1 /*
2  * Implement CPU time clocks for the POSIX clock interface.
3  */
4 
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
11 #include <trace/events/timer.h>
12 #include <linux/random.h>
13 #include <linux/tick.h>
14 #include <linux/workqueue.h>
15 
16 /*
17  * Called after updating RLIMIT_CPU to run cpu timer and update
18  * tsk->signal->cputime_expires expiration cache if necessary. Needs
19  * siglock protection since other code may update expiration cache as
20  * well.
21  */
22 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
23 {
24 	cputime_t cputime = secs_to_cputime(rlim_new);
25 
26 	spin_lock_irq(&task->sighand->siglock);
27 	set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL);
28 	spin_unlock_irq(&task->sighand->siglock);
29 }
30 
31 static int check_clock(const clockid_t which_clock)
32 {
33 	int error = 0;
34 	struct task_struct *p;
35 	const pid_t pid = CPUCLOCK_PID(which_clock);
36 
37 	if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
38 		return -EINVAL;
39 
40 	if (pid == 0)
41 		return 0;
42 
43 	rcu_read_lock();
44 	p = find_task_by_vpid(pid);
45 	if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
46 		   same_thread_group(p, current) : has_group_leader_pid(p))) {
47 		error = -EINVAL;
48 	}
49 	rcu_read_unlock();
50 
51 	return error;
52 }
53 
54 static inline unsigned long long
55 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
56 {
57 	unsigned long long ret;
58 
59 	ret = 0;		/* high half always zero when .cpu used */
60 	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
61 		ret = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
62 	} else {
63 		ret = cputime_to_expires(timespec_to_cputime(tp));
64 	}
65 	return ret;
66 }
67 
68 static void sample_to_timespec(const clockid_t which_clock,
69 			       unsigned long long expires,
70 			       struct timespec *tp)
71 {
72 	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
73 		*tp = ns_to_timespec(expires);
74 	else
75 		cputime_to_timespec((__force cputime_t)expires, tp);
76 }
77 
78 /*
79  * Update expiry time from increment, and increase overrun count,
80  * given the current clock sample.
81  */
82 static void bump_cpu_timer(struct k_itimer *timer,
83 			   unsigned long long now)
84 {
85 	int i;
86 	unsigned long long delta, incr;
87 
88 	if (timer->it.cpu.incr == 0)
89 		return;
90 
91 	if (now < timer->it.cpu.expires)
92 		return;
93 
94 	incr = timer->it.cpu.incr;
95 	delta = now + incr - timer->it.cpu.expires;
96 
97 	/* Don't use (incr*2 < delta), incr*2 might overflow. */
98 	for (i = 0; incr < delta - incr; i++)
99 		incr = incr << 1;
100 
101 	for (; i >= 0; incr >>= 1, i--) {
102 		if (delta < incr)
103 			continue;
104 
105 		timer->it.cpu.expires += incr;
106 		timer->it_overrun += 1 << i;
107 		delta -= incr;
108 	}
109 }
110 
111 /**
112  * task_cputime_zero - Check a task_cputime struct for all zero fields.
113  *
114  * @cputime:	The struct to compare.
115  *
116  * Checks @cputime to see if all fields are zero.  Returns true if all fields
117  * are zero, false if any field is nonzero.
118  */
119 static inline int task_cputime_zero(const struct task_cputime *cputime)
120 {
121 	if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
122 		return 1;
123 	return 0;
124 }
125 
126 static inline unsigned long long prof_ticks(struct task_struct *p)
127 {
128 	cputime_t utime, stime;
129 
130 	task_cputime(p, &utime, &stime);
131 
132 	return cputime_to_expires(utime + stime);
133 }
134 static inline unsigned long long virt_ticks(struct task_struct *p)
135 {
136 	cputime_t utime;
137 
138 	task_cputime(p, &utime, NULL);
139 
140 	return cputime_to_expires(utime);
141 }
142 
143 static int
144 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
145 {
146 	int error = check_clock(which_clock);
147 	if (!error) {
148 		tp->tv_sec = 0;
149 		tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
150 		if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
151 			/*
152 			 * If sched_clock is using a cycle counter, we
153 			 * don't have any idea of its true resolution
154 			 * exported, but it is much more than 1s/HZ.
155 			 */
156 			tp->tv_nsec = 1;
157 		}
158 	}
159 	return error;
160 }
161 
162 static int
163 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
164 {
165 	/*
166 	 * You can never reset a CPU clock, but we check for other errors
167 	 * in the call before failing with EPERM.
168 	 */
169 	int error = check_clock(which_clock);
170 	if (error == 0) {
171 		error = -EPERM;
172 	}
173 	return error;
174 }
175 
176 
177 /*
178  * Sample a per-thread clock for the given task.
179  */
180 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
181 			    unsigned long long *sample)
182 {
183 	switch (CPUCLOCK_WHICH(which_clock)) {
184 	default:
185 		return -EINVAL;
186 	case CPUCLOCK_PROF:
187 		*sample = prof_ticks(p);
188 		break;
189 	case CPUCLOCK_VIRT:
190 		*sample = virt_ticks(p);
191 		break;
192 	case CPUCLOCK_SCHED:
193 		*sample = task_sched_runtime(p);
194 		break;
195 	}
196 	return 0;
197 }
198 
199 /*
200  * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
201  * to avoid race conditions with concurrent updates to cputime.
202  */
203 static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
204 {
205 	u64 curr_cputime;
206 retry:
207 	curr_cputime = atomic64_read(cputime);
208 	if (sum_cputime > curr_cputime) {
209 		if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
210 			goto retry;
211 	}
212 }
213 
214 static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum)
215 {
216 	__update_gt_cputime(&cputime_atomic->utime, sum->utime);
217 	__update_gt_cputime(&cputime_atomic->stime, sum->stime);
218 	__update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
219 }
220 
221 /* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
222 static inline void sample_cputime_atomic(struct task_cputime *times,
223 					 struct task_cputime_atomic *atomic_times)
224 {
225 	times->utime = atomic64_read(&atomic_times->utime);
226 	times->stime = atomic64_read(&atomic_times->stime);
227 	times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime);
228 }
229 
230 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
231 {
232 	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
233 	struct task_cputime sum;
234 
235 	/* Check if cputimer isn't running. This is accessed without locking. */
236 	if (!READ_ONCE(cputimer->running)) {
237 		/*
238 		 * The POSIX timer interface allows for absolute time expiry
239 		 * values through the TIMER_ABSTIME flag, therefore we have
240 		 * to synchronize the timer to the clock every time we start it.
241 		 */
242 		thread_group_cputime(tsk, &sum);
243 		update_gt_cputime(&cputimer->cputime_atomic, &sum);
244 
245 		/*
246 		 * We're setting cputimer->running without a lock. Ensure
247 		 * this only gets written to in one operation. We set
248 		 * running after update_gt_cputime() as a small optimization,
249 		 * but barriers are not required because update_gt_cputime()
250 		 * can handle concurrent updates.
251 		 */
252 		WRITE_ONCE(cputimer->running, 1);
253 	}
254 	sample_cputime_atomic(times, &cputimer->cputime_atomic);
255 }
256 
257 /*
258  * Sample a process (thread group) clock for the given group_leader task.
259  * Must be called with task sighand lock held for safe while_each_thread()
260  * traversal.
261  */
262 static int cpu_clock_sample_group(const clockid_t which_clock,
263 				  struct task_struct *p,
264 				  unsigned long long *sample)
265 {
266 	struct task_cputime cputime;
267 
268 	switch (CPUCLOCK_WHICH(which_clock)) {
269 	default:
270 		return -EINVAL;
271 	case CPUCLOCK_PROF:
272 		thread_group_cputime(p, &cputime);
273 		*sample = cputime_to_expires(cputime.utime + cputime.stime);
274 		break;
275 	case CPUCLOCK_VIRT:
276 		thread_group_cputime(p, &cputime);
277 		*sample = cputime_to_expires(cputime.utime);
278 		break;
279 	case CPUCLOCK_SCHED:
280 		thread_group_cputime(p, &cputime);
281 		*sample = cputime.sum_exec_runtime;
282 		break;
283 	}
284 	return 0;
285 }
286 
287 static int posix_cpu_clock_get_task(struct task_struct *tsk,
288 				    const clockid_t which_clock,
289 				    struct timespec *tp)
290 {
291 	int err = -EINVAL;
292 	unsigned long long rtn;
293 
294 	if (CPUCLOCK_PERTHREAD(which_clock)) {
295 		if (same_thread_group(tsk, current))
296 			err = cpu_clock_sample(which_clock, tsk, &rtn);
297 	} else {
298 		if (tsk == current || thread_group_leader(tsk))
299 			err = cpu_clock_sample_group(which_clock, tsk, &rtn);
300 	}
301 
302 	if (!err)
303 		sample_to_timespec(which_clock, rtn, tp);
304 
305 	return err;
306 }
307 
308 
309 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
310 {
311 	const pid_t pid = CPUCLOCK_PID(which_clock);
312 	int err = -EINVAL;
313 
314 	if (pid == 0) {
315 		/*
316 		 * Special case constant value for our own clocks.
317 		 * We don't have to do any lookup to find ourselves.
318 		 */
319 		err = posix_cpu_clock_get_task(current, which_clock, tp);
320 	} else {
321 		/*
322 		 * Find the given PID, and validate that the caller
323 		 * should be able to see it.
324 		 */
325 		struct task_struct *p;
326 		rcu_read_lock();
327 		p = find_task_by_vpid(pid);
328 		if (p)
329 			err = posix_cpu_clock_get_task(p, which_clock, tp);
330 		rcu_read_unlock();
331 	}
332 
333 	return err;
334 }
335 
336 
337 /*
338  * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
339  * This is called from sys_timer_create() and do_cpu_nanosleep() with the
340  * new timer already all-zeros initialized.
341  */
342 static int posix_cpu_timer_create(struct k_itimer *new_timer)
343 {
344 	int ret = 0;
345 	const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
346 	struct task_struct *p;
347 
348 	if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
349 		return -EINVAL;
350 
351 	INIT_LIST_HEAD(&new_timer->it.cpu.entry);
352 
353 	rcu_read_lock();
354 	if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
355 		if (pid == 0) {
356 			p = current;
357 		} else {
358 			p = find_task_by_vpid(pid);
359 			if (p && !same_thread_group(p, current))
360 				p = NULL;
361 		}
362 	} else {
363 		if (pid == 0) {
364 			p = current->group_leader;
365 		} else {
366 			p = find_task_by_vpid(pid);
367 			if (p && !has_group_leader_pid(p))
368 				p = NULL;
369 		}
370 	}
371 	new_timer->it.cpu.task = p;
372 	if (p) {
373 		get_task_struct(p);
374 	} else {
375 		ret = -EINVAL;
376 	}
377 	rcu_read_unlock();
378 
379 	return ret;
380 }
381 
382 /*
383  * Clean up a CPU-clock timer that is about to be destroyed.
384  * This is called from timer deletion with the timer already locked.
385  * If we return TIMER_RETRY, it's necessary to release the timer's lock
386  * and try again.  (This happens when the timer is in the middle of firing.)
387  */
388 static int posix_cpu_timer_del(struct k_itimer *timer)
389 {
390 	int ret = 0;
391 	unsigned long flags;
392 	struct sighand_struct *sighand;
393 	struct task_struct *p = timer->it.cpu.task;
394 
395 	WARN_ON_ONCE(p == NULL);
396 
397 	/*
398 	 * Protect against sighand release/switch in exit/exec and process/
399 	 * thread timer list entry concurrent read/writes.
400 	 */
401 	sighand = lock_task_sighand(p, &flags);
402 	if (unlikely(sighand == NULL)) {
403 		/*
404 		 * We raced with the reaping of the task.
405 		 * The deletion should have cleared us off the list.
406 		 */
407 		WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
408 	} else {
409 		if (timer->it.cpu.firing)
410 			ret = TIMER_RETRY;
411 		else
412 			list_del(&timer->it.cpu.entry);
413 
414 		unlock_task_sighand(p, &flags);
415 	}
416 
417 	if (!ret)
418 		put_task_struct(p);
419 
420 	return ret;
421 }
422 
423 static void cleanup_timers_list(struct list_head *head)
424 {
425 	struct cpu_timer_list *timer, *next;
426 
427 	list_for_each_entry_safe(timer, next, head, entry)
428 		list_del_init(&timer->entry);
429 }
430 
431 /*
432  * Clean out CPU timers still ticking when a thread exited.  The task
433  * pointer is cleared, and the expiry time is replaced with the residual
434  * time for later timer_gettime calls to return.
435  * This must be called with the siglock held.
436  */
437 static void cleanup_timers(struct list_head *head)
438 {
439 	cleanup_timers_list(head);
440 	cleanup_timers_list(++head);
441 	cleanup_timers_list(++head);
442 }
443 
444 /*
445  * These are both called with the siglock held, when the current thread
446  * is being reaped.  When the final (leader) thread in the group is reaped,
447  * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
448  */
449 void posix_cpu_timers_exit(struct task_struct *tsk)
450 {
451 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
452 						sizeof(unsigned long long));
453 	cleanup_timers(tsk->cpu_timers);
454 
455 }
456 void posix_cpu_timers_exit_group(struct task_struct *tsk)
457 {
458 	cleanup_timers(tsk->signal->cpu_timers);
459 }
460 
461 static inline int expires_gt(cputime_t expires, cputime_t new_exp)
462 {
463 	return expires == 0 || expires > new_exp;
464 }
465 
466 /*
467  * Insert the timer on the appropriate list before any timers that
468  * expire later.  This must be called with the sighand lock held.
469  */
470 static void arm_timer(struct k_itimer *timer)
471 {
472 	struct task_struct *p = timer->it.cpu.task;
473 	struct list_head *head, *listpos;
474 	struct task_cputime *cputime_expires;
475 	struct cpu_timer_list *const nt = &timer->it.cpu;
476 	struct cpu_timer_list *next;
477 
478 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
479 		head = p->cpu_timers;
480 		cputime_expires = &p->cputime_expires;
481 	} else {
482 		head = p->signal->cpu_timers;
483 		cputime_expires = &p->signal->cputime_expires;
484 	}
485 	head += CPUCLOCK_WHICH(timer->it_clock);
486 
487 	listpos = head;
488 	list_for_each_entry(next, head, entry) {
489 		if (nt->expires < next->expires)
490 			break;
491 		listpos = &next->entry;
492 	}
493 	list_add(&nt->entry, listpos);
494 
495 	if (listpos == head) {
496 		unsigned long long exp = nt->expires;
497 
498 		/*
499 		 * We are the new earliest-expiring POSIX 1.b timer, hence
500 		 * need to update expiration cache. Take into account that
501 		 * for process timers we share expiration cache with itimers
502 		 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
503 		 */
504 
505 		switch (CPUCLOCK_WHICH(timer->it_clock)) {
506 		case CPUCLOCK_PROF:
507 			if (expires_gt(cputime_expires->prof_exp, expires_to_cputime(exp)))
508 				cputime_expires->prof_exp = expires_to_cputime(exp);
509 			break;
510 		case CPUCLOCK_VIRT:
511 			if (expires_gt(cputime_expires->virt_exp, expires_to_cputime(exp)))
512 				cputime_expires->virt_exp = expires_to_cputime(exp);
513 			break;
514 		case CPUCLOCK_SCHED:
515 			if (cputime_expires->sched_exp == 0 ||
516 			    cputime_expires->sched_exp > exp)
517 				cputime_expires->sched_exp = exp;
518 			break;
519 		}
520 	}
521 }
522 
523 /*
524  * The timer is locked, fire it and arrange for its reload.
525  */
526 static void cpu_timer_fire(struct k_itimer *timer)
527 {
528 	if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
529 		/*
530 		 * User don't want any signal.
531 		 */
532 		timer->it.cpu.expires = 0;
533 	} else if (unlikely(timer->sigq == NULL)) {
534 		/*
535 		 * This a special case for clock_nanosleep,
536 		 * not a normal timer from sys_timer_create.
537 		 */
538 		wake_up_process(timer->it_process);
539 		timer->it.cpu.expires = 0;
540 	} else if (timer->it.cpu.incr == 0) {
541 		/*
542 		 * One-shot timer.  Clear it as soon as it's fired.
543 		 */
544 		posix_timer_event(timer, 0);
545 		timer->it.cpu.expires = 0;
546 	} else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
547 		/*
548 		 * The signal did not get queued because the signal
549 		 * was ignored, so we won't get any callback to
550 		 * reload the timer.  But we need to keep it
551 		 * ticking in case the signal is deliverable next time.
552 		 */
553 		posix_cpu_timer_schedule(timer);
554 	}
555 }
556 
557 /*
558  * Sample a process (thread group) timer for the given group_leader task.
559  * Must be called with task sighand lock held for safe while_each_thread()
560  * traversal.
561  */
562 static int cpu_timer_sample_group(const clockid_t which_clock,
563 				  struct task_struct *p,
564 				  unsigned long long *sample)
565 {
566 	struct task_cputime cputime;
567 
568 	thread_group_cputimer(p, &cputime);
569 	switch (CPUCLOCK_WHICH(which_clock)) {
570 	default:
571 		return -EINVAL;
572 	case CPUCLOCK_PROF:
573 		*sample = cputime_to_expires(cputime.utime + cputime.stime);
574 		break;
575 	case CPUCLOCK_VIRT:
576 		*sample = cputime_to_expires(cputime.utime);
577 		break;
578 	case CPUCLOCK_SCHED:
579 		*sample = cputime.sum_exec_runtime;
580 		break;
581 	}
582 	return 0;
583 }
584 
585 #ifdef CONFIG_NO_HZ_FULL
586 static void nohz_kick_work_fn(struct work_struct *work)
587 {
588 	tick_nohz_full_kick_all();
589 }
590 
591 static DECLARE_WORK(nohz_kick_work, nohz_kick_work_fn);
592 
593 /*
594  * We need the IPIs to be sent from sane process context.
595  * The posix cpu timers are always set with irqs disabled.
596  */
597 static void posix_cpu_timer_kick_nohz(void)
598 {
599 	if (context_tracking_is_enabled())
600 		schedule_work(&nohz_kick_work);
601 }
602 
603 bool posix_cpu_timers_can_stop_tick(struct task_struct *tsk)
604 {
605 	if (!task_cputime_zero(&tsk->cputime_expires))
606 		return false;
607 
608 	/* Check if cputimer is running. This is accessed without locking. */
609 	if (READ_ONCE(tsk->signal->cputimer.running))
610 		return false;
611 
612 	return true;
613 }
614 #else
615 static inline void posix_cpu_timer_kick_nohz(void) { }
616 #endif
617 
618 /*
619  * Guts of sys_timer_settime for CPU timers.
620  * This is called with the timer locked and interrupts disabled.
621  * If we return TIMER_RETRY, it's necessary to release the timer's lock
622  * and try again.  (This happens when the timer is in the middle of firing.)
623  */
624 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
625 			       struct itimerspec *new, struct itimerspec *old)
626 {
627 	unsigned long flags;
628 	struct sighand_struct *sighand;
629 	struct task_struct *p = timer->it.cpu.task;
630 	unsigned long long old_expires, new_expires, old_incr, val;
631 	int ret;
632 
633 	WARN_ON_ONCE(p == NULL);
634 
635 	new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
636 
637 	/*
638 	 * Protect against sighand release/switch in exit/exec and p->cpu_timers
639 	 * and p->signal->cpu_timers read/write in arm_timer()
640 	 */
641 	sighand = lock_task_sighand(p, &flags);
642 	/*
643 	 * If p has just been reaped, we can no
644 	 * longer get any information about it at all.
645 	 */
646 	if (unlikely(sighand == NULL)) {
647 		return -ESRCH;
648 	}
649 
650 	/*
651 	 * Disarm any old timer after extracting its expiry time.
652 	 */
653 	WARN_ON_ONCE(!irqs_disabled());
654 
655 	ret = 0;
656 	old_incr = timer->it.cpu.incr;
657 	old_expires = timer->it.cpu.expires;
658 	if (unlikely(timer->it.cpu.firing)) {
659 		timer->it.cpu.firing = -1;
660 		ret = TIMER_RETRY;
661 	} else
662 		list_del_init(&timer->it.cpu.entry);
663 
664 	/*
665 	 * We need to sample the current value to convert the new
666 	 * value from to relative and absolute, and to convert the
667 	 * old value from absolute to relative.  To set a process
668 	 * timer, we need a sample to balance the thread expiry
669 	 * times (in arm_timer).  With an absolute time, we must
670 	 * check if it's already passed.  In short, we need a sample.
671 	 */
672 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
673 		cpu_clock_sample(timer->it_clock, p, &val);
674 	} else {
675 		cpu_timer_sample_group(timer->it_clock, p, &val);
676 	}
677 
678 	if (old) {
679 		if (old_expires == 0) {
680 			old->it_value.tv_sec = 0;
681 			old->it_value.tv_nsec = 0;
682 		} else {
683 			/*
684 			 * Update the timer in case it has
685 			 * overrun already.  If it has,
686 			 * we'll report it as having overrun
687 			 * and with the next reloaded timer
688 			 * already ticking, though we are
689 			 * swallowing that pending
690 			 * notification here to install the
691 			 * new setting.
692 			 */
693 			bump_cpu_timer(timer, val);
694 			if (val < timer->it.cpu.expires) {
695 				old_expires = timer->it.cpu.expires - val;
696 				sample_to_timespec(timer->it_clock,
697 						   old_expires,
698 						   &old->it_value);
699 			} else {
700 				old->it_value.tv_nsec = 1;
701 				old->it_value.tv_sec = 0;
702 			}
703 		}
704 	}
705 
706 	if (unlikely(ret)) {
707 		/*
708 		 * We are colliding with the timer actually firing.
709 		 * Punt after filling in the timer's old value, and
710 		 * disable this firing since we are already reporting
711 		 * it as an overrun (thanks to bump_cpu_timer above).
712 		 */
713 		unlock_task_sighand(p, &flags);
714 		goto out;
715 	}
716 
717 	if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
718 		new_expires += val;
719 	}
720 
721 	/*
722 	 * Install the new expiry time (or zero).
723 	 * For a timer with no notification action, we don't actually
724 	 * arm the timer (we'll just fake it for timer_gettime).
725 	 */
726 	timer->it.cpu.expires = new_expires;
727 	if (new_expires != 0 && val < new_expires) {
728 		arm_timer(timer);
729 	}
730 
731 	unlock_task_sighand(p, &flags);
732 	/*
733 	 * Install the new reload setting, and
734 	 * set up the signal and overrun bookkeeping.
735 	 */
736 	timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
737 						&new->it_interval);
738 
739 	/*
740 	 * This acts as a modification timestamp for the timer,
741 	 * so any automatic reload attempt will punt on seeing
742 	 * that we have reset the timer manually.
743 	 */
744 	timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
745 		~REQUEUE_PENDING;
746 	timer->it_overrun_last = 0;
747 	timer->it_overrun = -1;
748 
749 	if (new_expires != 0 && !(val < new_expires)) {
750 		/*
751 		 * The designated time already passed, so we notify
752 		 * immediately, even if the thread never runs to
753 		 * accumulate more time on this clock.
754 		 */
755 		cpu_timer_fire(timer);
756 	}
757 
758 	ret = 0;
759  out:
760 	if (old) {
761 		sample_to_timespec(timer->it_clock,
762 				   old_incr, &old->it_interval);
763 	}
764 	if (!ret)
765 		posix_cpu_timer_kick_nohz();
766 	return ret;
767 }
768 
769 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
770 {
771 	unsigned long long now;
772 	struct task_struct *p = timer->it.cpu.task;
773 
774 	WARN_ON_ONCE(p == NULL);
775 
776 	/*
777 	 * Easy part: convert the reload time.
778 	 */
779 	sample_to_timespec(timer->it_clock,
780 			   timer->it.cpu.incr, &itp->it_interval);
781 
782 	if (timer->it.cpu.expires == 0) {	/* Timer not armed at all.  */
783 		itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
784 		return;
785 	}
786 
787 	/*
788 	 * Sample the clock to take the difference with the expiry time.
789 	 */
790 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
791 		cpu_clock_sample(timer->it_clock, p, &now);
792 	} else {
793 		struct sighand_struct *sighand;
794 		unsigned long flags;
795 
796 		/*
797 		 * Protect against sighand release/switch in exit/exec and
798 		 * also make timer sampling safe if it ends up calling
799 		 * thread_group_cputime().
800 		 */
801 		sighand = lock_task_sighand(p, &flags);
802 		if (unlikely(sighand == NULL)) {
803 			/*
804 			 * The process has been reaped.
805 			 * We can't even collect a sample any more.
806 			 * Call the timer disarmed, nothing else to do.
807 			 */
808 			timer->it.cpu.expires = 0;
809 			sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
810 					   &itp->it_value);
811 		} else {
812 			cpu_timer_sample_group(timer->it_clock, p, &now);
813 			unlock_task_sighand(p, &flags);
814 		}
815 	}
816 
817 	if (now < timer->it.cpu.expires) {
818 		sample_to_timespec(timer->it_clock,
819 				   timer->it.cpu.expires - now,
820 				   &itp->it_value);
821 	} else {
822 		/*
823 		 * The timer should have expired already, but the firing
824 		 * hasn't taken place yet.  Say it's just about to expire.
825 		 */
826 		itp->it_value.tv_nsec = 1;
827 		itp->it_value.tv_sec = 0;
828 	}
829 }
830 
831 static unsigned long long
832 check_timers_list(struct list_head *timers,
833 		  struct list_head *firing,
834 		  unsigned long long curr)
835 {
836 	int maxfire = 20;
837 
838 	while (!list_empty(timers)) {
839 		struct cpu_timer_list *t;
840 
841 		t = list_first_entry(timers, struct cpu_timer_list, entry);
842 
843 		if (!--maxfire || curr < t->expires)
844 			return t->expires;
845 
846 		t->firing = 1;
847 		list_move_tail(&t->entry, firing);
848 	}
849 
850 	return 0;
851 }
852 
853 /*
854  * Check for any per-thread CPU timers that have fired and move them off
855  * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
856  * tsk->it_*_expires values to reflect the remaining thread CPU timers.
857  */
858 static void check_thread_timers(struct task_struct *tsk,
859 				struct list_head *firing)
860 {
861 	struct list_head *timers = tsk->cpu_timers;
862 	struct signal_struct *const sig = tsk->signal;
863 	struct task_cputime *tsk_expires = &tsk->cputime_expires;
864 	unsigned long long expires;
865 	unsigned long soft;
866 
867 	expires = check_timers_list(timers, firing, prof_ticks(tsk));
868 	tsk_expires->prof_exp = expires_to_cputime(expires);
869 
870 	expires = check_timers_list(++timers, firing, virt_ticks(tsk));
871 	tsk_expires->virt_exp = expires_to_cputime(expires);
872 
873 	tsk_expires->sched_exp = check_timers_list(++timers, firing,
874 						   tsk->se.sum_exec_runtime);
875 
876 	/*
877 	 * Check for the special case thread timers.
878 	 */
879 	soft = READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
880 	if (soft != RLIM_INFINITY) {
881 		unsigned long hard =
882 			READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
883 
884 		if (hard != RLIM_INFINITY &&
885 		    tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
886 			/*
887 			 * At the hard limit, we just die.
888 			 * No need to calculate anything else now.
889 			 */
890 			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
891 			return;
892 		}
893 		if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
894 			/*
895 			 * At the soft limit, send a SIGXCPU every second.
896 			 */
897 			if (soft < hard) {
898 				soft += USEC_PER_SEC;
899 				sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
900 			}
901 			printk(KERN_INFO
902 				"RT Watchdog Timeout: %s[%d]\n",
903 				tsk->comm, task_pid_nr(tsk));
904 			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
905 		}
906 	}
907 }
908 
909 static inline void stop_process_timers(struct signal_struct *sig)
910 {
911 	struct thread_group_cputimer *cputimer = &sig->cputimer;
912 
913 	/* Turn off cputimer->running. This is done without locking. */
914 	WRITE_ONCE(cputimer->running, 0);
915 }
916 
917 static u32 onecputick;
918 
919 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
920 			     unsigned long long *expires,
921 			     unsigned long long cur_time, int signo)
922 {
923 	if (!it->expires)
924 		return;
925 
926 	if (cur_time >= it->expires) {
927 		if (it->incr) {
928 			it->expires += it->incr;
929 			it->error += it->incr_error;
930 			if (it->error >= onecputick) {
931 				it->expires -= cputime_one_jiffy;
932 				it->error -= onecputick;
933 			}
934 		} else {
935 			it->expires = 0;
936 		}
937 
938 		trace_itimer_expire(signo == SIGPROF ?
939 				    ITIMER_PROF : ITIMER_VIRTUAL,
940 				    tsk->signal->leader_pid, cur_time);
941 		__group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
942 	}
943 
944 	if (it->expires && (!*expires || it->expires < *expires)) {
945 		*expires = it->expires;
946 	}
947 }
948 
949 /*
950  * Check for any per-thread CPU timers that have fired and move them
951  * off the tsk->*_timers list onto the firing list.  Per-thread timers
952  * have already been taken off.
953  */
954 static void check_process_timers(struct task_struct *tsk,
955 				 struct list_head *firing)
956 {
957 	struct signal_struct *const sig = tsk->signal;
958 	unsigned long long utime, ptime, virt_expires, prof_expires;
959 	unsigned long long sum_sched_runtime, sched_expires;
960 	struct list_head *timers = sig->cpu_timers;
961 	struct task_cputime cputime;
962 	unsigned long soft;
963 
964 	/*
965 	 * Collect the current process totals.
966 	 */
967 	thread_group_cputimer(tsk, &cputime);
968 	utime = cputime_to_expires(cputime.utime);
969 	ptime = utime + cputime_to_expires(cputime.stime);
970 	sum_sched_runtime = cputime.sum_exec_runtime;
971 
972 	prof_expires = check_timers_list(timers, firing, ptime);
973 	virt_expires = check_timers_list(++timers, firing, utime);
974 	sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
975 
976 	/*
977 	 * Check for the special case process timers.
978 	 */
979 	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
980 			 SIGPROF);
981 	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
982 			 SIGVTALRM);
983 	soft = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
984 	if (soft != RLIM_INFINITY) {
985 		unsigned long psecs = cputime_to_secs(ptime);
986 		unsigned long hard =
987 			READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
988 		cputime_t x;
989 		if (psecs >= hard) {
990 			/*
991 			 * At the hard limit, we just die.
992 			 * No need to calculate anything else now.
993 			 */
994 			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
995 			return;
996 		}
997 		if (psecs >= soft) {
998 			/*
999 			 * At the soft limit, send a SIGXCPU every second.
1000 			 */
1001 			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1002 			if (soft < hard) {
1003 				soft++;
1004 				sig->rlim[RLIMIT_CPU].rlim_cur = soft;
1005 			}
1006 		}
1007 		x = secs_to_cputime(soft);
1008 		if (!prof_expires || x < prof_expires) {
1009 			prof_expires = x;
1010 		}
1011 	}
1012 
1013 	sig->cputime_expires.prof_exp = expires_to_cputime(prof_expires);
1014 	sig->cputime_expires.virt_exp = expires_to_cputime(virt_expires);
1015 	sig->cputime_expires.sched_exp = sched_expires;
1016 	if (task_cputime_zero(&sig->cputime_expires))
1017 		stop_process_timers(sig);
1018 }
1019 
1020 /*
1021  * This is called from the signal code (via do_schedule_next_timer)
1022  * when the last timer signal was delivered and we have to reload the timer.
1023  */
1024 void posix_cpu_timer_schedule(struct k_itimer *timer)
1025 {
1026 	struct sighand_struct *sighand;
1027 	unsigned long flags;
1028 	struct task_struct *p = timer->it.cpu.task;
1029 	unsigned long long now;
1030 
1031 	WARN_ON_ONCE(p == NULL);
1032 
1033 	/*
1034 	 * Fetch the current sample and update the timer's expiry time.
1035 	 */
1036 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1037 		cpu_clock_sample(timer->it_clock, p, &now);
1038 		bump_cpu_timer(timer, now);
1039 		if (unlikely(p->exit_state))
1040 			goto out;
1041 
1042 		/* Protect timer list r/w in arm_timer() */
1043 		sighand = lock_task_sighand(p, &flags);
1044 		if (!sighand)
1045 			goto out;
1046 	} else {
1047 		/*
1048 		 * Protect arm_timer() and timer sampling in case of call to
1049 		 * thread_group_cputime().
1050 		 */
1051 		sighand = lock_task_sighand(p, &flags);
1052 		if (unlikely(sighand == NULL)) {
1053 			/*
1054 			 * The process has been reaped.
1055 			 * We can't even collect a sample any more.
1056 			 */
1057 			timer->it.cpu.expires = 0;
1058 			goto out;
1059 		} else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1060 			unlock_task_sighand(p, &flags);
1061 			/* Optimizations: if the process is dying, no need to rearm */
1062 			goto out;
1063 		}
1064 		cpu_timer_sample_group(timer->it_clock, p, &now);
1065 		bump_cpu_timer(timer, now);
1066 		/* Leave the sighand locked for the call below.  */
1067 	}
1068 
1069 	/*
1070 	 * Now re-arm for the new expiry time.
1071 	 */
1072 	WARN_ON_ONCE(!irqs_disabled());
1073 	arm_timer(timer);
1074 	unlock_task_sighand(p, &flags);
1075 
1076 	/* Kick full dynticks CPUs in case they need to tick on the new timer */
1077 	posix_cpu_timer_kick_nohz();
1078 out:
1079 	timer->it_overrun_last = timer->it_overrun;
1080 	timer->it_overrun = -1;
1081 	++timer->it_requeue_pending;
1082 }
1083 
1084 /**
1085  * task_cputime_expired - Compare two task_cputime entities.
1086  *
1087  * @sample:	The task_cputime structure to be checked for expiration.
1088  * @expires:	Expiration times, against which @sample will be checked.
1089  *
1090  * Checks @sample against @expires to see if any field of @sample has expired.
1091  * Returns true if any field of the former is greater than the corresponding
1092  * field of the latter if the latter field is set.  Otherwise returns false.
1093  */
1094 static inline int task_cputime_expired(const struct task_cputime *sample,
1095 					const struct task_cputime *expires)
1096 {
1097 	if (expires->utime && sample->utime >= expires->utime)
1098 		return 1;
1099 	if (expires->stime && sample->utime + sample->stime >= expires->stime)
1100 		return 1;
1101 	if (expires->sum_exec_runtime != 0 &&
1102 	    sample->sum_exec_runtime >= expires->sum_exec_runtime)
1103 		return 1;
1104 	return 0;
1105 }
1106 
1107 /**
1108  * fastpath_timer_check - POSIX CPU timers fast path.
1109  *
1110  * @tsk:	The task (thread) being checked.
1111  *
1112  * Check the task and thread group timers.  If both are zero (there are no
1113  * timers set) return false.  Otherwise snapshot the task and thread group
1114  * timers and compare them with the corresponding expiration times.  Return
1115  * true if a timer has expired, else return false.
1116  */
1117 static inline int fastpath_timer_check(struct task_struct *tsk)
1118 {
1119 	struct signal_struct *sig;
1120 	cputime_t utime, stime;
1121 
1122 	task_cputime(tsk, &utime, &stime);
1123 
1124 	if (!task_cputime_zero(&tsk->cputime_expires)) {
1125 		struct task_cputime task_sample = {
1126 			.utime = utime,
1127 			.stime = stime,
1128 			.sum_exec_runtime = tsk->se.sum_exec_runtime
1129 		};
1130 
1131 		if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1132 			return 1;
1133 	}
1134 
1135 	sig = tsk->signal;
1136 	/* Check if cputimer is running. This is accessed without locking. */
1137 	if (READ_ONCE(sig->cputimer.running)) {
1138 		struct task_cputime group_sample;
1139 
1140 		sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic);
1141 
1142 		if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1143 			return 1;
1144 	}
1145 
1146 	return 0;
1147 }
1148 
1149 /*
1150  * This is called from the timer interrupt handler.  The irq handler has
1151  * already updated our counts.  We need to check if any timers fire now.
1152  * Interrupts are disabled.
1153  */
1154 void run_posix_cpu_timers(struct task_struct *tsk)
1155 {
1156 	LIST_HEAD(firing);
1157 	struct k_itimer *timer, *next;
1158 	unsigned long flags;
1159 
1160 	WARN_ON_ONCE(!irqs_disabled());
1161 
1162 	/*
1163 	 * The fast path checks that there are no expired thread or thread
1164 	 * group timers.  If that's so, just return.
1165 	 */
1166 	if (!fastpath_timer_check(tsk))
1167 		return;
1168 
1169 	if (!lock_task_sighand(tsk, &flags))
1170 		return;
1171 	/*
1172 	 * Here we take off tsk->signal->cpu_timers[N] and
1173 	 * tsk->cpu_timers[N] all the timers that are firing, and
1174 	 * put them on the firing list.
1175 	 */
1176 	check_thread_timers(tsk, &firing);
1177 	/*
1178 	 * If there are any active process wide timers (POSIX 1.b, itimers,
1179 	 * RLIMIT_CPU) cputimer must be running.
1180 	 */
1181 	if (READ_ONCE(tsk->signal->cputimer.running))
1182 		check_process_timers(tsk, &firing);
1183 
1184 	/*
1185 	 * We must release these locks before taking any timer's lock.
1186 	 * There is a potential race with timer deletion here, as the
1187 	 * siglock now protects our private firing list.  We have set
1188 	 * the firing flag in each timer, so that a deletion attempt
1189 	 * that gets the timer lock before we do will give it up and
1190 	 * spin until we've taken care of that timer below.
1191 	 */
1192 	unlock_task_sighand(tsk, &flags);
1193 
1194 	/*
1195 	 * Now that all the timers on our list have the firing flag,
1196 	 * no one will touch their list entries but us.  We'll take
1197 	 * each timer's lock before clearing its firing flag, so no
1198 	 * timer call will interfere.
1199 	 */
1200 	list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1201 		int cpu_firing;
1202 
1203 		spin_lock(&timer->it_lock);
1204 		list_del_init(&timer->it.cpu.entry);
1205 		cpu_firing = timer->it.cpu.firing;
1206 		timer->it.cpu.firing = 0;
1207 		/*
1208 		 * The firing flag is -1 if we collided with a reset
1209 		 * of the timer, which already reported this
1210 		 * almost-firing as an overrun.  So don't generate an event.
1211 		 */
1212 		if (likely(cpu_firing >= 0))
1213 			cpu_timer_fire(timer);
1214 		spin_unlock(&timer->it_lock);
1215 	}
1216 }
1217 
1218 /*
1219  * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1220  * The tsk->sighand->siglock must be held by the caller.
1221  */
1222 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1223 			   cputime_t *newval, cputime_t *oldval)
1224 {
1225 	unsigned long long now;
1226 
1227 	WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
1228 	cpu_timer_sample_group(clock_idx, tsk, &now);
1229 
1230 	if (oldval) {
1231 		/*
1232 		 * We are setting itimer. The *oldval is absolute and we update
1233 		 * it to be relative, *newval argument is relative and we update
1234 		 * it to be absolute.
1235 		 */
1236 		if (*oldval) {
1237 			if (*oldval <= now) {
1238 				/* Just about to fire. */
1239 				*oldval = cputime_one_jiffy;
1240 			} else {
1241 				*oldval -= now;
1242 			}
1243 		}
1244 
1245 		if (!*newval)
1246 			goto out;
1247 		*newval += now;
1248 	}
1249 
1250 	/*
1251 	 * Update expiration cache if we are the earliest timer, or eventually
1252 	 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1253 	 */
1254 	switch (clock_idx) {
1255 	case CPUCLOCK_PROF:
1256 		if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1257 			tsk->signal->cputime_expires.prof_exp = *newval;
1258 		break;
1259 	case CPUCLOCK_VIRT:
1260 		if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1261 			tsk->signal->cputime_expires.virt_exp = *newval;
1262 		break;
1263 	}
1264 out:
1265 	posix_cpu_timer_kick_nohz();
1266 }
1267 
1268 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1269 			    struct timespec *rqtp, struct itimerspec *it)
1270 {
1271 	struct k_itimer timer;
1272 	int error;
1273 
1274 	/*
1275 	 * Set up a temporary timer and then wait for it to go off.
1276 	 */
1277 	memset(&timer, 0, sizeof timer);
1278 	spin_lock_init(&timer.it_lock);
1279 	timer.it_clock = which_clock;
1280 	timer.it_overrun = -1;
1281 	error = posix_cpu_timer_create(&timer);
1282 	timer.it_process = current;
1283 	if (!error) {
1284 		static struct itimerspec zero_it;
1285 
1286 		memset(it, 0, sizeof *it);
1287 		it->it_value = *rqtp;
1288 
1289 		spin_lock_irq(&timer.it_lock);
1290 		error = posix_cpu_timer_set(&timer, flags, it, NULL);
1291 		if (error) {
1292 			spin_unlock_irq(&timer.it_lock);
1293 			return error;
1294 		}
1295 
1296 		while (!signal_pending(current)) {
1297 			if (timer.it.cpu.expires == 0) {
1298 				/*
1299 				 * Our timer fired and was reset, below
1300 				 * deletion can not fail.
1301 				 */
1302 				posix_cpu_timer_del(&timer);
1303 				spin_unlock_irq(&timer.it_lock);
1304 				return 0;
1305 			}
1306 
1307 			/*
1308 			 * Block until cpu_timer_fire (or a signal) wakes us.
1309 			 */
1310 			__set_current_state(TASK_INTERRUPTIBLE);
1311 			spin_unlock_irq(&timer.it_lock);
1312 			schedule();
1313 			spin_lock_irq(&timer.it_lock);
1314 		}
1315 
1316 		/*
1317 		 * We were interrupted by a signal.
1318 		 */
1319 		sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1320 		error = posix_cpu_timer_set(&timer, 0, &zero_it, it);
1321 		if (!error) {
1322 			/*
1323 			 * Timer is now unarmed, deletion can not fail.
1324 			 */
1325 			posix_cpu_timer_del(&timer);
1326 		}
1327 		spin_unlock_irq(&timer.it_lock);
1328 
1329 		while (error == TIMER_RETRY) {
1330 			/*
1331 			 * We need to handle case when timer was or is in the
1332 			 * middle of firing. In other cases we already freed
1333 			 * resources.
1334 			 */
1335 			spin_lock_irq(&timer.it_lock);
1336 			error = posix_cpu_timer_del(&timer);
1337 			spin_unlock_irq(&timer.it_lock);
1338 		}
1339 
1340 		if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1341 			/*
1342 			 * It actually did fire already.
1343 			 */
1344 			return 0;
1345 		}
1346 
1347 		error = -ERESTART_RESTARTBLOCK;
1348 	}
1349 
1350 	return error;
1351 }
1352 
1353 static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1354 
1355 static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1356 			    struct timespec *rqtp, struct timespec __user *rmtp)
1357 {
1358 	struct restart_block *restart_block = &current->restart_block;
1359 	struct itimerspec it;
1360 	int error;
1361 
1362 	/*
1363 	 * Diagnose required errors first.
1364 	 */
1365 	if (CPUCLOCK_PERTHREAD(which_clock) &&
1366 	    (CPUCLOCK_PID(which_clock) == 0 ||
1367 	     CPUCLOCK_PID(which_clock) == current->pid))
1368 		return -EINVAL;
1369 
1370 	error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1371 
1372 	if (error == -ERESTART_RESTARTBLOCK) {
1373 
1374 		if (flags & TIMER_ABSTIME)
1375 			return -ERESTARTNOHAND;
1376 		/*
1377 		 * Report back to the user the time still remaining.
1378 		 */
1379 		if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1380 			return -EFAULT;
1381 
1382 		restart_block->fn = posix_cpu_nsleep_restart;
1383 		restart_block->nanosleep.clockid = which_clock;
1384 		restart_block->nanosleep.rmtp = rmtp;
1385 		restart_block->nanosleep.expires = timespec_to_ns(rqtp);
1386 	}
1387 	return error;
1388 }
1389 
1390 static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1391 {
1392 	clockid_t which_clock = restart_block->nanosleep.clockid;
1393 	struct timespec t;
1394 	struct itimerspec it;
1395 	int error;
1396 
1397 	t = ns_to_timespec(restart_block->nanosleep.expires);
1398 
1399 	error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1400 
1401 	if (error == -ERESTART_RESTARTBLOCK) {
1402 		struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
1403 		/*
1404 		 * Report back to the user the time still remaining.
1405 		 */
1406 		if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1407 			return -EFAULT;
1408 
1409 		restart_block->nanosleep.expires = timespec_to_ns(&t);
1410 	}
1411 	return error;
1412 
1413 }
1414 
1415 #define PROCESS_CLOCK	MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1416 #define THREAD_CLOCK	MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1417 
1418 static int process_cpu_clock_getres(const clockid_t which_clock,
1419 				    struct timespec *tp)
1420 {
1421 	return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1422 }
1423 static int process_cpu_clock_get(const clockid_t which_clock,
1424 				 struct timespec *tp)
1425 {
1426 	return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1427 }
1428 static int process_cpu_timer_create(struct k_itimer *timer)
1429 {
1430 	timer->it_clock = PROCESS_CLOCK;
1431 	return posix_cpu_timer_create(timer);
1432 }
1433 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1434 			      struct timespec *rqtp,
1435 			      struct timespec __user *rmtp)
1436 {
1437 	return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1438 }
1439 static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1440 {
1441 	return -EINVAL;
1442 }
1443 static int thread_cpu_clock_getres(const clockid_t which_clock,
1444 				   struct timespec *tp)
1445 {
1446 	return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1447 }
1448 static int thread_cpu_clock_get(const clockid_t which_clock,
1449 				struct timespec *tp)
1450 {
1451 	return posix_cpu_clock_get(THREAD_CLOCK, tp);
1452 }
1453 static int thread_cpu_timer_create(struct k_itimer *timer)
1454 {
1455 	timer->it_clock = THREAD_CLOCK;
1456 	return posix_cpu_timer_create(timer);
1457 }
1458 
1459 struct k_clock clock_posix_cpu = {
1460 	.clock_getres	= posix_cpu_clock_getres,
1461 	.clock_set	= posix_cpu_clock_set,
1462 	.clock_get	= posix_cpu_clock_get,
1463 	.timer_create	= posix_cpu_timer_create,
1464 	.nsleep		= posix_cpu_nsleep,
1465 	.nsleep_restart	= posix_cpu_nsleep_restart,
1466 	.timer_set	= posix_cpu_timer_set,
1467 	.timer_del	= posix_cpu_timer_del,
1468 	.timer_get	= posix_cpu_timer_get,
1469 };
1470 
1471 static __init int init_posix_cpu_timers(void)
1472 {
1473 	struct k_clock process = {
1474 		.clock_getres	= process_cpu_clock_getres,
1475 		.clock_get	= process_cpu_clock_get,
1476 		.timer_create	= process_cpu_timer_create,
1477 		.nsleep		= process_cpu_nsleep,
1478 		.nsleep_restart	= process_cpu_nsleep_restart,
1479 	};
1480 	struct k_clock thread = {
1481 		.clock_getres	= thread_cpu_clock_getres,
1482 		.clock_get	= thread_cpu_clock_get,
1483 		.timer_create	= thread_cpu_timer_create,
1484 	};
1485 	struct timespec ts;
1486 
1487 	posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1488 	posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1489 
1490 	cputime_to_timespec(cputime_one_jiffy, &ts);
1491 	onecputick = ts.tv_nsec;
1492 	WARN_ON(ts.tv_sec != 0);
1493 
1494 	return 0;
1495 }
1496 __initcall(init_posix_cpu_timers);
1497