237 static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime) 238 { 239 u64 curr_cputime; 240 retry: 241 curr_cputime = atomic64_read(cputime); 242 if (sum_cputime > curr_cputime) { 243 if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime) 244 goto retry; 245 } 246 } 247 248 static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, 249 struct task_cputime *sum) 250 { 251 __update_gt_cputime(&cputime_atomic->utime, sum->utime); 252 __update_gt_cputime(&cputime_atomic->stime, sum->stime); 253 __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime); 254 } 255 256 /** 257 * thread_group_sample_cputime - Sample cputime for a given task 258 * @tsk: Task for which cputime needs to be started 259 * @samples: Storage for time samples 260 * 261 * Called from sys_getitimer() to calculate the expiry time of an active 262 * timer. That means group cputime accounting is already active. Called 263 * with task sighand lock held. 264 * 265 * Updates @times with an uptodate sample of the thread group cputimes. 266 */ 267 void thread_group_sample_cputime(struct task_struct *tsk, u64 *samples) 268 { 269 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; 270 struct posix_cputimers *pct = &tsk->signal->posix_cputimers; 271 272 WARN_ON_ONCE(!pct->timers_active); 273 274 proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples); 275 } 276 277 /** 278 * thread_group_start_cputime - Start cputime and return a sample 279 * @tsk: Task for which cputime needs to be started 280 * @samples: Storage for time samples 281 * 282 * The thread group cputime accounting is avoided when there are no posix 283 * CPU timers armed. Before starting a timer it's required to check whether 284 * the time accounting is active. If not, a full update of the atomic 285 * accounting store needs to be done and the accounting enabled. 286 * 287 * Updates @times with an uptodate sample of the thread group cputimes. 288 */ 289 static void thread_group_start_cputime(struct task_struct *tsk, u64 *samples) 290 { 291 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; 292 struct posix_cputimers *pct = &tsk->signal->posix_cputimers; 293 294 /* Check if cputimer isn't running. This is accessed without locking. */ 295 if (!READ_ONCE(pct->timers_active)) { 296 struct task_cputime sum; 297 298 /* 299 * The POSIX timer interface allows for absolute time expiry 300 * values through the TIMER_ABSTIME flag, therefore we have 301 * to synchronize the timer to the clock every time we start it. 302 */ 303 thread_group_cputime(tsk, &sum); 304 update_gt_cputime(&cputimer->cputime_atomic, &sum); 305 306 /* 307 * We're setting timers_active without a lock. Ensure this 308 * only gets written to in one operation. We set it after 309 * update_gt_cputime() as a small optimization, but 310 * barriers are not required because update_gt_cputime() 311 * can handle concurrent updates. 312 */ 313 WRITE_ONCE(pct->timers_active, true); 314 } 315 proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples); 316 } 317 318 static void __thread_group_cputime(struct task_struct *tsk, u64 *samples) 319 { 320 struct task_cputime ct; 321 322 thread_group_cputime(tsk, &ct); 323 store_samples(samples, ct.stime, ct.utime, ct.sum_exec_runtime); 324 } 325 326 /* 327 * Sample a process (thread group) clock for the given task clkid. If the 328 * group's cputime accounting is already enabled, read the atomic 329 * store. Otherwise a full update is required. clkid is already validated. 330 */ 331 static u64 cpu_clock_sample_group(const clockid_t clkid, struct task_struct *p, 332 bool start) 333 { 334 struct thread_group_cputimer *cputimer = &p->signal->cputimer; 335 struct posix_cputimers *pct = &p->signal->posix_cputimers; 336 u64 samples[CPUCLOCK_MAX]; 337 338 if (!READ_ONCE(pct->timers_active)) { 339 if (start) 340 thread_group_start_cputime(p, samples); 341 else 342 __thread_group_cputime(p, samples); 343 } else { 344 proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples); 345 } 346 347 return samples[clkid]; 348 } 349 350 static int posix_cpu_clock_get(const clockid_t clock, struct timespec64 *tp) 351 { 352 const clockid_t clkid = CPUCLOCK_WHICH(clock); 353 struct task_struct *tsk; 354 u64 t; 355 356 rcu_read_lock(); 357 tsk = pid_task(pid_for_clock(clock, true), clock_pid_type(clock)); 358 if (!tsk) { 359 rcu_read_unlock(); 360 return -EINVAL; 361 } 362 363 if (CPUCLOCK_PERTHREAD(clock)) 364 t = cpu_clock_sample(clkid, tsk); 365 else 366 t = cpu_clock_sample_group(clkid, tsk, false); 367 rcu_read_unlock(); 368 369 *tp = ns_to_timespec64(t); 370 return 0; 371 } 372 373 /* 374 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer. 375 * This is called from sys_timer_create() and do_cpu_nanosleep() with the 376 * new timer already all-zeros initialized. 377 */ 378 static int posix_cpu_timer_create(struct k_itimer *new_timer) 379 { 380 static struct lock_class_key posix_cpu_timers_key; 381 struct pid *pid; 382 383 rcu_read_lock(); 384 pid = pid_for_clock(new_timer->it_clock, false); 385 if (!pid) { 386 rcu_read_unlock(); 387 return -EINVAL; 388 } 389 390 /* 391 * If posix timer expiry is handled in task work context then 392 * timer::it_lock can be taken without disabling interrupts as all 393 * other locking happens in task context. This requires a separate 394 * lock class key otherwise regular posix timer expiry would record 395 * the lock class being taken in interrupt context and generate a 396 * false positive warning. 397 */ 398 if (IS_ENABLED(CONFIG_POSIX_CPU_TIMERS_TASK_WORK)) 399 lockdep_set_class(&new_timer->it_lock, &posix_cpu_timers_key); 400 401 new_timer->kclock = &clock_posix_cpu; 402 timerqueue_init(&new_timer->it.cpu.node); 403 new_timer->it.cpu.pid = get_pid(pid); 404 rcu_read_unlock(); 405 return 0; 406 } 407 408 /* 409 * Clean up a CPU-clock timer that is about to be destroyed. 410 * This is called from timer deletion with the timer already locked. 411 * If we return TIMER_RETRY, it's necessary to release the timer's lock 412 * and try again. (This happens when the timer is in the middle of firing.) 413 */ 414 static int posix_cpu_timer_del(struct k_itimer *timer) 415 { 416 struct cpu_timer *ctmr = &timer->it.cpu; 417 struct sighand_struct *sighand; 418 struct task_struct *p; 419 unsigned long flags; 420 int ret = 0; 421 422 rcu_read_lock(); 423 p = cpu_timer_task_rcu(timer); 424 if (!p) 425 goto out; 426 427 /* 428 * Protect against sighand release/switch in exit/exec and process/ 429 * thread timer list entry concurrent read/writes. 430 */ 431 sighand = lock_task_sighand(p, &flags); 432 if (unlikely(sighand == NULL)) { 433 /* 434 * This raced with the reaping of the task. The exit cleanup 435 * should have removed this timer from the timer queue. 436 */ 437 WARN_ON_ONCE(ctmr->head || timerqueue_node_queued(&ctmr->node)); 438 } else { 439 if (timer->it.cpu.firing) 440 ret = TIMER_RETRY; 441 else 442 cpu_timer_dequeue(ctmr); 443 444 unlock_task_sighand(p, &flags); 445 } 446 447 out: 448 rcu_read_unlock(); 449 if (!ret) 450 put_pid(ctmr->pid); 451 452 return ret; 453 } 454 455 static void cleanup_timerqueue(struct timerqueue_head *head) 456 { 457 struct timerqueue_node *node; 458 struct cpu_timer *ctmr; 459 460 while ((node = timerqueue_getnext(head))) { 461 timerqueue_del(head, node); 462 ctmr = container_of(node, struct cpu_timer, node); 463 ctmr->head = NULL; 464 } 465 } 466 467 /* 468 * Clean out CPU timers which are still armed when a thread exits. The 469 * timers are only removed from the list. No other updates are done. The 470 * corresponding posix timers are still accessible, but cannot be rearmed. 471 * 472 * This must be called with the siglock held. 473 */ 474 static void cleanup_timers(struct posix_cputimers *pct) 475 { 476 cleanup_timerqueue(&pct->bases[CPUCLOCK_PROF].tqhead); 477 cleanup_timerqueue(&pct->bases[CPUCLOCK_VIRT].tqhead); 478 cleanup_timerqueue(&pct->bases[CPUCLOCK_SCHED].tqhead); 479 } 480 481 /* 482 * These are both called with the siglock held, when the current thread 483 * is being reaped. When the final (leader) thread in the group is reaped, 484 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit. 485 */ 486 void posix_cpu_timers_exit(struct task_struct *tsk) 487 { 488 cleanup_timers(&tsk->posix_cputimers); 489 } 490 void posix_cpu_timers_exit_group(struct task_struct *tsk) 491 { 492 cleanup_timers(&tsk->signal->posix_cputimers); 493 } 494 495 /* 496 * Insert the timer on the appropriate list before any timers that 497 * expire later. This must be called with the sighand lock held. 498 */ 499 static void arm_timer(struct k_itimer *timer, struct task_struct *p) 500 { 501 int clkidx = CPUCLOCK_WHICH(timer->it_clock); 502 struct cpu_timer *ctmr = &timer->it.cpu; 503 u64 newexp = cpu_timer_getexpires(ctmr); 504 struct posix_cputimer_base *base; 505 506 if (CPUCLOCK_PERTHREAD(timer->it_clock)) 507 base = p->posix_cputimers.bases + clkidx; 508 else 509 base = p->signal->posix_cputimers.bases + clkidx; 510 511 if (!cpu_timer_enqueue(&base->tqhead, ctmr)) 512 return; 513 514 /* 515 * We are the new earliest-expiring POSIX 1.b timer, hence 516 * need to update expiration cache. Take into account that 517 * for process timers we share expiration cache with itimers 518 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME. 519 */ 520 if (newexp < base->nextevt) 521 base->nextevt = newexp; 522 523 if (CPUCLOCK_PERTHREAD(timer->it_clock)) 524 tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER); 525 else 526 tick_dep_set_signal(p, TICK_DEP_BIT_POSIX_TIMER); 527 } 528 529 /* 530 * The timer is locked, fire it and arrange for its reload. 531 */ 532 static void cpu_timer_fire(struct k_itimer *timer) 533 { 534 struct cpu_timer *ctmr = &timer->it.cpu; 535 536 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { 537 /* 538 * User don't want any signal. 539 */ 540 cpu_timer_setexpires(ctmr, 0); 541 } else if (unlikely(timer->sigq == NULL)) { 542 /* 543 * This a special case for clock_nanosleep, 544 * not a normal timer from sys_timer_create. 545 */ 546 wake_up_process(timer->it_process); 547 cpu_timer_setexpires(ctmr, 0); 548 } else if (!timer->it_interval) { 549 /* 550 * One-shot timer. Clear it as soon as it's fired. 551 */ 552 posix_timer_event(timer, 0); 553 cpu_timer_setexpires(ctmr, 0); 554 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) { 555 /* 556 * The signal did not get queued because the signal 557 * was ignored, so we won't get any callback to 558 * reload the timer. But we need to keep it 559 * ticking in case the signal is deliverable next time. 560 */ 561 posix_cpu_timer_rearm(timer); 562 ++timer->it_requeue_pending; 563 } 564 } 565 566 /* 567 * Guts of sys_timer_settime for CPU timers. 568 * This is called with the timer locked and interrupts disabled. 569 * If we return TIMER_RETRY, it's necessary to release the timer's lock 570 * and try again. (This happens when the timer is in the middle of firing.) 571 */ 572 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags, 573 struct itimerspec64 *new, struct itimerspec64 *old) 574 { 575 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock); 576 u64 old_expires, new_expires, old_incr, val; 577 struct cpu_timer *ctmr = &timer->it.cpu; 578 struct sighand_struct *sighand; 579 struct task_struct *p; 580 unsigned long flags; 581 int ret = 0; 582 583 rcu_read_lock(); 584 p = cpu_timer_task_rcu(timer); 585 if (!p) { 586 /* 587 * If p has just been reaped, we can no 588 * longer get any information about it at all. 589 */ 590 rcu_read_unlock(); 591 return -ESRCH; 592 } 593 594 /* 595 * Use the to_ktime conversion because that clamps the maximum 596 * value to KTIME_MAX and avoid multiplication overflows. 597 */ 598 new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value)); 599 600 /* 601 * Protect against sighand release/switch in exit/exec and p->cpu_timers 602 * and p->signal->cpu_timers read/write in arm_timer() 603 */ 604 sighand = lock_task_sighand(p, &flags); 605 /* 606 * If p has just been reaped, we can no 607 * longer get any information about it at all. 608 */ 609 if (unlikely(sighand == NULL)) { 610 rcu_read_unlock(); 611 return -ESRCH; 612 } 613 614 /* 615 * Disarm any old timer after extracting its expiry time. 616 */ 617 old_incr = timer->it_interval; 618 old_expires = cpu_timer_getexpires(ctmr); 619 620 if (unlikely(timer->it.cpu.firing)) { 621 timer->it.cpu.firing = -1; 622 ret = TIMER_RETRY; 623 } else { 624 cpu_timer_dequeue(ctmr); 625 } 626 627 /* 628 * We need to sample the current value to convert the new 629 * value from to relative and absolute, and to convert the 630 * old value from absolute to relative. To set a process 631 * timer, we need a sample to balance the thread expiry 632 * times (in arm_timer). With an absolute time, we must 633 * check if it's already passed. In short, we need a sample. 634 */ 635 if (CPUCLOCK_PERTHREAD(timer->it_clock)) 636 val = cpu_clock_sample(clkid, p); 637 else 638 val = cpu_clock_sample_group(clkid, p, true); 639 640 if (old) { 641 if (old_expires == 0) { 642 old->it_value.tv_sec = 0; 643 old->it_value.tv_nsec = 0; 644 } else { 645 /* 646 * Update the timer in case it has overrun already. 647 * If it has, we'll report it as having overrun and 648 * with the next reloaded timer already ticking, 649 * though we are swallowing that pending 650 * notification here to install the new setting. 651 */ 652 u64 exp = bump_cpu_timer(timer, val); 653 654 if (val < exp) { 655 old_expires = exp - val; 656 old->it_value = ns_to_timespec64(old_expires); 657 } else { 658 old->it_value.tv_nsec = 1; 659 old->it_value.tv_sec = 0; 660 } 661 } 662 } 663 664 if (unlikely(ret)) { 665 /* 666 * We are colliding with the timer actually firing. 667 * Punt after filling in the timer's old value, and 668 * disable this firing since we are already reporting 669 * it as an overrun (thanks to bump_cpu_timer above). 670 */ 671 unlock_task_sighand(p, &flags); 672 goto out; 673 } 674 675 if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) { 676 new_expires += val; 677 } 678 679 /* 680 * Install the new expiry time (or zero). 681 * For a timer with no notification action, we don't actually 682 * arm the timer (we'll just fake it for timer_gettime). 683 */ 684 cpu_timer_setexpires(ctmr, new_expires); 685 if (new_expires != 0 && val < new_expires) { 686 arm_timer(timer, p); 687 } 688 689 unlock_task_sighand(p, &flags); 690 /* 691 * Install the new reload setting, and 692 * set up the signal and overrun bookkeeping. 693 */ 694 timer->it_interval = timespec64_to_ktime(new->it_interval); 695 696 /* 697 * This acts as a modification timestamp for the timer, 698 * so any automatic reload attempt will punt on seeing 699 * that we have reset the timer manually. 700 */ 701 timer->it_requeue_pending = (timer->it_requeue_pending + 2) & 702 ~REQUEUE_PENDING; 703 timer->it_overrun_last = 0; 704 timer->it_overrun = -1; 705 706 if (new_expires != 0 && !(val < new_expires)) { 707 /* 708 * The designated time already passed, so we notify 709 * immediately, even if the thread never runs to 710 * accumulate more time on this clock. 711 */ 712 cpu_timer_fire(timer); 713 } 714 715 ret = 0; 716 out: 717 rcu_read_unlock(); 718 if (old) 719 old->it_interval = ns_to_timespec64(old_incr); 720 721 return ret; 722 } 723 724 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp) 725 { 726 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock); 727 struct cpu_timer *ctmr = &timer->it.cpu; 728 u64 now, expires = cpu_timer_getexpires(ctmr); 729 struct task_struct *p; 730 731 rcu_read_lock(); 732 p = cpu_timer_task_rcu(timer); 733 if (!p) 734 goto out; 735 736 /* 737 * Easy part: convert the reload time. 738 */ 739 itp->it_interval = ktime_to_timespec64(timer->it_interval); 740 741 if (!expires) 742 goto out; 743 744 /* 745 * Sample the clock to take the difference with the expiry time. 746 */ 747 if (CPUCLOCK_PERTHREAD(timer->it_clock)) 748 now = cpu_clock_sample(clkid, p); 749 else 750 now = cpu_clock_sample_group(clkid, p, false); 751 752 if (now < expires) { 753 itp->it_value = ns_to_timespec64(expires - now); 754 } else { 755 /* 756 * The timer should have expired already, but the firing 757 * hasn't taken place yet. Say it's just about to expire. 758 */ 759 itp->it_value.tv_nsec = 1; 760 itp->it_value.tv_sec = 0; 761 } 762 out: 763 rcu_read_unlock(); 764 } 765 766 #define MAX_COLLECTED 20 767 768 static u64 collect_timerqueue(struct timerqueue_head *head, 769 struct list_head *firing, u64 now) 770 { 771 struct timerqueue_node *next; 772 int i = 0; 773 774 while ((next = timerqueue_getnext(head))) { 775 struct cpu_timer *ctmr; 776 u64 expires; 777 778 ctmr = container_of(next, struct cpu_timer, node); 779 expires = cpu_timer_getexpires(ctmr); 780 /* Limit the number of timers to expire at once */ 781 if (++i == MAX_COLLECTED || now < expires) 782 return expires; 783 784 ctmr->firing = 1; 785 cpu_timer_dequeue(ctmr); 786 list_add_tail(&ctmr->elist, firing); 787 } 788 789 return U64_MAX; 790 } 791 792 static void collect_posix_cputimers(struct posix_cputimers *pct, u64 *samples, 793 struct list_head *firing) 794 { 795 struct posix_cputimer_base *base = pct->bases; 796 int i; 797 798 for (i = 0; i < CPUCLOCK_MAX; i++, base++) { 799 base->nextevt = collect_timerqueue(&base->tqhead, firing, 800 samples[i]); 801 } 802 } 803 804 static inline void check_dl_overrun(struct task_struct *tsk) 805 { 806 if (tsk->dl.dl_overrun) { 807 tsk->dl.dl_overrun = 0; 808 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); 809 } 810 } 811 812 static bool check_rlimit(u64 time, u64 limit, int signo, bool rt, bool hard) 813 { 814 if (time < limit) 815 return false; 816 817 if (print_fatal_signals) { 818 pr_info("%s Watchdog Timeout (%s): %s[%d]\n", 819 rt ? "RT" : "CPU", hard ? "hard" : "soft", 820 current->comm, task_pid_nr(current)); 821 } 822 __group_send_sig_info(signo, SEND_SIG_PRIV, current); 823 return true; 824 } 825 826 /* 827 * Check for any per-thread CPU timers that have fired and move them off 828 * the tsk->cpu_timers[N] list onto the firing list. Here we update the 829 * tsk->it_*_expires values to reflect the remaining thread CPU timers. 830 */ 831 static void check_thread_timers(struct task_struct *tsk, 832 struct list_head *firing) 833 { 834 struct posix_cputimers *pct = &tsk->posix_cputimers; 835 u64 samples[CPUCLOCK_MAX]; 836 unsigned long soft; 837 838 if (dl_task(tsk)) 839 check_dl_overrun(tsk); 840 841 if (expiry_cache_is_inactive(pct)) 842 return; 843 844 task_sample_cputime(tsk, samples); 845 collect_posix_cputimers(pct, samples, firing); 846 847 /* 848 * Check for the special case thread timers. 849 */ 850 soft = task_rlimit(tsk, RLIMIT_RTTIME); 851 if (soft != RLIM_INFINITY) { 852 /* Task RT timeout is accounted in jiffies. RTTIME is usec */ 853 unsigned long rttime = tsk->rt.timeout * (USEC_PER_SEC / HZ); 854 unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME); 855 856 /* At the hard limit, send SIGKILL. No further action. */ 857 if (hard != RLIM_INFINITY && 858 check_rlimit(rttime, hard, SIGKILL, true, true)) 859 return; 860 861 /* At the soft limit, send a SIGXCPU every second */ 862 if (check_rlimit(rttime, soft, SIGXCPU, true, false)) { 863 soft += USEC_PER_SEC; 864 tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur = soft; 865 } 866 } 867 868 if (expiry_cache_is_inactive(pct)) 869 tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER); 870 } 871 872 static inline void stop_process_timers(struct signal_struct *sig) 873 { 874 struct posix_cputimers *pct = &sig->posix_cputimers; 875 876 /* Turn off the active flag. This is done without locking. */ 877 WRITE_ONCE(pct->timers_active, false); 878 tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER); 879 } 880 881 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it, 882 u64 *expires, u64 cur_time, int signo) 883 { 884 if (!it->expires) 885 return; 886 887 if (cur_time >= it->expires) { 888 if (it->incr) 889 it->expires += it->incr; 890 else 891 it->expires = 0; 892 893 trace_itimer_expire(signo == SIGPROF ? 894 ITIMER_PROF : ITIMER_VIRTUAL, 895 task_tgid(tsk), cur_time); 896 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk); 897 } 898 899 if (it->expires && it->expires < *expires) 900 *expires = it->expires; 901 } 902 903 /* 904 * Check for any per-thread CPU timers that have fired and move them 905 * off the tsk->*_timers list onto the firing list. Per-thread timers 906 * have already been taken off. 907 */ 908 static void check_process_timers(struct task_struct *tsk, 909 struct list_head *firing) 910 { 911 struct signal_struct *const sig = tsk->signal; 912 struct posix_cputimers *pct = &sig->posix_cputimers; 913 u64 samples[CPUCLOCK_MAX]; 914 unsigned long soft; 915 916 /* 917 * If there are no active process wide timers (POSIX 1.b, itimers, 918 * RLIMIT_CPU) nothing to check. Also skip the process wide timer 919 * processing when there is already another task handling them. 920 */ 921 if (!READ_ONCE(pct->timers_active) || pct->expiry_active) 922 return; 923 924 /* 925 * Signify that a thread is checking for process timers. 926 * Write access to this field is protected by the sighand lock. 927 */ 928 pct->expiry_active = true; 929 930 /* 931 * Collect the current process totals. Group accounting is active 932 * so the sample can be taken directly. 933 */ 934 proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic, samples); 935 collect_posix_cputimers(pct, samples, firing); 936 937 /* 938 * Check for the special case process timers. 939 */ 940 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], 941 &pct->bases[CPUCLOCK_PROF].nextevt, 942 samples[CPUCLOCK_PROF], SIGPROF); 943 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], 944 &pct->bases[CPUCLOCK_VIRT].nextevt, 945 samples[CPUCLOCK_VIRT], SIGVTALRM); 946 947 soft = task_rlimit(tsk, RLIMIT_CPU); 948 if (soft != RLIM_INFINITY) { 949 /* RLIMIT_CPU is in seconds. Samples are nanoseconds */ 950 unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU); 951 u64 ptime = samples[CPUCLOCK_PROF]; 952 u64 softns = (u64)soft * NSEC_PER_SEC; 953 u64 hardns = (u64)hard * NSEC_PER_SEC; 954 955 /* At the hard limit, send SIGKILL. No further action. */ 956 if (hard != RLIM_INFINITY && 957 check_rlimit(ptime, hardns, SIGKILL, false, true)) 958 return; 959 960 /* At the soft limit, send a SIGXCPU every second */ 961 if (check_rlimit(ptime, softns, SIGXCPU, false, false)) { 962 sig->rlim[RLIMIT_CPU].rlim_cur = soft + 1; 963 softns += NSEC_PER_SEC; 964 } 965 966 /* Update the expiry cache */ 967 if (softns < pct->bases[CPUCLOCK_PROF].nextevt) 968 pct->bases[CPUCLOCK_PROF].nextevt = softns; 969 } 970 971 if (expiry_cache_is_inactive(pct)) 972 stop_process_timers(sig); 973 974 pct->expiry_active = false; 975 } 976 977 /* 978 * This is called from the signal code (via posixtimer_rearm) 979 * when the last timer signal was delivered and we have to reload the timer. 980 */ 981 static void posix_cpu_timer_rearm(struct k_itimer *timer) 982 { 983 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock); 984 struct task_struct *p; 985 struct sighand_struct *sighand; 986 unsigned long flags; 987 u64 now; 988 989 rcu_read_lock(); 990 p = cpu_timer_task_rcu(timer); 991 if (!p) 992 goto out; 993 994 /* 995 * Fetch the current sample and update the timer's expiry time. 996 */ 997 if (CPUCLOCK_PERTHREAD(timer->it_clock)) 998 now = cpu_clock_sample(clkid, p); 999 else 1000 now = cpu_clock_sample_group(clkid, p, true); 1001 1002 bump_cpu_timer(timer, now); 1003 1004 /* Protect timer list r/w in arm_timer() */ 1005 sighand = lock_task_sighand(p, &flags); 1006 if (unlikely(sighand == NULL)) 1007 goto out; 1008 1009 /* 1010 * Now re-arm for the new expiry time. 1011 */ 1012 arm_timer(timer, p); 1013 unlock_task_sighand(p, &flags); 1014 out: 1015 rcu_read_unlock(); 1016 } 1017 1018 /** 1019 * task_cputimers_expired - Check whether posix CPU timers are expired 1020 * 1021 * @samples: Array of current samples for the CPUCLOCK clocks 1022 * @pct: Pointer to a posix_cputimers container 1023 * 1024 * Returns true if any member of @samples is greater than the corresponding 1025 * member of @pct->bases[CLK].nextevt. False otherwise 1026 */ 1027 static inline bool 1028 task_cputimers_expired(const u64 *samples, struct posix_cputimers *pct) 1029 { 1030 int i; 1031 1032 for (i = 0; i < CPUCLOCK_MAX; i++) { 1033 if (samples[i] >= pct->bases[i].nextevt) 1034 return true; 1035 } 1036 return false; 1037 } 1038 1039 /** 1040 * fastpath_timer_check - POSIX CPU timers fast path. 1041 * 1042 * @tsk: The task (thread) being checked. 1043 * 1044 * Check the task and thread group timers. If both are zero (there are no 1045 * timers set) return false. Otherwise snapshot the task and thread group 1046 * timers and compare them with the corresponding expiration times. Return 1047 * true if a timer has expired, else return false. 1048 */ 1049 static inline bool fastpath_timer_check(struct task_struct *tsk) 1050 { 1051 struct posix_cputimers *pct = &tsk->posix_cputimers; 1052 struct signal_struct *sig; 1053 1054 if (!expiry_cache_is_inactive(pct)) { 1055 u64 samples[CPUCLOCK_MAX]; 1056 1057 task_sample_cputime(tsk, samples); 1058 if (task_cputimers_expired(samples, pct)) 1059 return true; 1060 } 1061 1062 sig = tsk->signal; 1063 pct = &sig->posix_cputimers; 1064 /* 1065 * Check if thread group timers expired when timers are active and 1066 * no other thread in the group is already handling expiry for 1067 * thread group cputimers. These fields are read without the 1068 * sighand lock. However, this is fine because this is meant to be 1069 * a fastpath heuristic to determine whether we should try to 1070 * acquire the sighand lock to handle timer expiry. 1071 * 1072 * In the worst case scenario, if concurrently timers_active is set 1073 * or expiry_active is cleared, but the current thread doesn't see 1074 * the change yet, the timer checks are delayed until the next 1075 * thread in the group gets a scheduler interrupt to handle the 1076 * timer. This isn't an issue in practice because these types of 1077 * delays with signals actually getting sent are expected. 1078 */ 1079 if (READ_ONCE(pct->timers_active) && !READ_ONCE(pct->expiry_active)) { 1080 u64 samples[CPUCLOCK_MAX]; 1081 1082 proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic, 1083 samples); 1084 1085 if (task_cputimers_expired(samples, pct)) 1086 return true; 1087 } 1088 1089 if (dl_task(tsk) && tsk->dl.dl_overrun) 1090 return true; 1091 1092 return false; 1093 } 1094 1095 static void handle_posix_cpu_timers(struct task_struct *tsk); 1096 1097 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK 1098 static void posix_cpu_timers_work(struct callback_head *work) 1099 { 1100 handle_posix_cpu_timers(current); 1101 } 1102 1103 /* 1104 * Initialize posix CPU timers task work in init task. Out of line to 1105 * keep the callback static and to avoid header recursion hell. 1106 */ 1107 void __init posix_cputimers_init_work(void) 1108 { 1109 init_task_work(¤t->posix_cputimers_work.work, 1110 posix_cpu_timers_work); 1111 } 1112 1113 /* 1114 * Note: All operations on tsk->posix_cputimer_work.scheduled happen either 1115 * in hard interrupt context or in task context with interrupts 1116 * disabled. Aside of that the writer/reader interaction is always in the 1117 * context of the current task, which means they are strict per CPU. 1118 */ 1119 static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk) 1120 { 1121 return tsk->posix_cputimers_work.scheduled; 1122 } 1123 1124 static inline void __run_posix_cpu_timers(struct task_struct *tsk) 1125 { 1126 if (WARN_ON_ONCE(tsk->posix_cputimers_work.scheduled)) 1127 return; 1128 1129 /* Schedule task work to actually expire the timers */ 1130 tsk->posix_cputimers_work.scheduled = true; 1131 task_work_add(tsk, &tsk->posix_cputimers_work.work, TWA_RESUME); 1132 } 1133 1134 static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk, 1135 unsigned long start) 1136 { 1137 bool ret = true; 1138 1139 /* 1140 * On !RT kernels interrupts are disabled while collecting expired 1141 * timers, so no tick can happen and the fast path check can be 1142 * reenabled without further checks. 1143 */ 1144 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 1145 tsk->posix_cputimers_work.scheduled = false; 1146 return true; 1147 } 1148 1149 /* 1150 * On RT enabled kernels ticks can happen while the expired timers 1151 * are collected under sighand lock. But any tick which observes 1152 * the CPUTIMERS_WORK_SCHEDULED bit set, does not run the fastpath 1153 * checks. So reenabling the tick work has do be done carefully: 1154 * 1155 * Disable interrupts and run the fast path check if jiffies have 1156 * advanced since the collecting of expired timers started. If 1157 * jiffies have not advanced or the fast path check did not find 1158 * newly expired timers, reenable the fast path check in the timer 1159 * interrupt. If there are newly expired timers, return false and 1160 * let the collection loop repeat. 1161 */ 1162 local_irq_disable(); 1163 if (start != jiffies && fastpath_timer_check(tsk)) 1164 ret = false; 1165 else 1166 tsk->posix_cputimers_work.scheduled = false; 1167 local_irq_enable(); 1168 1169 return ret; 1170 } 1171 #else /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */ 1172 static inline void __run_posix_cpu_timers(struct task_struct *tsk) 1173 { 1174 lockdep_posixtimer_enter(); 1175 handle_posix_cpu_timers(tsk); 1176 lockdep_posixtimer_exit(); 1177 } 1178 1179 static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk) 1180 { 1181 return false; 1182 } 1183 1184 static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk, 1185 unsigned long start) 1186 { 1187 return true; 1188 } 1189 #endif /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */ 1190 1191 static void handle_posix_cpu_timers(struct task_struct *tsk) 1192 { 1193 struct k_itimer *timer, *next; 1194 unsigned long flags, start; 1195 LIST_HEAD(firing); 1196 1197 if (!lock_task_sighand(tsk, &flags)) 1198 return; 1199 1200 do { 1201 /* 1202 * On RT locking sighand lock does not disable interrupts, 1203 * so this needs to be careful vs. ticks. Store the current 1204 * jiffies value. 1205 */ 1206 start = READ_ONCE(jiffies); 1207 barrier(); 1208 1209 /* 1210 * Here we take off tsk->signal->cpu_timers[N] and 1211 * tsk->cpu_timers[N] all the timers that are firing, and 1212 * put them on the firing list. 1213 */ 1214 check_thread_timers(tsk, &firing); 1215 1216 check_process_timers(tsk, &firing); 1217 1218 /* 1219 * The above timer checks have updated the expiry cache and 1220 * because nothing can have queued or modified timers after 1221 * sighand lock was taken above it is guaranteed to be 1222 * consistent. So the next timer interrupt fastpath check 1223 * will find valid data. 1224 * 1225 * If timer expiry runs in the timer interrupt context then 1226 * the loop is not relevant as timers will be directly 1227 * expired in interrupt context. The stub function below 1228 * returns always true which allows the compiler to 1229 * optimize the loop out. 1230 * 1231 * If timer expiry is deferred to task work context then 1232 * the following rules apply: 1233 * 1234 * - On !RT kernels no tick can have happened on this CPU 1235 * after sighand lock was acquired because interrupts are 1236 * disabled. So reenabling task work before dropping 1237 * sighand lock and reenabling interrupts is race free. 1238 * 1239 * - On RT kernels ticks might have happened but the tick 1240 * work ignored posix CPU timer handling because the 1241 * CPUTIMERS_WORK_SCHEDULED bit is set. Reenabling work 1242 * must be done very carefully including a check whether 1243 * ticks have happened since the start of the timer 1244 * expiry checks. posix_cpu_timers_enable_work() takes 1245 * care of that and eventually lets the expiry checks 1246 * run again. 1247 */ 1248 } while (!posix_cpu_timers_enable_work(tsk, start)); 1249 1250 /* 1251 * We must release sighand lock before taking any timer's lock. 1252 * There is a potential race with timer deletion here, as the 1253 * siglock now protects our private firing list. We have set 1254 * the firing flag in each timer, so that a deletion attempt 1255 * that gets the timer lock before we do will give it up and 1256 * spin until we've taken care of that timer below. 1257 */ 1258 unlock_task_sighand(tsk, &flags); 1259 1260 /* 1261 * Now that all the timers on our list have the firing flag, 1262 * no one will touch their list entries but us. We'll take 1263 * each timer's lock before clearing its firing flag, so no 1264 * timer call will interfere. 1265 */ 1266 list_for_each_entry_safe(timer, next, &firing, it.cpu.elist) { 1267 int cpu_firing; 1268 1269 /* 1270 * spin_lock() is sufficient here even independent of the 1271 * expiry context. If expiry happens in hard interrupt 1272 * context it's obvious. For task work context it's safe 1273 * because all other operations on timer::it_lock happen in 1274 * task context (syscall or exit). 1275 */ 1276 spin_lock(&timer->it_lock); 1277 list_del_init(&timer->it.cpu.elist); 1278 cpu_firing = timer->it.cpu.firing; 1279 timer->it.cpu.firing = 0; 1280 /* 1281 * The firing flag is -1 if we collided with a reset 1282 * of the timer, which already reported this 1283 * almost-firing as an overrun. So don't generate an event. 1284 */ 1285 if (likely(cpu_firing >= 0)) 1286 cpu_timer_fire(timer); 1287 spin_unlock(&timer->it_lock); 1288 } 1289 } 1290 1291 /* 1292 * This is called from the timer interrupt handler. The irq handler has 1293 * already updated our counts. We need to check if any timers fire now. 1294 * Interrupts are disabled. 1295 */ 1296 void run_posix_cpu_timers(void) 1297 { 1298 struct task_struct *tsk = current; 1299 1300 lockdep_assert_irqs_disabled(); 1301 1302 /* 1303 * If the actual expiry is deferred to task work context and the 1304 * work is already scheduled there is no point to do anything here. 1305 */ 1306 if (posix_cpu_timers_work_scheduled(tsk)) 1307 return; 1308 1309 /* 1310 * The fast path checks that there are no expired thread or thread 1311 * group timers. If that's so, just return. 1312 */ 1313 if (!fastpath_timer_check(tsk)) 1314 return; 1315 1316 __run_posix_cpu_timers(tsk); 1317 } 1318 1319 /* 1320 * Set one of the process-wide special case CPU timers or RLIMIT_CPU. 1321 * The tsk->sighand->siglock must be held by the caller. 1322 */ 1323 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clkid, 1324 u64 *newval, u64 *oldval) 1325 { 1326 u64 now, *nextevt; 1327 1328 if (WARN_ON_ONCE(clkid >= CPUCLOCK_SCHED)) 1329 return; 1330 1331 nextevt = &tsk->signal->posix_cputimers.bases[clkid].nextevt; 1332 now = cpu_clock_sample_group(clkid, tsk, true); 1333 1334 if (oldval) { 1335 /* 1336 * We are setting itimer. The *oldval is absolute and we update 1337 * it to be relative, *newval argument is relative and we update 1338 * it to be absolute. 1339 */ 1340 if (*oldval) { 1341 if (*oldval <= now) { 1342 /* Just about to fire. */ 1343 *oldval = TICK_NSEC; 1344 } else { 1345 *oldval -= now; 1346 } 1347 } 1348 1349 if (!*newval) 1350 return; 1351 *newval += now; 1352 } 1353 1354 /* 1355 * Update expiration cache if this is the earliest timer. CPUCLOCK_PROF 1356 * expiry cache is also used by RLIMIT_CPU!. 1357 */ 1358 if (*newval < *nextevt) 1359 *nextevt = *newval; 1360 1361 tick_dep_set_signal(tsk, TICK_DEP_BIT_POSIX_TIMER); 1362 } 1363 1364 static int do_cpu_nanosleep(const clockid_t which_clock, int flags, 1365 const struct timespec64 *rqtp) 1366 { 1367 struct itimerspec64 it; 1368 struct k_itimer timer; 1369 u64 expires; 1370 int error; 1371 1372 /* 1373 * Set up a temporary timer and then wait for it to go off. 1374 */ 1375 memset(&timer, 0, sizeof timer); 1376 spin_lock_init(&timer.it_lock); 1377 timer.it_clock = which_clock; 1378 timer.it_overrun = -1; 1379 error = posix_cpu_timer_create(&timer); 1380 timer.it_process = current; 1381 1382 if (!error) { 1383 static struct itimerspec64 zero_it; 1384 struct restart_block *restart; 1385 1386 memset(&it, 0, sizeof(it)); 1387 it.it_value = *rqtp; 1388 1389 spin_lock_irq(&timer.it_lock); 1390 error = posix_cpu_timer_set(&timer, flags, &it, NULL); 1391 if (error) { 1392 spin_unlock_irq(&timer.it_lock); 1393 return error; 1394 } 1395 1396 while (!signal_pending(current)) { 1397 if (!cpu_timer_getexpires(&timer.it.cpu)) { 1398 /* 1399 * Our timer fired and was reset, below 1400 * deletion can not fail. 1401 */ 1402 posix_cpu_timer_del(&timer); 1403 spin_unlock_irq(&timer.it_lock); 1404 return 0; 1405 } 1406 1407 /* 1408 * Block until cpu_timer_fire (or a signal) wakes us. 1409 */ 1410 __set_current_state(TASK_INTERRUPTIBLE); 1411 spin_unlock_irq(&timer.it_lock); 1412 schedule(); 1413 spin_lock_irq(&timer.it_lock); 1414 } 1415 1416 /* 1417 * We were interrupted by a signal. 1418 */ 1419 expires = cpu_timer_getexpires(&timer.it.cpu); 1420 error = posix_cpu_timer_set(&timer, 0, &zero_it, &it); 1421 if (!error) { 1422 /* 1423 * Timer is now unarmed, deletion can not fail. 1424 */ 1425 posix_cpu_timer_del(&timer); 1426 } 1427 spin_unlock_irq(&timer.it_lock); 1428 1429 while (error == TIMER_RETRY) { 1430 /* 1431 * We need to handle case when timer was or is in the 1432 * middle of firing. In other cases we already freed 1433 * resources. 1434 */ 1435 spin_lock_irq(&timer.it_lock); 1436 error = posix_cpu_timer_del(&timer); 1437 spin_unlock_irq(&timer.it_lock); 1438 } 1439 1440 if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) { 1441 /* 1442 * It actually did fire already. 1443 */ 1444 return 0; 1445 } 1446 1447 error = -ERESTART_RESTARTBLOCK; 1448 /* 1449 * Report back to the user the time still remaining. 1450 */ 1451 restart = ¤t->restart_block; 1452 restart->nanosleep.expires = expires; 1453 if (restart->nanosleep.type != TT_NONE) 1454 error = nanosleep_copyout(restart, &it.it_value); 1455 } 1456 1457 return error; 1458 } 1459 1460 static long posix_cpu_nsleep_restart(struct restart_block *restart_block); 1461 1462 static int posix_cpu_nsleep(const clockid_t which_clock, int flags, 1463 const struct timespec64 *rqtp) 1464 { 1465 struct restart_block *restart_block = ¤t->restart_block; 1466 int error; 1467 1468 /* 1469 * Diagnose required errors first. 1470 */ 1471 if (CPUCLOCK_PERTHREAD(which_clock) && 1472 (CPUCLOCK_PID(which_clock) == 0 || 1473 CPUCLOCK_PID(which_clock) == task_pid_vnr(current))) 1474 return -EINVAL; 1475 1476 error = do_cpu_nanosleep(which_clock, flags, rqtp); 1477 1478 if (error == -ERESTART_RESTARTBLOCK) { 1479 1480 if (flags & TIMER_ABSTIME) 1481 return -ERESTARTNOHAND; 1482 1483 restart_block->nanosleep.clockid = which_clock; 1484 set_restart_fn(restart_block, posix_cpu_nsleep_restart); 1485 } 1486 return error; 1487 } 1488 1489 static long posix_cpu_nsleep_restart(struct restart_block *restart_block) 1490 { 1491 clockid_t which_clock = restart_block->nanosleep.clockid; 1492 struct timespec64 t; 1493 1494 t = ns_to_timespec64(restart_block->nanosleep.expires); 1495 1496 return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t); 1497 } 1498 1499 #define PROCESS_CLOCK make_process_cpuclock(0, CPUCLOCK_SCHED) 1500 #define THREAD_CLOCK make_thread_cpuclock(0, CPUCLOCK_SCHED) 1501 1502 static int process_cpu_clock_getres(const clockid_t which_clock, 1503 struct timespec64 *tp) 1504 { 1505 return posix_cpu_clock_getres(PROCESS_CLOCK, tp); 1506 } 1507 static int process_cpu_clock_get(const clockid_t which_clock, 1508 struct timespec64 *tp) 1509 { 1510 return posix_cpu_clock_get(PROCESS_CLOCK, tp); 1511 } 1512 static int process_cpu_timer_create(struct k_itimer *timer) 1513 { 1514 timer->it_clock = PROCESS_CLOCK; 1515 return posix_cpu_timer_create(timer); 1516 } 1517 static int process_cpu_nsleep(const clockid_t which_clock, int flags, 1518 const struct timespec64 *rqtp) 1519 { 1520 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp); 1521 } 1522 static int thread_cpu_clock_getres(const clockid_t which_clock, 1523 struct timespec64 *tp) 1524 { 1525 return posix_cpu_clock_getres(THREAD_CLOCK, tp); 1526 } 1527 static int thread_cpu_clock_get(const clockid_t which_clock, 1528 struct timespec64 *tp) 1529 { 1530 return posix_cpu_clock_get(THREAD_CLOCK, tp); 1531 } 1532 static int thread_cpu_timer_create(struct k_itimer *timer) 1533 { 1534 timer->it_clock = THREAD_CLOCK; 1535 return posix_cpu_timer_create(timer); 1536 } 1537 1538 const struct k_clock clock_posix_cpu = { 1539 .clock_getres = posix_cpu_clock_getres, 1540 .clock_set = posix_cpu_clock_set, 1541 .clock_get_timespec = posix_cpu_clock_get, 1542 .timer_create = posix_cpu_timer_create, 1543 .nsleep = posix_cpu_nsleep, 1544 .timer_set = posix_cpu_timer_set, 1545 .timer_del = posix_cpu_timer_del, 1546 .timer_get = posix_cpu_timer_get, 1547 .timer_rearm = posix_cpu_timer_rearm, 1548 }; 1549 1550 const struct k_clock clock_process = { 1551 .clock_getres = process_cpu_clock_getres, 1552 .clock_get_timespec = process_cpu_clock_get, 1553 .timer_create = process_cpu_timer_create, 1554 .nsleep = process_cpu_nsleep, 1555 }; 1556 1557 const struct k_clock clock_thread = { 1558 .clock_getres = thread_cpu_clock_getres, 1559 .clock_get_timespec = thread_cpu_clock_get, 1560 .timer_create = thread_cpu_timer_create, 1561 }; 1562