1 /* 2 * Implement CPU time clocks for the POSIX clock interface. 3 */ 4 5 #include <linux/sched.h> 6 #include <linux/posix-timers.h> 7 #include <linux/errno.h> 8 #include <linux/math64.h> 9 #include <asm/uaccess.h> 10 #include <linux/kernel_stat.h> 11 #include <trace/events/timer.h> 12 #include <linux/random.h> 13 #include <linux/tick.h> 14 #include <linux/workqueue.h> 15 16 /* 17 * Called after updating RLIMIT_CPU to run cpu timer and update 18 * tsk->signal->cputime_expires expiration cache if necessary. Needs 19 * siglock protection since other code may update expiration cache as 20 * well. 21 */ 22 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new) 23 { 24 cputime_t cputime = secs_to_cputime(rlim_new); 25 26 spin_lock_irq(&task->sighand->siglock); 27 set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL); 28 spin_unlock_irq(&task->sighand->siglock); 29 } 30 31 static int check_clock(const clockid_t which_clock) 32 { 33 int error = 0; 34 struct task_struct *p; 35 const pid_t pid = CPUCLOCK_PID(which_clock); 36 37 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX) 38 return -EINVAL; 39 40 if (pid == 0) 41 return 0; 42 43 rcu_read_lock(); 44 p = find_task_by_vpid(pid); 45 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ? 46 same_thread_group(p, current) : has_group_leader_pid(p))) { 47 error = -EINVAL; 48 } 49 rcu_read_unlock(); 50 51 return error; 52 } 53 54 static inline unsigned long long 55 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp) 56 { 57 unsigned long long ret; 58 59 ret = 0; /* high half always zero when .cpu used */ 60 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { 61 ret = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec; 62 } else { 63 ret = cputime_to_expires(timespec_to_cputime(tp)); 64 } 65 return ret; 66 } 67 68 static void sample_to_timespec(const clockid_t which_clock, 69 unsigned long long expires, 70 struct timespec *tp) 71 { 72 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) 73 *tp = ns_to_timespec(expires); 74 else 75 cputime_to_timespec((__force cputime_t)expires, tp); 76 } 77 78 /* 79 * Update expiry time from increment, and increase overrun count, 80 * given the current clock sample. 81 */ 82 static void bump_cpu_timer(struct k_itimer *timer, 83 unsigned long long now) 84 { 85 int i; 86 unsigned long long delta, incr; 87 88 if (timer->it.cpu.incr == 0) 89 return; 90 91 if (now < timer->it.cpu.expires) 92 return; 93 94 incr = timer->it.cpu.incr; 95 delta = now + incr - timer->it.cpu.expires; 96 97 /* Don't use (incr*2 < delta), incr*2 might overflow. */ 98 for (i = 0; incr < delta - incr; i++) 99 incr = incr << 1; 100 101 for (; i >= 0; incr >>= 1, i--) { 102 if (delta < incr) 103 continue; 104 105 timer->it.cpu.expires += incr; 106 timer->it_overrun += 1 << i; 107 delta -= incr; 108 } 109 } 110 111 /** 112 * task_cputime_zero - Check a task_cputime struct for all zero fields. 113 * 114 * @cputime: The struct to compare. 115 * 116 * Checks @cputime to see if all fields are zero. Returns true if all fields 117 * are zero, false if any field is nonzero. 118 */ 119 static inline int task_cputime_zero(const struct task_cputime *cputime) 120 { 121 if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime) 122 return 1; 123 return 0; 124 } 125 126 static inline unsigned long long prof_ticks(struct task_struct *p) 127 { 128 cputime_t utime, stime; 129 130 task_cputime(p, &utime, &stime); 131 132 return cputime_to_expires(utime + stime); 133 } 134 static inline unsigned long long virt_ticks(struct task_struct *p) 135 { 136 cputime_t utime; 137 138 task_cputime(p, &utime, NULL); 139 140 return cputime_to_expires(utime); 141 } 142 143 static int 144 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp) 145 { 146 int error = check_clock(which_clock); 147 if (!error) { 148 tp->tv_sec = 0; 149 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ); 150 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { 151 /* 152 * If sched_clock is using a cycle counter, we 153 * don't have any idea of its true resolution 154 * exported, but it is much more than 1s/HZ. 155 */ 156 tp->tv_nsec = 1; 157 } 158 } 159 return error; 160 } 161 162 static int 163 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp) 164 { 165 /* 166 * You can never reset a CPU clock, but we check for other errors 167 * in the call before failing with EPERM. 168 */ 169 int error = check_clock(which_clock); 170 if (error == 0) { 171 error = -EPERM; 172 } 173 return error; 174 } 175 176 177 /* 178 * Sample a per-thread clock for the given task. 179 */ 180 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p, 181 unsigned long long *sample) 182 { 183 switch (CPUCLOCK_WHICH(which_clock)) { 184 default: 185 return -EINVAL; 186 case CPUCLOCK_PROF: 187 *sample = prof_ticks(p); 188 break; 189 case CPUCLOCK_VIRT: 190 *sample = virt_ticks(p); 191 break; 192 case CPUCLOCK_SCHED: 193 *sample = task_sched_runtime(p); 194 break; 195 } 196 return 0; 197 } 198 199 static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b) 200 { 201 if (b->utime > a->utime) 202 a->utime = b->utime; 203 204 if (b->stime > a->stime) 205 a->stime = b->stime; 206 207 if (b->sum_exec_runtime > a->sum_exec_runtime) 208 a->sum_exec_runtime = b->sum_exec_runtime; 209 } 210 211 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times) 212 { 213 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; 214 struct task_cputime sum; 215 unsigned long flags; 216 217 if (!cputimer->running) { 218 /* 219 * The POSIX timer interface allows for absolute time expiry 220 * values through the TIMER_ABSTIME flag, therefore we have 221 * to synchronize the timer to the clock every time we start 222 * it. 223 */ 224 thread_group_cputime(tsk, &sum); 225 raw_spin_lock_irqsave(&cputimer->lock, flags); 226 cputimer->running = 1; 227 update_gt_cputime(&cputimer->cputime, &sum); 228 } else 229 raw_spin_lock_irqsave(&cputimer->lock, flags); 230 *times = cputimer->cputime; 231 raw_spin_unlock_irqrestore(&cputimer->lock, flags); 232 } 233 234 /* 235 * Sample a process (thread group) clock for the given group_leader task. 236 * Must be called with task sighand lock held for safe while_each_thread() 237 * traversal. 238 */ 239 static int cpu_clock_sample_group(const clockid_t which_clock, 240 struct task_struct *p, 241 unsigned long long *sample) 242 { 243 struct task_cputime cputime; 244 245 switch (CPUCLOCK_WHICH(which_clock)) { 246 default: 247 return -EINVAL; 248 case CPUCLOCK_PROF: 249 thread_group_cputime(p, &cputime); 250 *sample = cputime_to_expires(cputime.utime + cputime.stime); 251 break; 252 case CPUCLOCK_VIRT: 253 thread_group_cputime(p, &cputime); 254 *sample = cputime_to_expires(cputime.utime); 255 break; 256 case CPUCLOCK_SCHED: 257 thread_group_cputime(p, &cputime); 258 *sample = cputime.sum_exec_runtime; 259 break; 260 } 261 return 0; 262 } 263 264 static int posix_cpu_clock_get_task(struct task_struct *tsk, 265 const clockid_t which_clock, 266 struct timespec *tp) 267 { 268 int err = -EINVAL; 269 unsigned long long rtn; 270 271 if (CPUCLOCK_PERTHREAD(which_clock)) { 272 if (same_thread_group(tsk, current)) 273 err = cpu_clock_sample(which_clock, tsk, &rtn); 274 } else { 275 unsigned long flags; 276 struct sighand_struct *sighand; 277 278 /* 279 * while_each_thread() is not yet entirely RCU safe, 280 * keep locking the group while sampling process 281 * clock for now. 282 */ 283 sighand = lock_task_sighand(tsk, &flags); 284 if (!sighand) 285 return err; 286 287 if (tsk == current || thread_group_leader(tsk)) 288 err = cpu_clock_sample_group(which_clock, tsk, &rtn); 289 290 unlock_task_sighand(tsk, &flags); 291 } 292 293 if (!err) 294 sample_to_timespec(which_clock, rtn, tp); 295 296 return err; 297 } 298 299 300 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp) 301 { 302 const pid_t pid = CPUCLOCK_PID(which_clock); 303 int err = -EINVAL; 304 305 if (pid == 0) { 306 /* 307 * Special case constant value for our own clocks. 308 * We don't have to do any lookup to find ourselves. 309 */ 310 err = posix_cpu_clock_get_task(current, which_clock, tp); 311 } else { 312 /* 313 * Find the given PID, and validate that the caller 314 * should be able to see it. 315 */ 316 struct task_struct *p; 317 rcu_read_lock(); 318 p = find_task_by_vpid(pid); 319 if (p) 320 err = posix_cpu_clock_get_task(p, which_clock, tp); 321 rcu_read_unlock(); 322 } 323 324 return err; 325 } 326 327 328 /* 329 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer. 330 * This is called from sys_timer_create() and do_cpu_nanosleep() with the 331 * new timer already all-zeros initialized. 332 */ 333 static int posix_cpu_timer_create(struct k_itimer *new_timer) 334 { 335 int ret = 0; 336 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock); 337 struct task_struct *p; 338 339 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX) 340 return -EINVAL; 341 342 INIT_LIST_HEAD(&new_timer->it.cpu.entry); 343 344 rcu_read_lock(); 345 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) { 346 if (pid == 0) { 347 p = current; 348 } else { 349 p = find_task_by_vpid(pid); 350 if (p && !same_thread_group(p, current)) 351 p = NULL; 352 } 353 } else { 354 if (pid == 0) { 355 p = current->group_leader; 356 } else { 357 p = find_task_by_vpid(pid); 358 if (p && !has_group_leader_pid(p)) 359 p = NULL; 360 } 361 } 362 new_timer->it.cpu.task = p; 363 if (p) { 364 get_task_struct(p); 365 } else { 366 ret = -EINVAL; 367 } 368 rcu_read_unlock(); 369 370 return ret; 371 } 372 373 /* 374 * Clean up a CPU-clock timer that is about to be destroyed. 375 * This is called from timer deletion with the timer already locked. 376 * If we return TIMER_RETRY, it's necessary to release the timer's lock 377 * and try again. (This happens when the timer is in the middle of firing.) 378 */ 379 static int posix_cpu_timer_del(struct k_itimer *timer) 380 { 381 int ret = 0; 382 unsigned long flags; 383 struct sighand_struct *sighand; 384 struct task_struct *p = timer->it.cpu.task; 385 386 WARN_ON_ONCE(p == NULL); 387 388 /* 389 * Protect against sighand release/switch in exit/exec and process/ 390 * thread timer list entry concurrent read/writes. 391 */ 392 sighand = lock_task_sighand(p, &flags); 393 if (unlikely(sighand == NULL)) { 394 /* 395 * We raced with the reaping of the task. 396 * The deletion should have cleared us off the list. 397 */ 398 WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry)); 399 } else { 400 if (timer->it.cpu.firing) 401 ret = TIMER_RETRY; 402 else 403 list_del(&timer->it.cpu.entry); 404 405 unlock_task_sighand(p, &flags); 406 } 407 408 if (!ret) 409 put_task_struct(p); 410 411 return ret; 412 } 413 414 static void cleanup_timers_list(struct list_head *head) 415 { 416 struct cpu_timer_list *timer, *next; 417 418 list_for_each_entry_safe(timer, next, head, entry) 419 list_del_init(&timer->entry); 420 } 421 422 /* 423 * Clean out CPU timers still ticking when a thread exited. The task 424 * pointer is cleared, and the expiry time is replaced with the residual 425 * time for later timer_gettime calls to return. 426 * This must be called with the siglock held. 427 */ 428 static void cleanup_timers(struct list_head *head) 429 { 430 cleanup_timers_list(head); 431 cleanup_timers_list(++head); 432 cleanup_timers_list(++head); 433 } 434 435 /* 436 * These are both called with the siglock held, when the current thread 437 * is being reaped. When the final (leader) thread in the group is reaped, 438 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit. 439 */ 440 void posix_cpu_timers_exit(struct task_struct *tsk) 441 { 442 add_device_randomness((const void*) &tsk->se.sum_exec_runtime, 443 sizeof(unsigned long long)); 444 cleanup_timers(tsk->cpu_timers); 445 446 } 447 void posix_cpu_timers_exit_group(struct task_struct *tsk) 448 { 449 cleanup_timers(tsk->signal->cpu_timers); 450 } 451 452 static inline int expires_gt(cputime_t expires, cputime_t new_exp) 453 { 454 return expires == 0 || expires > new_exp; 455 } 456 457 /* 458 * Insert the timer on the appropriate list before any timers that 459 * expire later. This must be called with the sighand lock held. 460 */ 461 static void arm_timer(struct k_itimer *timer) 462 { 463 struct task_struct *p = timer->it.cpu.task; 464 struct list_head *head, *listpos; 465 struct task_cputime *cputime_expires; 466 struct cpu_timer_list *const nt = &timer->it.cpu; 467 struct cpu_timer_list *next; 468 469 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 470 head = p->cpu_timers; 471 cputime_expires = &p->cputime_expires; 472 } else { 473 head = p->signal->cpu_timers; 474 cputime_expires = &p->signal->cputime_expires; 475 } 476 head += CPUCLOCK_WHICH(timer->it_clock); 477 478 listpos = head; 479 list_for_each_entry(next, head, entry) { 480 if (nt->expires < next->expires) 481 break; 482 listpos = &next->entry; 483 } 484 list_add(&nt->entry, listpos); 485 486 if (listpos == head) { 487 unsigned long long exp = nt->expires; 488 489 /* 490 * We are the new earliest-expiring POSIX 1.b timer, hence 491 * need to update expiration cache. Take into account that 492 * for process timers we share expiration cache with itimers 493 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME. 494 */ 495 496 switch (CPUCLOCK_WHICH(timer->it_clock)) { 497 case CPUCLOCK_PROF: 498 if (expires_gt(cputime_expires->prof_exp, expires_to_cputime(exp))) 499 cputime_expires->prof_exp = expires_to_cputime(exp); 500 break; 501 case CPUCLOCK_VIRT: 502 if (expires_gt(cputime_expires->virt_exp, expires_to_cputime(exp))) 503 cputime_expires->virt_exp = expires_to_cputime(exp); 504 break; 505 case CPUCLOCK_SCHED: 506 if (cputime_expires->sched_exp == 0 || 507 cputime_expires->sched_exp > exp) 508 cputime_expires->sched_exp = exp; 509 break; 510 } 511 } 512 } 513 514 /* 515 * The timer is locked, fire it and arrange for its reload. 516 */ 517 static void cpu_timer_fire(struct k_itimer *timer) 518 { 519 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { 520 /* 521 * User don't want any signal. 522 */ 523 timer->it.cpu.expires = 0; 524 } else if (unlikely(timer->sigq == NULL)) { 525 /* 526 * This a special case for clock_nanosleep, 527 * not a normal timer from sys_timer_create. 528 */ 529 wake_up_process(timer->it_process); 530 timer->it.cpu.expires = 0; 531 } else if (timer->it.cpu.incr == 0) { 532 /* 533 * One-shot timer. Clear it as soon as it's fired. 534 */ 535 posix_timer_event(timer, 0); 536 timer->it.cpu.expires = 0; 537 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) { 538 /* 539 * The signal did not get queued because the signal 540 * was ignored, so we won't get any callback to 541 * reload the timer. But we need to keep it 542 * ticking in case the signal is deliverable next time. 543 */ 544 posix_cpu_timer_schedule(timer); 545 } 546 } 547 548 /* 549 * Sample a process (thread group) timer for the given group_leader task. 550 * Must be called with task sighand lock held for safe while_each_thread() 551 * traversal. 552 */ 553 static int cpu_timer_sample_group(const clockid_t which_clock, 554 struct task_struct *p, 555 unsigned long long *sample) 556 { 557 struct task_cputime cputime; 558 559 thread_group_cputimer(p, &cputime); 560 switch (CPUCLOCK_WHICH(which_clock)) { 561 default: 562 return -EINVAL; 563 case CPUCLOCK_PROF: 564 *sample = cputime_to_expires(cputime.utime + cputime.stime); 565 break; 566 case CPUCLOCK_VIRT: 567 *sample = cputime_to_expires(cputime.utime); 568 break; 569 case CPUCLOCK_SCHED: 570 *sample = cputime.sum_exec_runtime + task_delta_exec(p); 571 break; 572 } 573 return 0; 574 } 575 576 #ifdef CONFIG_NO_HZ_FULL 577 static void nohz_kick_work_fn(struct work_struct *work) 578 { 579 tick_nohz_full_kick_all(); 580 } 581 582 static DECLARE_WORK(nohz_kick_work, nohz_kick_work_fn); 583 584 /* 585 * We need the IPIs to be sent from sane process context. 586 * The posix cpu timers are always set with irqs disabled. 587 */ 588 static void posix_cpu_timer_kick_nohz(void) 589 { 590 if (context_tracking_is_enabled()) 591 schedule_work(&nohz_kick_work); 592 } 593 594 bool posix_cpu_timers_can_stop_tick(struct task_struct *tsk) 595 { 596 if (!task_cputime_zero(&tsk->cputime_expires)) 597 return false; 598 599 if (tsk->signal->cputimer.running) 600 return false; 601 602 return true; 603 } 604 #else 605 static inline void posix_cpu_timer_kick_nohz(void) { } 606 #endif 607 608 /* 609 * Guts of sys_timer_settime for CPU timers. 610 * This is called with the timer locked and interrupts disabled. 611 * If we return TIMER_RETRY, it's necessary to release the timer's lock 612 * and try again. (This happens when the timer is in the middle of firing.) 613 */ 614 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags, 615 struct itimerspec *new, struct itimerspec *old) 616 { 617 unsigned long flags; 618 struct sighand_struct *sighand; 619 struct task_struct *p = timer->it.cpu.task; 620 unsigned long long old_expires, new_expires, old_incr, val; 621 int ret; 622 623 WARN_ON_ONCE(p == NULL); 624 625 new_expires = timespec_to_sample(timer->it_clock, &new->it_value); 626 627 /* 628 * Protect against sighand release/switch in exit/exec and p->cpu_timers 629 * and p->signal->cpu_timers read/write in arm_timer() 630 */ 631 sighand = lock_task_sighand(p, &flags); 632 /* 633 * If p has just been reaped, we can no 634 * longer get any information about it at all. 635 */ 636 if (unlikely(sighand == NULL)) { 637 return -ESRCH; 638 } 639 640 /* 641 * Disarm any old timer after extracting its expiry time. 642 */ 643 WARN_ON_ONCE(!irqs_disabled()); 644 645 ret = 0; 646 old_incr = timer->it.cpu.incr; 647 old_expires = timer->it.cpu.expires; 648 if (unlikely(timer->it.cpu.firing)) { 649 timer->it.cpu.firing = -1; 650 ret = TIMER_RETRY; 651 } else 652 list_del_init(&timer->it.cpu.entry); 653 654 /* 655 * We need to sample the current value to convert the new 656 * value from to relative and absolute, and to convert the 657 * old value from absolute to relative. To set a process 658 * timer, we need a sample to balance the thread expiry 659 * times (in arm_timer). With an absolute time, we must 660 * check if it's already passed. In short, we need a sample. 661 */ 662 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 663 cpu_clock_sample(timer->it_clock, p, &val); 664 } else { 665 cpu_timer_sample_group(timer->it_clock, p, &val); 666 } 667 668 if (old) { 669 if (old_expires == 0) { 670 old->it_value.tv_sec = 0; 671 old->it_value.tv_nsec = 0; 672 } else { 673 /* 674 * Update the timer in case it has 675 * overrun already. If it has, 676 * we'll report it as having overrun 677 * and with the next reloaded timer 678 * already ticking, though we are 679 * swallowing that pending 680 * notification here to install the 681 * new setting. 682 */ 683 bump_cpu_timer(timer, val); 684 if (val < timer->it.cpu.expires) { 685 old_expires = timer->it.cpu.expires - val; 686 sample_to_timespec(timer->it_clock, 687 old_expires, 688 &old->it_value); 689 } else { 690 old->it_value.tv_nsec = 1; 691 old->it_value.tv_sec = 0; 692 } 693 } 694 } 695 696 if (unlikely(ret)) { 697 /* 698 * We are colliding with the timer actually firing. 699 * Punt after filling in the timer's old value, and 700 * disable this firing since we are already reporting 701 * it as an overrun (thanks to bump_cpu_timer above). 702 */ 703 unlock_task_sighand(p, &flags); 704 goto out; 705 } 706 707 if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) { 708 new_expires += val; 709 } 710 711 /* 712 * Install the new expiry time (or zero). 713 * For a timer with no notification action, we don't actually 714 * arm the timer (we'll just fake it for timer_gettime). 715 */ 716 timer->it.cpu.expires = new_expires; 717 if (new_expires != 0 && val < new_expires) { 718 arm_timer(timer); 719 } 720 721 unlock_task_sighand(p, &flags); 722 /* 723 * Install the new reload setting, and 724 * set up the signal and overrun bookkeeping. 725 */ 726 timer->it.cpu.incr = timespec_to_sample(timer->it_clock, 727 &new->it_interval); 728 729 /* 730 * This acts as a modification timestamp for the timer, 731 * so any automatic reload attempt will punt on seeing 732 * that we have reset the timer manually. 733 */ 734 timer->it_requeue_pending = (timer->it_requeue_pending + 2) & 735 ~REQUEUE_PENDING; 736 timer->it_overrun_last = 0; 737 timer->it_overrun = -1; 738 739 if (new_expires != 0 && !(val < new_expires)) { 740 /* 741 * The designated time already passed, so we notify 742 * immediately, even if the thread never runs to 743 * accumulate more time on this clock. 744 */ 745 cpu_timer_fire(timer); 746 } 747 748 ret = 0; 749 out: 750 if (old) { 751 sample_to_timespec(timer->it_clock, 752 old_incr, &old->it_interval); 753 } 754 if (!ret) 755 posix_cpu_timer_kick_nohz(); 756 return ret; 757 } 758 759 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp) 760 { 761 unsigned long long now; 762 struct task_struct *p = timer->it.cpu.task; 763 764 WARN_ON_ONCE(p == NULL); 765 766 /* 767 * Easy part: convert the reload time. 768 */ 769 sample_to_timespec(timer->it_clock, 770 timer->it.cpu.incr, &itp->it_interval); 771 772 if (timer->it.cpu.expires == 0) { /* Timer not armed at all. */ 773 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0; 774 return; 775 } 776 777 /* 778 * Sample the clock to take the difference with the expiry time. 779 */ 780 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 781 cpu_clock_sample(timer->it_clock, p, &now); 782 } else { 783 struct sighand_struct *sighand; 784 unsigned long flags; 785 786 /* 787 * Protect against sighand release/switch in exit/exec and 788 * also make timer sampling safe if it ends up calling 789 * thread_group_cputime(). 790 */ 791 sighand = lock_task_sighand(p, &flags); 792 if (unlikely(sighand == NULL)) { 793 /* 794 * The process has been reaped. 795 * We can't even collect a sample any more. 796 * Call the timer disarmed, nothing else to do. 797 */ 798 timer->it.cpu.expires = 0; 799 sample_to_timespec(timer->it_clock, timer->it.cpu.expires, 800 &itp->it_value); 801 } else { 802 cpu_timer_sample_group(timer->it_clock, p, &now); 803 unlock_task_sighand(p, &flags); 804 } 805 } 806 807 if (now < timer->it.cpu.expires) { 808 sample_to_timespec(timer->it_clock, 809 timer->it.cpu.expires - now, 810 &itp->it_value); 811 } else { 812 /* 813 * The timer should have expired already, but the firing 814 * hasn't taken place yet. Say it's just about to expire. 815 */ 816 itp->it_value.tv_nsec = 1; 817 itp->it_value.tv_sec = 0; 818 } 819 } 820 821 static unsigned long long 822 check_timers_list(struct list_head *timers, 823 struct list_head *firing, 824 unsigned long long curr) 825 { 826 int maxfire = 20; 827 828 while (!list_empty(timers)) { 829 struct cpu_timer_list *t; 830 831 t = list_first_entry(timers, struct cpu_timer_list, entry); 832 833 if (!--maxfire || curr < t->expires) 834 return t->expires; 835 836 t->firing = 1; 837 list_move_tail(&t->entry, firing); 838 } 839 840 return 0; 841 } 842 843 /* 844 * Check for any per-thread CPU timers that have fired and move them off 845 * the tsk->cpu_timers[N] list onto the firing list. Here we update the 846 * tsk->it_*_expires values to reflect the remaining thread CPU timers. 847 */ 848 static void check_thread_timers(struct task_struct *tsk, 849 struct list_head *firing) 850 { 851 struct list_head *timers = tsk->cpu_timers; 852 struct signal_struct *const sig = tsk->signal; 853 struct task_cputime *tsk_expires = &tsk->cputime_expires; 854 unsigned long long expires; 855 unsigned long soft; 856 857 expires = check_timers_list(timers, firing, prof_ticks(tsk)); 858 tsk_expires->prof_exp = expires_to_cputime(expires); 859 860 expires = check_timers_list(++timers, firing, virt_ticks(tsk)); 861 tsk_expires->virt_exp = expires_to_cputime(expires); 862 863 tsk_expires->sched_exp = check_timers_list(++timers, firing, 864 tsk->se.sum_exec_runtime); 865 866 /* 867 * Check for the special case thread timers. 868 */ 869 soft = ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur); 870 if (soft != RLIM_INFINITY) { 871 unsigned long hard = 872 ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max); 873 874 if (hard != RLIM_INFINITY && 875 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) { 876 /* 877 * At the hard limit, we just die. 878 * No need to calculate anything else now. 879 */ 880 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); 881 return; 882 } 883 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) { 884 /* 885 * At the soft limit, send a SIGXCPU every second. 886 */ 887 if (soft < hard) { 888 soft += USEC_PER_SEC; 889 sig->rlim[RLIMIT_RTTIME].rlim_cur = soft; 890 } 891 printk(KERN_INFO 892 "RT Watchdog Timeout: %s[%d]\n", 893 tsk->comm, task_pid_nr(tsk)); 894 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); 895 } 896 } 897 } 898 899 static void stop_process_timers(struct signal_struct *sig) 900 { 901 struct thread_group_cputimer *cputimer = &sig->cputimer; 902 unsigned long flags; 903 904 raw_spin_lock_irqsave(&cputimer->lock, flags); 905 cputimer->running = 0; 906 raw_spin_unlock_irqrestore(&cputimer->lock, flags); 907 } 908 909 static u32 onecputick; 910 911 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it, 912 unsigned long long *expires, 913 unsigned long long cur_time, int signo) 914 { 915 if (!it->expires) 916 return; 917 918 if (cur_time >= it->expires) { 919 if (it->incr) { 920 it->expires += it->incr; 921 it->error += it->incr_error; 922 if (it->error >= onecputick) { 923 it->expires -= cputime_one_jiffy; 924 it->error -= onecputick; 925 } 926 } else { 927 it->expires = 0; 928 } 929 930 trace_itimer_expire(signo == SIGPROF ? 931 ITIMER_PROF : ITIMER_VIRTUAL, 932 tsk->signal->leader_pid, cur_time); 933 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk); 934 } 935 936 if (it->expires && (!*expires || it->expires < *expires)) { 937 *expires = it->expires; 938 } 939 } 940 941 /* 942 * Check for any per-thread CPU timers that have fired and move them 943 * off the tsk->*_timers list onto the firing list. Per-thread timers 944 * have already been taken off. 945 */ 946 static void check_process_timers(struct task_struct *tsk, 947 struct list_head *firing) 948 { 949 struct signal_struct *const sig = tsk->signal; 950 unsigned long long utime, ptime, virt_expires, prof_expires; 951 unsigned long long sum_sched_runtime, sched_expires; 952 struct list_head *timers = sig->cpu_timers; 953 struct task_cputime cputime; 954 unsigned long soft; 955 956 /* 957 * Collect the current process totals. 958 */ 959 thread_group_cputimer(tsk, &cputime); 960 utime = cputime_to_expires(cputime.utime); 961 ptime = utime + cputime_to_expires(cputime.stime); 962 sum_sched_runtime = cputime.sum_exec_runtime; 963 964 prof_expires = check_timers_list(timers, firing, ptime); 965 virt_expires = check_timers_list(++timers, firing, utime); 966 sched_expires = check_timers_list(++timers, firing, sum_sched_runtime); 967 968 /* 969 * Check for the special case process timers. 970 */ 971 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime, 972 SIGPROF); 973 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime, 974 SIGVTALRM); 975 soft = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 976 if (soft != RLIM_INFINITY) { 977 unsigned long psecs = cputime_to_secs(ptime); 978 unsigned long hard = 979 ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_max); 980 cputime_t x; 981 if (psecs >= hard) { 982 /* 983 * At the hard limit, we just die. 984 * No need to calculate anything else now. 985 */ 986 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); 987 return; 988 } 989 if (psecs >= soft) { 990 /* 991 * At the soft limit, send a SIGXCPU every second. 992 */ 993 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); 994 if (soft < hard) { 995 soft++; 996 sig->rlim[RLIMIT_CPU].rlim_cur = soft; 997 } 998 } 999 x = secs_to_cputime(soft); 1000 if (!prof_expires || x < prof_expires) { 1001 prof_expires = x; 1002 } 1003 } 1004 1005 sig->cputime_expires.prof_exp = expires_to_cputime(prof_expires); 1006 sig->cputime_expires.virt_exp = expires_to_cputime(virt_expires); 1007 sig->cputime_expires.sched_exp = sched_expires; 1008 if (task_cputime_zero(&sig->cputime_expires)) 1009 stop_process_timers(sig); 1010 } 1011 1012 /* 1013 * This is called from the signal code (via do_schedule_next_timer) 1014 * when the last timer signal was delivered and we have to reload the timer. 1015 */ 1016 void posix_cpu_timer_schedule(struct k_itimer *timer) 1017 { 1018 struct sighand_struct *sighand; 1019 unsigned long flags; 1020 struct task_struct *p = timer->it.cpu.task; 1021 unsigned long long now; 1022 1023 WARN_ON_ONCE(p == NULL); 1024 1025 /* 1026 * Fetch the current sample and update the timer's expiry time. 1027 */ 1028 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 1029 cpu_clock_sample(timer->it_clock, p, &now); 1030 bump_cpu_timer(timer, now); 1031 if (unlikely(p->exit_state)) 1032 goto out; 1033 1034 /* Protect timer list r/w in arm_timer() */ 1035 sighand = lock_task_sighand(p, &flags); 1036 if (!sighand) 1037 goto out; 1038 } else { 1039 /* 1040 * Protect arm_timer() and timer sampling in case of call to 1041 * thread_group_cputime(). 1042 */ 1043 sighand = lock_task_sighand(p, &flags); 1044 if (unlikely(sighand == NULL)) { 1045 /* 1046 * The process has been reaped. 1047 * We can't even collect a sample any more. 1048 */ 1049 timer->it.cpu.expires = 0; 1050 goto out; 1051 } else if (unlikely(p->exit_state) && thread_group_empty(p)) { 1052 unlock_task_sighand(p, &flags); 1053 /* Optimizations: if the process is dying, no need to rearm */ 1054 goto out; 1055 } 1056 cpu_timer_sample_group(timer->it_clock, p, &now); 1057 bump_cpu_timer(timer, now); 1058 /* Leave the sighand locked for the call below. */ 1059 } 1060 1061 /* 1062 * Now re-arm for the new expiry time. 1063 */ 1064 WARN_ON_ONCE(!irqs_disabled()); 1065 arm_timer(timer); 1066 unlock_task_sighand(p, &flags); 1067 1068 /* Kick full dynticks CPUs in case they need to tick on the new timer */ 1069 posix_cpu_timer_kick_nohz(); 1070 out: 1071 timer->it_overrun_last = timer->it_overrun; 1072 timer->it_overrun = -1; 1073 ++timer->it_requeue_pending; 1074 } 1075 1076 /** 1077 * task_cputime_expired - Compare two task_cputime entities. 1078 * 1079 * @sample: The task_cputime structure to be checked for expiration. 1080 * @expires: Expiration times, against which @sample will be checked. 1081 * 1082 * Checks @sample against @expires to see if any field of @sample has expired. 1083 * Returns true if any field of the former is greater than the corresponding 1084 * field of the latter if the latter field is set. Otherwise returns false. 1085 */ 1086 static inline int task_cputime_expired(const struct task_cputime *sample, 1087 const struct task_cputime *expires) 1088 { 1089 if (expires->utime && sample->utime >= expires->utime) 1090 return 1; 1091 if (expires->stime && sample->utime + sample->stime >= expires->stime) 1092 return 1; 1093 if (expires->sum_exec_runtime != 0 && 1094 sample->sum_exec_runtime >= expires->sum_exec_runtime) 1095 return 1; 1096 return 0; 1097 } 1098 1099 /** 1100 * fastpath_timer_check - POSIX CPU timers fast path. 1101 * 1102 * @tsk: The task (thread) being checked. 1103 * 1104 * Check the task and thread group timers. If both are zero (there are no 1105 * timers set) return false. Otherwise snapshot the task and thread group 1106 * timers and compare them with the corresponding expiration times. Return 1107 * true if a timer has expired, else return false. 1108 */ 1109 static inline int fastpath_timer_check(struct task_struct *tsk) 1110 { 1111 struct signal_struct *sig; 1112 cputime_t utime, stime; 1113 1114 task_cputime(tsk, &utime, &stime); 1115 1116 if (!task_cputime_zero(&tsk->cputime_expires)) { 1117 struct task_cputime task_sample = { 1118 .utime = utime, 1119 .stime = stime, 1120 .sum_exec_runtime = tsk->se.sum_exec_runtime 1121 }; 1122 1123 if (task_cputime_expired(&task_sample, &tsk->cputime_expires)) 1124 return 1; 1125 } 1126 1127 sig = tsk->signal; 1128 if (sig->cputimer.running) { 1129 struct task_cputime group_sample; 1130 1131 raw_spin_lock(&sig->cputimer.lock); 1132 group_sample = sig->cputimer.cputime; 1133 raw_spin_unlock(&sig->cputimer.lock); 1134 1135 if (task_cputime_expired(&group_sample, &sig->cputime_expires)) 1136 return 1; 1137 } 1138 1139 return 0; 1140 } 1141 1142 /* 1143 * This is called from the timer interrupt handler. The irq handler has 1144 * already updated our counts. We need to check if any timers fire now. 1145 * Interrupts are disabled. 1146 */ 1147 void run_posix_cpu_timers(struct task_struct *tsk) 1148 { 1149 LIST_HEAD(firing); 1150 struct k_itimer *timer, *next; 1151 unsigned long flags; 1152 1153 WARN_ON_ONCE(!irqs_disabled()); 1154 1155 /* 1156 * The fast path checks that there are no expired thread or thread 1157 * group timers. If that's so, just return. 1158 */ 1159 if (!fastpath_timer_check(tsk)) 1160 return; 1161 1162 if (!lock_task_sighand(tsk, &flags)) 1163 return; 1164 /* 1165 * Here we take off tsk->signal->cpu_timers[N] and 1166 * tsk->cpu_timers[N] all the timers that are firing, and 1167 * put them on the firing list. 1168 */ 1169 check_thread_timers(tsk, &firing); 1170 /* 1171 * If there are any active process wide timers (POSIX 1.b, itimers, 1172 * RLIMIT_CPU) cputimer must be running. 1173 */ 1174 if (tsk->signal->cputimer.running) 1175 check_process_timers(tsk, &firing); 1176 1177 /* 1178 * We must release these locks before taking any timer's lock. 1179 * There is a potential race with timer deletion here, as the 1180 * siglock now protects our private firing list. We have set 1181 * the firing flag in each timer, so that a deletion attempt 1182 * that gets the timer lock before we do will give it up and 1183 * spin until we've taken care of that timer below. 1184 */ 1185 unlock_task_sighand(tsk, &flags); 1186 1187 /* 1188 * Now that all the timers on our list have the firing flag, 1189 * no one will touch their list entries but us. We'll take 1190 * each timer's lock before clearing its firing flag, so no 1191 * timer call will interfere. 1192 */ 1193 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) { 1194 int cpu_firing; 1195 1196 spin_lock(&timer->it_lock); 1197 list_del_init(&timer->it.cpu.entry); 1198 cpu_firing = timer->it.cpu.firing; 1199 timer->it.cpu.firing = 0; 1200 /* 1201 * The firing flag is -1 if we collided with a reset 1202 * of the timer, which already reported this 1203 * almost-firing as an overrun. So don't generate an event. 1204 */ 1205 if (likely(cpu_firing >= 0)) 1206 cpu_timer_fire(timer); 1207 spin_unlock(&timer->it_lock); 1208 } 1209 } 1210 1211 /* 1212 * Set one of the process-wide special case CPU timers or RLIMIT_CPU. 1213 * The tsk->sighand->siglock must be held by the caller. 1214 */ 1215 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx, 1216 cputime_t *newval, cputime_t *oldval) 1217 { 1218 unsigned long long now; 1219 1220 WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED); 1221 cpu_timer_sample_group(clock_idx, tsk, &now); 1222 1223 if (oldval) { 1224 /* 1225 * We are setting itimer. The *oldval is absolute and we update 1226 * it to be relative, *newval argument is relative and we update 1227 * it to be absolute. 1228 */ 1229 if (*oldval) { 1230 if (*oldval <= now) { 1231 /* Just about to fire. */ 1232 *oldval = cputime_one_jiffy; 1233 } else { 1234 *oldval -= now; 1235 } 1236 } 1237 1238 if (!*newval) 1239 goto out; 1240 *newval += now; 1241 } 1242 1243 /* 1244 * Update expiration cache if we are the earliest timer, or eventually 1245 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire. 1246 */ 1247 switch (clock_idx) { 1248 case CPUCLOCK_PROF: 1249 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval)) 1250 tsk->signal->cputime_expires.prof_exp = *newval; 1251 break; 1252 case CPUCLOCK_VIRT: 1253 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval)) 1254 tsk->signal->cputime_expires.virt_exp = *newval; 1255 break; 1256 } 1257 out: 1258 posix_cpu_timer_kick_nohz(); 1259 } 1260 1261 static int do_cpu_nanosleep(const clockid_t which_clock, int flags, 1262 struct timespec *rqtp, struct itimerspec *it) 1263 { 1264 struct k_itimer timer; 1265 int error; 1266 1267 /* 1268 * Set up a temporary timer and then wait for it to go off. 1269 */ 1270 memset(&timer, 0, sizeof timer); 1271 spin_lock_init(&timer.it_lock); 1272 timer.it_clock = which_clock; 1273 timer.it_overrun = -1; 1274 error = posix_cpu_timer_create(&timer); 1275 timer.it_process = current; 1276 if (!error) { 1277 static struct itimerspec zero_it; 1278 1279 memset(it, 0, sizeof *it); 1280 it->it_value = *rqtp; 1281 1282 spin_lock_irq(&timer.it_lock); 1283 error = posix_cpu_timer_set(&timer, flags, it, NULL); 1284 if (error) { 1285 spin_unlock_irq(&timer.it_lock); 1286 return error; 1287 } 1288 1289 while (!signal_pending(current)) { 1290 if (timer.it.cpu.expires == 0) { 1291 /* 1292 * Our timer fired and was reset, below 1293 * deletion can not fail. 1294 */ 1295 posix_cpu_timer_del(&timer); 1296 spin_unlock_irq(&timer.it_lock); 1297 return 0; 1298 } 1299 1300 /* 1301 * Block until cpu_timer_fire (or a signal) wakes us. 1302 */ 1303 __set_current_state(TASK_INTERRUPTIBLE); 1304 spin_unlock_irq(&timer.it_lock); 1305 schedule(); 1306 spin_lock_irq(&timer.it_lock); 1307 } 1308 1309 /* 1310 * We were interrupted by a signal. 1311 */ 1312 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp); 1313 error = posix_cpu_timer_set(&timer, 0, &zero_it, it); 1314 if (!error) { 1315 /* 1316 * Timer is now unarmed, deletion can not fail. 1317 */ 1318 posix_cpu_timer_del(&timer); 1319 } 1320 spin_unlock_irq(&timer.it_lock); 1321 1322 while (error == TIMER_RETRY) { 1323 /* 1324 * We need to handle case when timer was or is in the 1325 * middle of firing. In other cases we already freed 1326 * resources. 1327 */ 1328 spin_lock_irq(&timer.it_lock); 1329 error = posix_cpu_timer_del(&timer); 1330 spin_unlock_irq(&timer.it_lock); 1331 } 1332 1333 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) { 1334 /* 1335 * It actually did fire already. 1336 */ 1337 return 0; 1338 } 1339 1340 error = -ERESTART_RESTARTBLOCK; 1341 } 1342 1343 return error; 1344 } 1345 1346 static long posix_cpu_nsleep_restart(struct restart_block *restart_block); 1347 1348 static int posix_cpu_nsleep(const clockid_t which_clock, int flags, 1349 struct timespec *rqtp, struct timespec __user *rmtp) 1350 { 1351 struct restart_block *restart_block = 1352 ¤t_thread_info()->restart_block; 1353 struct itimerspec it; 1354 int error; 1355 1356 /* 1357 * Diagnose required errors first. 1358 */ 1359 if (CPUCLOCK_PERTHREAD(which_clock) && 1360 (CPUCLOCK_PID(which_clock) == 0 || 1361 CPUCLOCK_PID(which_clock) == current->pid)) 1362 return -EINVAL; 1363 1364 error = do_cpu_nanosleep(which_clock, flags, rqtp, &it); 1365 1366 if (error == -ERESTART_RESTARTBLOCK) { 1367 1368 if (flags & TIMER_ABSTIME) 1369 return -ERESTARTNOHAND; 1370 /* 1371 * Report back to the user the time still remaining. 1372 */ 1373 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp)) 1374 return -EFAULT; 1375 1376 restart_block->fn = posix_cpu_nsleep_restart; 1377 restart_block->nanosleep.clockid = which_clock; 1378 restart_block->nanosleep.rmtp = rmtp; 1379 restart_block->nanosleep.expires = timespec_to_ns(rqtp); 1380 } 1381 return error; 1382 } 1383 1384 static long posix_cpu_nsleep_restart(struct restart_block *restart_block) 1385 { 1386 clockid_t which_clock = restart_block->nanosleep.clockid; 1387 struct timespec t; 1388 struct itimerspec it; 1389 int error; 1390 1391 t = ns_to_timespec(restart_block->nanosleep.expires); 1392 1393 error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it); 1394 1395 if (error == -ERESTART_RESTARTBLOCK) { 1396 struct timespec __user *rmtp = restart_block->nanosleep.rmtp; 1397 /* 1398 * Report back to the user the time still remaining. 1399 */ 1400 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp)) 1401 return -EFAULT; 1402 1403 restart_block->nanosleep.expires = timespec_to_ns(&t); 1404 } 1405 return error; 1406 1407 } 1408 1409 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED) 1410 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED) 1411 1412 static int process_cpu_clock_getres(const clockid_t which_clock, 1413 struct timespec *tp) 1414 { 1415 return posix_cpu_clock_getres(PROCESS_CLOCK, tp); 1416 } 1417 static int process_cpu_clock_get(const clockid_t which_clock, 1418 struct timespec *tp) 1419 { 1420 return posix_cpu_clock_get(PROCESS_CLOCK, tp); 1421 } 1422 static int process_cpu_timer_create(struct k_itimer *timer) 1423 { 1424 timer->it_clock = PROCESS_CLOCK; 1425 return posix_cpu_timer_create(timer); 1426 } 1427 static int process_cpu_nsleep(const clockid_t which_clock, int flags, 1428 struct timespec *rqtp, 1429 struct timespec __user *rmtp) 1430 { 1431 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp); 1432 } 1433 static long process_cpu_nsleep_restart(struct restart_block *restart_block) 1434 { 1435 return -EINVAL; 1436 } 1437 static int thread_cpu_clock_getres(const clockid_t which_clock, 1438 struct timespec *tp) 1439 { 1440 return posix_cpu_clock_getres(THREAD_CLOCK, tp); 1441 } 1442 static int thread_cpu_clock_get(const clockid_t which_clock, 1443 struct timespec *tp) 1444 { 1445 return posix_cpu_clock_get(THREAD_CLOCK, tp); 1446 } 1447 static int thread_cpu_timer_create(struct k_itimer *timer) 1448 { 1449 timer->it_clock = THREAD_CLOCK; 1450 return posix_cpu_timer_create(timer); 1451 } 1452 1453 struct k_clock clock_posix_cpu = { 1454 .clock_getres = posix_cpu_clock_getres, 1455 .clock_set = posix_cpu_clock_set, 1456 .clock_get = posix_cpu_clock_get, 1457 .timer_create = posix_cpu_timer_create, 1458 .nsleep = posix_cpu_nsleep, 1459 .nsleep_restart = posix_cpu_nsleep_restart, 1460 .timer_set = posix_cpu_timer_set, 1461 .timer_del = posix_cpu_timer_del, 1462 .timer_get = posix_cpu_timer_get, 1463 }; 1464 1465 static __init int init_posix_cpu_timers(void) 1466 { 1467 struct k_clock process = { 1468 .clock_getres = process_cpu_clock_getres, 1469 .clock_get = process_cpu_clock_get, 1470 .timer_create = process_cpu_timer_create, 1471 .nsleep = process_cpu_nsleep, 1472 .nsleep_restart = process_cpu_nsleep_restart, 1473 }; 1474 struct k_clock thread = { 1475 .clock_getres = thread_cpu_clock_getres, 1476 .clock_get = thread_cpu_clock_get, 1477 .timer_create = thread_cpu_timer_create, 1478 }; 1479 struct timespec ts; 1480 1481 posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process); 1482 posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread); 1483 1484 cputime_to_timespec(cputime_one_jiffy, &ts); 1485 onecputick = ts.tv_nsec; 1486 WARN_ON(ts.tv_sec != 0); 1487 1488 return 0; 1489 } 1490 __initcall(init_posix_cpu_timers); 1491