1 /*
2  * Implement CPU time clocks for the POSIX clock interface.
3  */
4 
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
11 #include <trace/events/timer.h>
12 #include <linux/random.h>
13 #include <linux/tick.h>
14 #include <linux/workqueue.h>
15 
16 /*
17  * Called after updating RLIMIT_CPU to run cpu timer and update
18  * tsk->signal->cputime_expires expiration cache if necessary. Needs
19  * siglock protection since other code may update expiration cache as
20  * well.
21  */
22 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
23 {
24 	cputime_t cputime = secs_to_cputime(rlim_new);
25 
26 	spin_lock_irq(&task->sighand->siglock);
27 	set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL);
28 	spin_unlock_irq(&task->sighand->siglock);
29 }
30 
31 static int check_clock(const clockid_t which_clock)
32 {
33 	int error = 0;
34 	struct task_struct *p;
35 	const pid_t pid = CPUCLOCK_PID(which_clock);
36 
37 	if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
38 		return -EINVAL;
39 
40 	if (pid == 0)
41 		return 0;
42 
43 	rcu_read_lock();
44 	p = find_task_by_vpid(pid);
45 	if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
46 		   same_thread_group(p, current) : has_group_leader_pid(p))) {
47 		error = -EINVAL;
48 	}
49 	rcu_read_unlock();
50 
51 	return error;
52 }
53 
54 static inline unsigned long long
55 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
56 {
57 	unsigned long long ret;
58 
59 	ret = 0;		/* high half always zero when .cpu used */
60 	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
61 		ret = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
62 	} else {
63 		ret = cputime_to_expires(timespec_to_cputime(tp));
64 	}
65 	return ret;
66 }
67 
68 static void sample_to_timespec(const clockid_t which_clock,
69 			       unsigned long long expires,
70 			       struct timespec *tp)
71 {
72 	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
73 		*tp = ns_to_timespec(expires);
74 	else
75 		cputime_to_timespec((__force cputime_t)expires, tp);
76 }
77 
78 /*
79  * Update expiry time from increment, and increase overrun count,
80  * given the current clock sample.
81  */
82 static void bump_cpu_timer(struct k_itimer *timer,
83 			   unsigned long long now)
84 {
85 	int i;
86 	unsigned long long delta, incr;
87 
88 	if (timer->it.cpu.incr == 0)
89 		return;
90 
91 	if (now < timer->it.cpu.expires)
92 		return;
93 
94 	incr = timer->it.cpu.incr;
95 	delta = now + incr - timer->it.cpu.expires;
96 
97 	/* Don't use (incr*2 < delta), incr*2 might overflow. */
98 	for (i = 0; incr < delta - incr; i++)
99 		incr = incr << 1;
100 
101 	for (; i >= 0; incr >>= 1, i--) {
102 		if (delta < incr)
103 			continue;
104 
105 		timer->it.cpu.expires += incr;
106 		timer->it_overrun += 1 << i;
107 		delta -= incr;
108 	}
109 }
110 
111 /**
112  * task_cputime_zero - Check a task_cputime struct for all zero fields.
113  *
114  * @cputime:	The struct to compare.
115  *
116  * Checks @cputime to see if all fields are zero.  Returns true if all fields
117  * are zero, false if any field is nonzero.
118  */
119 static inline int task_cputime_zero(const struct task_cputime *cputime)
120 {
121 	if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
122 		return 1;
123 	return 0;
124 }
125 
126 static inline unsigned long long prof_ticks(struct task_struct *p)
127 {
128 	cputime_t utime, stime;
129 
130 	task_cputime(p, &utime, &stime);
131 
132 	return cputime_to_expires(utime + stime);
133 }
134 static inline unsigned long long virt_ticks(struct task_struct *p)
135 {
136 	cputime_t utime;
137 
138 	task_cputime(p, &utime, NULL);
139 
140 	return cputime_to_expires(utime);
141 }
142 
143 static int
144 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
145 {
146 	int error = check_clock(which_clock);
147 	if (!error) {
148 		tp->tv_sec = 0;
149 		tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
150 		if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
151 			/*
152 			 * If sched_clock is using a cycle counter, we
153 			 * don't have any idea of its true resolution
154 			 * exported, but it is much more than 1s/HZ.
155 			 */
156 			tp->tv_nsec = 1;
157 		}
158 	}
159 	return error;
160 }
161 
162 static int
163 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
164 {
165 	/*
166 	 * You can never reset a CPU clock, but we check for other errors
167 	 * in the call before failing with EPERM.
168 	 */
169 	int error = check_clock(which_clock);
170 	if (error == 0) {
171 		error = -EPERM;
172 	}
173 	return error;
174 }
175 
176 
177 /*
178  * Sample a per-thread clock for the given task.
179  */
180 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
181 			    unsigned long long *sample)
182 {
183 	switch (CPUCLOCK_WHICH(which_clock)) {
184 	default:
185 		return -EINVAL;
186 	case CPUCLOCK_PROF:
187 		*sample = prof_ticks(p);
188 		break;
189 	case CPUCLOCK_VIRT:
190 		*sample = virt_ticks(p);
191 		break;
192 	case CPUCLOCK_SCHED:
193 		*sample = task_sched_runtime(p);
194 		break;
195 	}
196 	return 0;
197 }
198 
199 static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
200 {
201 	if (b->utime > a->utime)
202 		a->utime = b->utime;
203 
204 	if (b->stime > a->stime)
205 		a->stime = b->stime;
206 
207 	if (b->sum_exec_runtime > a->sum_exec_runtime)
208 		a->sum_exec_runtime = b->sum_exec_runtime;
209 }
210 
211 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
212 {
213 	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
214 	struct task_cputime sum;
215 	unsigned long flags;
216 
217 	if (!cputimer->running) {
218 		/*
219 		 * The POSIX timer interface allows for absolute time expiry
220 		 * values through the TIMER_ABSTIME flag, therefore we have
221 		 * to synchronize the timer to the clock every time we start
222 		 * it.
223 		 */
224 		thread_group_cputime(tsk, &sum);
225 		raw_spin_lock_irqsave(&cputimer->lock, flags);
226 		cputimer->running = 1;
227 		update_gt_cputime(&cputimer->cputime, &sum);
228 	} else
229 		raw_spin_lock_irqsave(&cputimer->lock, flags);
230 	*times = cputimer->cputime;
231 	raw_spin_unlock_irqrestore(&cputimer->lock, flags);
232 }
233 
234 /*
235  * Sample a process (thread group) clock for the given group_leader task.
236  * Must be called with task sighand lock held for safe while_each_thread()
237  * traversal.
238  */
239 static int cpu_clock_sample_group(const clockid_t which_clock,
240 				  struct task_struct *p,
241 				  unsigned long long *sample)
242 {
243 	struct task_cputime cputime;
244 
245 	switch (CPUCLOCK_WHICH(which_clock)) {
246 	default:
247 		return -EINVAL;
248 	case CPUCLOCK_PROF:
249 		thread_group_cputime(p, &cputime);
250 		*sample = cputime_to_expires(cputime.utime + cputime.stime);
251 		break;
252 	case CPUCLOCK_VIRT:
253 		thread_group_cputime(p, &cputime);
254 		*sample = cputime_to_expires(cputime.utime);
255 		break;
256 	case CPUCLOCK_SCHED:
257 		thread_group_cputime(p, &cputime);
258 		*sample = cputime.sum_exec_runtime;
259 		break;
260 	}
261 	return 0;
262 }
263 
264 static int posix_cpu_clock_get_task(struct task_struct *tsk,
265 				    const clockid_t which_clock,
266 				    struct timespec *tp)
267 {
268 	int err = -EINVAL;
269 	unsigned long long rtn;
270 
271 	if (CPUCLOCK_PERTHREAD(which_clock)) {
272 		if (same_thread_group(tsk, current))
273 			err = cpu_clock_sample(which_clock, tsk, &rtn);
274 	} else {
275 		unsigned long flags;
276 		struct sighand_struct *sighand;
277 
278 		/*
279 		 * while_each_thread() is not yet entirely RCU safe,
280 		 * keep locking the group while sampling process
281 		 * clock for now.
282 		 */
283 		sighand = lock_task_sighand(tsk, &flags);
284 		if (!sighand)
285 			return err;
286 
287 		if (tsk == current || thread_group_leader(tsk))
288 			err = cpu_clock_sample_group(which_clock, tsk, &rtn);
289 
290 		unlock_task_sighand(tsk, &flags);
291 	}
292 
293 	if (!err)
294 		sample_to_timespec(which_clock, rtn, tp);
295 
296 	return err;
297 }
298 
299 
300 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
301 {
302 	const pid_t pid = CPUCLOCK_PID(which_clock);
303 	int err = -EINVAL;
304 
305 	if (pid == 0) {
306 		/*
307 		 * Special case constant value for our own clocks.
308 		 * We don't have to do any lookup to find ourselves.
309 		 */
310 		err = posix_cpu_clock_get_task(current, which_clock, tp);
311 	} else {
312 		/*
313 		 * Find the given PID, and validate that the caller
314 		 * should be able to see it.
315 		 */
316 		struct task_struct *p;
317 		rcu_read_lock();
318 		p = find_task_by_vpid(pid);
319 		if (p)
320 			err = posix_cpu_clock_get_task(p, which_clock, tp);
321 		rcu_read_unlock();
322 	}
323 
324 	return err;
325 }
326 
327 
328 /*
329  * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
330  * This is called from sys_timer_create() and do_cpu_nanosleep() with the
331  * new timer already all-zeros initialized.
332  */
333 static int posix_cpu_timer_create(struct k_itimer *new_timer)
334 {
335 	int ret = 0;
336 	const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
337 	struct task_struct *p;
338 
339 	if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
340 		return -EINVAL;
341 
342 	INIT_LIST_HEAD(&new_timer->it.cpu.entry);
343 
344 	rcu_read_lock();
345 	if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
346 		if (pid == 0) {
347 			p = current;
348 		} else {
349 			p = find_task_by_vpid(pid);
350 			if (p && !same_thread_group(p, current))
351 				p = NULL;
352 		}
353 	} else {
354 		if (pid == 0) {
355 			p = current->group_leader;
356 		} else {
357 			p = find_task_by_vpid(pid);
358 			if (p && !has_group_leader_pid(p))
359 				p = NULL;
360 		}
361 	}
362 	new_timer->it.cpu.task = p;
363 	if (p) {
364 		get_task_struct(p);
365 	} else {
366 		ret = -EINVAL;
367 	}
368 	rcu_read_unlock();
369 
370 	return ret;
371 }
372 
373 /*
374  * Clean up a CPU-clock timer that is about to be destroyed.
375  * This is called from timer deletion with the timer already locked.
376  * If we return TIMER_RETRY, it's necessary to release the timer's lock
377  * and try again.  (This happens when the timer is in the middle of firing.)
378  */
379 static int posix_cpu_timer_del(struct k_itimer *timer)
380 {
381 	int ret = 0;
382 	unsigned long flags;
383 	struct sighand_struct *sighand;
384 	struct task_struct *p = timer->it.cpu.task;
385 
386 	WARN_ON_ONCE(p == NULL);
387 
388 	/*
389 	 * Protect against sighand release/switch in exit/exec and process/
390 	 * thread timer list entry concurrent read/writes.
391 	 */
392 	sighand = lock_task_sighand(p, &flags);
393 	if (unlikely(sighand == NULL)) {
394 		/*
395 		 * We raced with the reaping of the task.
396 		 * The deletion should have cleared us off the list.
397 		 */
398 		WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
399 	} else {
400 		if (timer->it.cpu.firing)
401 			ret = TIMER_RETRY;
402 		else
403 			list_del(&timer->it.cpu.entry);
404 
405 		unlock_task_sighand(p, &flags);
406 	}
407 
408 	if (!ret)
409 		put_task_struct(p);
410 
411 	return ret;
412 }
413 
414 static void cleanup_timers_list(struct list_head *head)
415 {
416 	struct cpu_timer_list *timer, *next;
417 
418 	list_for_each_entry_safe(timer, next, head, entry)
419 		list_del_init(&timer->entry);
420 }
421 
422 /*
423  * Clean out CPU timers still ticking when a thread exited.  The task
424  * pointer is cleared, and the expiry time is replaced with the residual
425  * time for later timer_gettime calls to return.
426  * This must be called with the siglock held.
427  */
428 static void cleanup_timers(struct list_head *head)
429 {
430 	cleanup_timers_list(head);
431 	cleanup_timers_list(++head);
432 	cleanup_timers_list(++head);
433 }
434 
435 /*
436  * These are both called with the siglock held, when the current thread
437  * is being reaped.  When the final (leader) thread in the group is reaped,
438  * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
439  */
440 void posix_cpu_timers_exit(struct task_struct *tsk)
441 {
442 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
443 						sizeof(unsigned long long));
444 	cleanup_timers(tsk->cpu_timers);
445 
446 }
447 void posix_cpu_timers_exit_group(struct task_struct *tsk)
448 {
449 	cleanup_timers(tsk->signal->cpu_timers);
450 }
451 
452 static inline int expires_gt(cputime_t expires, cputime_t new_exp)
453 {
454 	return expires == 0 || expires > new_exp;
455 }
456 
457 /*
458  * Insert the timer on the appropriate list before any timers that
459  * expire later.  This must be called with the sighand lock held.
460  */
461 static void arm_timer(struct k_itimer *timer)
462 {
463 	struct task_struct *p = timer->it.cpu.task;
464 	struct list_head *head, *listpos;
465 	struct task_cputime *cputime_expires;
466 	struct cpu_timer_list *const nt = &timer->it.cpu;
467 	struct cpu_timer_list *next;
468 
469 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
470 		head = p->cpu_timers;
471 		cputime_expires = &p->cputime_expires;
472 	} else {
473 		head = p->signal->cpu_timers;
474 		cputime_expires = &p->signal->cputime_expires;
475 	}
476 	head += CPUCLOCK_WHICH(timer->it_clock);
477 
478 	listpos = head;
479 	list_for_each_entry(next, head, entry) {
480 		if (nt->expires < next->expires)
481 			break;
482 		listpos = &next->entry;
483 	}
484 	list_add(&nt->entry, listpos);
485 
486 	if (listpos == head) {
487 		unsigned long long exp = nt->expires;
488 
489 		/*
490 		 * We are the new earliest-expiring POSIX 1.b timer, hence
491 		 * need to update expiration cache. Take into account that
492 		 * for process timers we share expiration cache with itimers
493 		 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
494 		 */
495 
496 		switch (CPUCLOCK_WHICH(timer->it_clock)) {
497 		case CPUCLOCK_PROF:
498 			if (expires_gt(cputime_expires->prof_exp, expires_to_cputime(exp)))
499 				cputime_expires->prof_exp = expires_to_cputime(exp);
500 			break;
501 		case CPUCLOCK_VIRT:
502 			if (expires_gt(cputime_expires->virt_exp, expires_to_cputime(exp)))
503 				cputime_expires->virt_exp = expires_to_cputime(exp);
504 			break;
505 		case CPUCLOCK_SCHED:
506 			if (cputime_expires->sched_exp == 0 ||
507 			    cputime_expires->sched_exp > exp)
508 				cputime_expires->sched_exp = exp;
509 			break;
510 		}
511 	}
512 }
513 
514 /*
515  * The timer is locked, fire it and arrange for its reload.
516  */
517 static void cpu_timer_fire(struct k_itimer *timer)
518 {
519 	if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
520 		/*
521 		 * User don't want any signal.
522 		 */
523 		timer->it.cpu.expires = 0;
524 	} else if (unlikely(timer->sigq == NULL)) {
525 		/*
526 		 * This a special case for clock_nanosleep,
527 		 * not a normal timer from sys_timer_create.
528 		 */
529 		wake_up_process(timer->it_process);
530 		timer->it.cpu.expires = 0;
531 	} else if (timer->it.cpu.incr == 0) {
532 		/*
533 		 * One-shot timer.  Clear it as soon as it's fired.
534 		 */
535 		posix_timer_event(timer, 0);
536 		timer->it.cpu.expires = 0;
537 	} else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
538 		/*
539 		 * The signal did not get queued because the signal
540 		 * was ignored, so we won't get any callback to
541 		 * reload the timer.  But we need to keep it
542 		 * ticking in case the signal is deliverable next time.
543 		 */
544 		posix_cpu_timer_schedule(timer);
545 	}
546 }
547 
548 /*
549  * Sample a process (thread group) timer for the given group_leader task.
550  * Must be called with task sighand lock held for safe while_each_thread()
551  * traversal.
552  */
553 static int cpu_timer_sample_group(const clockid_t which_clock,
554 				  struct task_struct *p,
555 				  unsigned long long *sample)
556 {
557 	struct task_cputime cputime;
558 
559 	thread_group_cputimer(p, &cputime);
560 	switch (CPUCLOCK_WHICH(which_clock)) {
561 	default:
562 		return -EINVAL;
563 	case CPUCLOCK_PROF:
564 		*sample = cputime_to_expires(cputime.utime + cputime.stime);
565 		break;
566 	case CPUCLOCK_VIRT:
567 		*sample = cputime_to_expires(cputime.utime);
568 		break;
569 	case CPUCLOCK_SCHED:
570 		*sample = cputime.sum_exec_runtime + task_delta_exec(p);
571 		break;
572 	}
573 	return 0;
574 }
575 
576 #ifdef CONFIG_NO_HZ_FULL
577 static void nohz_kick_work_fn(struct work_struct *work)
578 {
579 	tick_nohz_full_kick_all();
580 }
581 
582 static DECLARE_WORK(nohz_kick_work, nohz_kick_work_fn);
583 
584 /*
585  * We need the IPIs to be sent from sane process context.
586  * The posix cpu timers are always set with irqs disabled.
587  */
588 static void posix_cpu_timer_kick_nohz(void)
589 {
590 	if (context_tracking_is_enabled())
591 		schedule_work(&nohz_kick_work);
592 }
593 
594 bool posix_cpu_timers_can_stop_tick(struct task_struct *tsk)
595 {
596 	if (!task_cputime_zero(&tsk->cputime_expires))
597 		return false;
598 
599 	if (tsk->signal->cputimer.running)
600 		return false;
601 
602 	return true;
603 }
604 #else
605 static inline void posix_cpu_timer_kick_nohz(void) { }
606 #endif
607 
608 /*
609  * Guts of sys_timer_settime for CPU timers.
610  * This is called with the timer locked and interrupts disabled.
611  * If we return TIMER_RETRY, it's necessary to release the timer's lock
612  * and try again.  (This happens when the timer is in the middle of firing.)
613  */
614 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
615 			       struct itimerspec *new, struct itimerspec *old)
616 {
617 	unsigned long flags;
618 	struct sighand_struct *sighand;
619 	struct task_struct *p = timer->it.cpu.task;
620 	unsigned long long old_expires, new_expires, old_incr, val;
621 	int ret;
622 
623 	WARN_ON_ONCE(p == NULL);
624 
625 	new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
626 
627 	/*
628 	 * Protect against sighand release/switch in exit/exec and p->cpu_timers
629 	 * and p->signal->cpu_timers read/write in arm_timer()
630 	 */
631 	sighand = lock_task_sighand(p, &flags);
632 	/*
633 	 * If p has just been reaped, we can no
634 	 * longer get any information about it at all.
635 	 */
636 	if (unlikely(sighand == NULL)) {
637 		return -ESRCH;
638 	}
639 
640 	/*
641 	 * Disarm any old timer after extracting its expiry time.
642 	 */
643 	WARN_ON_ONCE(!irqs_disabled());
644 
645 	ret = 0;
646 	old_incr = timer->it.cpu.incr;
647 	old_expires = timer->it.cpu.expires;
648 	if (unlikely(timer->it.cpu.firing)) {
649 		timer->it.cpu.firing = -1;
650 		ret = TIMER_RETRY;
651 	} else
652 		list_del_init(&timer->it.cpu.entry);
653 
654 	/*
655 	 * We need to sample the current value to convert the new
656 	 * value from to relative and absolute, and to convert the
657 	 * old value from absolute to relative.  To set a process
658 	 * timer, we need a sample to balance the thread expiry
659 	 * times (in arm_timer).  With an absolute time, we must
660 	 * check if it's already passed.  In short, we need a sample.
661 	 */
662 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
663 		cpu_clock_sample(timer->it_clock, p, &val);
664 	} else {
665 		cpu_timer_sample_group(timer->it_clock, p, &val);
666 	}
667 
668 	if (old) {
669 		if (old_expires == 0) {
670 			old->it_value.tv_sec = 0;
671 			old->it_value.tv_nsec = 0;
672 		} else {
673 			/*
674 			 * Update the timer in case it has
675 			 * overrun already.  If it has,
676 			 * we'll report it as having overrun
677 			 * and with the next reloaded timer
678 			 * already ticking, though we are
679 			 * swallowing that pending
680 			 * notification here to install the
681 			 * new setting.
682 			 */
683 			bump_cpu_timer(timer, val);
684 			if (val < timer->it.cpu.expires) {
685 				old_expires = timer->it.cpu.expires - val;
686 				sample_to_timespec(timer->it_clock,
687 						   old_expires,
688 						   &old->it_value);
689 			} else {
690 				old->it_value.tv_nsec = 1;
691 				old->it_value.tv_sec = 0;
692 			}
693 		}
694 	}
695 
696 	if (unlikely(ret)) {
697 		/*
698 		 * We are colliding with the timer actually firing.
699 		 * Punt after filling in the timer's old value, and
700 		 * disable this firing since we are already reporting
701 		 * it as an overrun (thanks to bump_cpu_timer above).
702 		 */
703 		unlock_task_sighand(p, &flags);
704 		goto out;
705 	}
706 
707 	if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
708 		new_expires += val;
709 	}
710 
711 	/*
712 	 * Install the new expiry time (or zero).
713 	 * For a timer with no notification action, we don't actually
714 	 * arm the timer (we'll just fake it for timer_gettime).
715 	 */
716 	timer->it.cpu.expires = new_expires;
717 	if (new_expires != 0 && val < new_expires) {
718 		arm_timer(timer);
719 	}
720 
721 	unlock_task_sighand(p, &flags);
722 	/*
723 	 * Install the new reload setting, and
724 	 * set up the signal and overrun bookkeeping.
725 	 */
726 	timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
727 						&new->it_interval);
728 
729 	/*
730 	 * This acts as a modification timestamp for the timer,
731 	 * so any automatic reload attempt will punt on seeing
732 	 * that we have reset the timer manually.
733 	 */
734 	timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
735 		~REQUEUE_PENDING;
736 	timer->it_overrun_last = 0;
737 	timer->it_overrun = -1;
738 
739 	if (new_expires != 0 && !(val < new_expires)) {
740 		/*
741 		 * The designated time already passed, so we notify
742 		 * immediately, even if the thread never runs to
743 		 * accumulate more time on this clock.
744 		 */
745 		cpu_timer_fire(timer);
746 	}
747 
748 	ret = 0;
749  out:
750 	if (old) {
751 		sample_to_timespec(timer->it_clock,
752 				   old_incr, &old->it_interval);
753 	}
754 	if (!ret)
755 		posix_cpu_timer_kick_nohz();
756 	return ret;
757 }
758 
759 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
760 {
761 	unsigned long long now;
762 	struct task_struct *p = timer->it.cpu.task;
763 
764 	WARN_ON_ONCE(p == NULL);
765 
766 	/*
767 	 * Easy part: convert the reload time.
768 	 */
769 	sample_to_timespec(timer->it_clock,
770 			   timer->it.cpu.incr, &itp->it_interval);
771 
772 	if (timer->it.cpu.expires == 0) {	/* Timer not armed at all.  */
773 		itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
774 		return;
775 	}
776 
777 	/*
778 	 * Sample the clock to take the difference with the expiry time.
779 	 */
780 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
781 		cpu_clock_sample(timer->it_clock, p, &now);
782 	} else {
783 		struct sighand_struct *sighand;
784 		unsigned long flags;
785 
786 		/*
787 		 * Protect against sighand release/switch in exit/exec and
788 		 * also make timer sampling safe if it ends up calling
789 		 * thread_group_cputime().
790 		 */
791 		sighand = lock_task_sighand(p, &flags);
792 		if (unlikely(sighand == NULL)) {
793 			/*
794 			 * The process has been reaped.
795 			 * We can't even collect a sample any more.
796 			 * Call the timer disarmed, nothing else to do.
797 			 */
798 			timer->it.cpu.expires = 0;
799 			sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
800 					   &itp->it_value);
801 		} else {
802 			cpu_timer_sample_group(timer->it_clock, p, &now);
803 			unlock_task_sighand(p, &flags);
804 		}
805 	}
806 
807 	if (now < timer->it.cpu.expires) {
808 		sample_to_timespec(timer->it_clock,
809 				   timer->it.cpu.expires - now,
810 				   &itp->it_value);
811 	} else {
812 		/*
813 		 * The timer should have expired already, but the firing
814 		 * hasn't taken place yet.  Say it's just about to expire.
815 		 */
816 		itp->it_value.tv_nsec = 1;
817 		itp->it_value.tv_sec = 0;
818 	}
819 }
820 
821 static unsigned long long
822 check_timers_list(struct list_head *timers,
823 		  struct list_head *firing,
824 		  unsigned long long curr)
825 {
826 	int maxfire = 20;
827 
828 	while (!list_empty(timers)) {
829 		struct cpu_timer_list *t;
830 
831 		t = list_first_entry(timers, struct cpu_timer_list, entry);
832 
833 		if (!--maxfire || curr < t->expires)
834 			return t->expires;
835 
836 		t->firing = 1;
837 		list_move_tail(&t->entry, firing);
838 	}
839 
840 	return 0;
841 }
842 
843 /*
844  * Check for any per-thread CPU timers that have fired and move them off
845  * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
846  * tsk->it_*_expires values to reflect the remaining thread CPU timers.
847  */
848 static void check_thread_timers(struct task_struct *tsk,
849 				struct list_head *firing)
850 {
851 	struct list_head *timers = tsk->cpu_timers;
852 	struct signal_struct *const sig = tsk->signal;
853 	struct task_cputime *tsk_expires = &tsk->cputime_expires;
854 	unsigned long long expires;
855 	unsigned long soft;
856 
857 	expires = check_timers_list(timers, firing, prof_ticks(tsk));
858 	tsk_expires->prof_exp = expires_to_cputime(expires);
859 
860 	expires = check_timers_list(++timers, firing, virt_ticks(tsk));
861 	tsk_expires->virt_exp = expires_to_cputime(expires);
862 
863 	tsk_expires->sched_exp = check_timers_list(++timers, firing,
864 						   tsk->se.sum_exec_runtime);
865 
866 	/*
867 	 * Check for the special case thread timers.
868 	 */
869 	soft = ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
870 	if (soft != RLIM_INFINITY) {
871 		unsigned long hard =
872 			ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
873 
874 		if (hard != RLIM_INFINITY &&
875 		    tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
876 			/*
877 			 * At the hard limit, we just die.
878 			 * No need to calculate anything else now.
879 			 */
880 			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
881 			return;
882 		}
883 		if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
884 			/*
885 			 * At the soft limit, send a SIGXCPU every second.
886 			 */
887 			if (soft < hard) {
888 				soft += USEC_PER_SEC;
889 				sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
890 			}
891 			printk(KERN_INFO
892 				"RT Watchdog Timeout: %s[%d]\n",
893 				tsk->comm, task_pid_nr(tsk));
894 			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
895 		}
896 	}
897 }
898 
899 static void stop_process_timers(struct signal_struct *sig)
900 {
901 	struct thread_group_cputimer *cputimer = &sig->cputimer;
902 	unsigned long flags;
903 
904 	raw_spin_lock_irqsave(&cputimer->lock, flags);
905 	cputimer->running = 0;
906 	raw_spin_unlock_irqrestore(&cputimer->lock, flags);
907 }
908 
909 static u32 onecputick;
910 
911 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
912 			     unsigned long long *expires,
913 			     unsigned long long cur_time, int signo)
914 {
915 	if (!it->expires)
916 		return;
917 
918 	if (cur_time >= it->expires) {
919 		if (it->incr) {
920 			it->expires += it->incr;
921 			it->error += it->incr_error;
922 			if (it->error >= onecputick) {
923 				it->expires -= cputime_one_jiffy;
924 				it->error -= onecputick;
925 			}
926 		} else {
927 			it->expires = 0;
928 		}
929 
930 		trace_itimer_expire(signo == SIGPROF ?
931 				    ITIMER_PROF : ITIMER_VIRTUAL,
932 				    tsk->signal->leader_pid, cur_time);
933 		__group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
934 	}
935 
936 	if (it->expires && (!*expires || it->expires < *expires)) {
937 		*expires = it->expires;
938 	}
939 }
940 
941 /*
942  * Check for any per-thread CPU timers that have fired and move them
943  * off the tsk->*_timers list onto the firing list.  Per-thread timers
944  * have already been taken off.
945  */
946 static void check_process_timers(struct task_struct *tsk,
947 				 struct list_head *firing)
948 {
949 	struct signal_struct *const sig = tsk->signal;
950 	unsigned long long utime, ptime, virt_expires, prof_expires;
951 	unsigned long long sum_sched_runtime, sched_expires;
952 	struct list_head *timers = sig->cpu_timers;
953 	struct task_cputime cputime;
954 	unsigned long soft;
955 
956 	/*
957 	 * Collect the current process totals.
958 	 */
959 	thread_group_cputimer(tsk, &cputime);
960 	utime = cputime_to_expires(cputime.utime);
961 	ptime = utime + cputime_to_expires(cputime.stime);
962 	sum_sched_runtime = cputime.sum_exec_runtime;
963 
964 	prof_expires = check_timers_list(timers, firing, ptime);
965 	virt_expires = check_timers_list(++timers, firing, utime);
966 	sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
967 
968 	/*
969 	 * Check for the special case process timers.
970 	 */
971 	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
972 			 SIGPROF);
973 	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
974 			 SIGVTALRM);
975 	soft = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
976 	if (soft != RLIM_INFINITY) {
977 		unsigned long psecs = cputime_to_secs(ptime);
978 		unsigned long hard =
979 			ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
980 		cputime_t x;
981 		if (psecs >= hard) {
982 			/*
983 			 * At the hard limit, we just die.
984 			 * No need to calculate anything else now.
985 			 */
986 			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
987 			return;
988 		}
989 		if (psecs >= soft) {
990 			/*
991 			 * At the soft limit, send a SIGXCPU every second.
992 			 */
993 			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
994 			if (soft < hard) {
995 				soft++;
996 				sig->rlim[RLIMIT_CPU].rlim_cur = soft;
997 			}
998 		}
999 		x = secs_to_cputime(soft);
1000 		if (!prof_expires || x < prof_expires) {
1001 			prof_expires = x;
1002 		}
1003 	}
1004 
1005 	sig->cputime_expires.prof_exp = expires_to_cputime(prof_expires);
1006 	sig->cputime_expires.virt_exp = expires_to_cputime(virt_expires);
1007 	sig->cputime_expires.sched_exp = sched_expires;
1008 	if (task_cputime_zero(&sig->cputime_expires))
1009 		stop_process_timers(sig);
1010 }
1011 
1012 /*
1013  * This is called from the signal code (via do_schedule_next_timer)
1014  * when the last timer signal was delivered and we have to reload the timer.
1015  */
1016 void posix_cpu_timer_schedule(struct k_itimer *timer)
1017 {
1018 	struct sighand_struct *sighand;
1019 	unsigned long flags;
1020 	struct task_struct *p = timer->it.cpu.task;
1021 	unsigned long long now;
1022 
1023 	WARN_ON_ONCE(p == NULL);
1024 
1025 	/*
1026 	 * Fetch the current sample and update the timer's expiry time.
1027 	 */
1028 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1029 		cpu_clock_sample(timer->it_clock, p, &now);
1030 		bump_cpu_timer(timer, now);
1031 		if (unlikely(p->exit_state))
1032 			goto out;
1033 
1034 		/* Protect timer list r/w in arm_timer() */
1035 		sighand = lock_task_sighand(p, &flags);
1036 		if (!sighand)
1037 			goto out;
1038 	} else {
1039 		/*
1040 		 * Protect arm_timer() and timer sampling in case of call to
1041 		 * thread_group_cputime().
1042 		 */
1043 		sighand = lock_task_sighand(p, &flags);
1044 		if (unlikely(sighand == NULL)) {
1045 			/*
1046 			 * The process has been reaped.
1047 			 * We can't even collect a sample any more.
1048 			 */
1049 			timer->it.cpu.expires = 0;
1050 			goto out;
1051 		} else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1052 			unlock_task_sighand(p, &flags);
1053 			/* Optimizations: if the process is dying, no need to rearm */
1054 			goto out;
1055 		}
1056 		cpu_timer_sample_group(timer->it_clock, p, &now);
1057 		bump_cpu_timer(timer, now);
1058 		/* Leave the sighand locked for the call below.  */
1059 	}
1060 
1061 	/*
1062 	 * Now re-arm for the new expiry time.
1063 	 */
1064 	WARN_ON_ONCE(!irqs_disabled());
1065 	arm_timer(timer);
1066 	unlock_task_sighand(p, &flags);
1067 
1068 	/* Kick full dynticks CPUs in case they need to tick on the new timer */
1069 	posix_cpu_timer_kick_nohz();
1070 out:
1071 	timer->it_overrun_last = timer->it_overrun;
1072 	timer->it_overrun = -1;
1073 	++timer->it_requeue_pending;
1074 }
1075 
1076 /**
1077  * task_cputime_expired - Compare two task_cputime entities.
1078  *
1079  * @sample:	The task_cputime structure to be checked for expiration.
1080  * @expires:	Expiration times, against which @sample will be checked.
1081  *
1082  * Checks @sample against @expires to see if any field of @sample has expired.
1083  * Returns true if any field of the former is greater than the corresponding
1084  * field of the latter if the latter field is set.  Otherwise returns false.
1085  */
1086 static inline int task_cputime_expired(const struct task_cputime *sample,
1087 					const struct task_cputime *expires)
1088 {
1089 	if (expires->utime && sample->utime >= expires->utime)
1090 		return 1;
1091 	if (expires->stime && sample->utime + sample->stime >= expires->stime)
1092 		return 1;
1093 	if (expires->sum_exec_runtime != 0 &&
1094 	    sample->sum_exec_runtime >= expires->sum_exec_runtime)
1095 		return 1;
1096 	return 0;
1097 }
1098 
1099 /**
1100  * fastpath_timer_check - POSIX CPU timers fast path.
1101  *
1102  * @tsk:	The task (thread) being checked.
1103  *
1104  * Check the task and thread group timers.  If both are zero (there are no
1105  * timers set) return false.  Otherwise snapshot the task and thread group
1106  * timers and compare them with the corresponding expiration times.  Return
1107  * true if a timer has expired, else return false.
1108  */
1109 static inline int fastpath_timer_check(struct task_struct *tsk)
1110 {
1111 	struct signal_struct *sig;
1112 	cputime_t utime, stime;
1113 
1114 	task_cputime(tsk, &utime, &stime);
1115 
1116 	if (!task_cputime_zero(&tsk->cputime_expires)) {
1117 		struct task_cputime task_sample = {
1118 			.utime = utime,
1119 			.stime = stime,
1120 			.sum_exec_runtime = tsk->se.sum_exec_runtime
1121 		};
1122 
1123 		if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1124 			return 1;
1125 	}
1126 
1127 	sig = tsk->signal;
1128 	if (sig->cputimer.running) {
1129 		struct task_cputime group_sample;
1130 
1131 		raw_spin_lock(&sig->cputimer.lock);
1132 		group_sample = sig->cputimer.cputime;
1133 		raw_spin_unlock(&sig->cputimer.lock);
1134 
1135 		if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1136 			return 1;
1137 	}
1138 
1139 	return 0;
1140 }
1141 
1142 /*
1143  * This is called from the timer interrupt handler.  The irq handler has
1144  * already updated our counts.  We need to check if any timers fire now.
1145  * Interrupts are disabled.
1146  */
1147 void run_posix_cpu_timers(struct task_struct *tsk)
1148 {
1149 	LIST_HEAD(firing);
1150 	struct k_itimer *timer, *next;
1151 	unsigned long flags;
1152 
1153 	WARN_ON_ONCE(!irqs_disabled());
1154 
1155 	/*
1156 	 * The fast path checks that there are no expired thread or thread
1157 	 * group timers.  If that's so, just return.
1158 	 */
1159 	if (!fastpath_timer_check(tsk))
1160 		return;
1161 
1162 	if (!lock_task_sighand(tsk, &flags))
1163 		return;
1164 	/*
1165 	 * Here we take off tsk->signal->cpu_timers[N] and
1166 	 * tsk->cpu_timers[N] all the timers that are firing, and
1167 	 * put them on the firing list.
1168 	 */
1169 	check_thread_timers(tsk, &firing);
1170 	/*
1171 	 * If there are any active process wide timers (POSIX 1.b, itimers,
1172 	 * RLIMIT_CPU) cputimer must be running.
1173 	 */
1174 	if (tsk->signal->cputimer.running)
1175 		check_process_timers(tsk, &firing);
1176 
1177 	/*
1178 	 * We must release these locks before taking any timer's lock.
1179 	 * There is a potential race with timer deletion here, as the
1180 	 * siglock now protects our private firing list.  We have set
1181 	 * the firing flag in each timer, so that a deletion attempt
1182 	 * that gets the timer lock before we do will give it up and
1183 	 * spin until we've taken care of that timer below.
1184 	 */
1185 	unlock_task_sighand(tsk, &flags);
1186 
1187 	/*
1188 	 * Now that all the timers on our list have the firing flag,
1189 	 * no one will touch their list entries but us.  We'll take
1190 	 * each timer's lock before clearing its firing flag, so no
1191 	 * timer call will interfere.
1192 	 */
1193 	list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1194 		int cpu_firing;
1195 
1196 		spin_lock(&timer->it_lock);
1197 		list_del_init(&timer->it.cpu.entry);
1198 		cpu_firing = timer->it.cpu.firing;
1199 		timer->it.cpu.firing = 0;
1200 		/*
1201 		 * The firing flag is -1 if we collided with a reset
1202 		 * of the timer, which already reported this
1203 		 * almost-firing as an overrun.  So don't generate an event.
1204 		 */
1205 		if (likely(cpu_firing >= 0))
1206 			cpu_timer_fire(timer);
1207 		spin_unlock(&timer->it_lock);
1208 	}
1209 }
1210 
1211 /*
1212  * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1213  * The tsk->sighand->siglock must be held by the caller.
1214  */
1215 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1216 			   cputime_t *newval, cputime_t *oldval)
1217 {
1218 	unsigned long long now;
1219 
1220 	WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
1221 	cpu_timer_sample_group(clock_idx, tsk, &now);
1222 
1223 	if (oldval) {
1224 		/*
1225 		 * We are setting itimer. The *oldval is absolute and we update
1226 		 * it to be relative, *newval argument is relative and we update
1227 		 * it to be absolute.
1228 		 */
1229 		if (*oldval) {
1230 			if (*oldval <= now) {
1231 				/* Just about to fire. */
1232 				*oldval = cputime_one_jiffy;
1233 			} else {
1234 				*oldval -= now;
1235 			}
1236 		}
1237 
1238 		if (!*newval)
1239 			goto out;
1240 		*newval += now;
1241 	}
1242 
1243 	/*
1244 	 * Update expiration cache if we are the earliest timer, or eventually
1245 	 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1246 	 */
1247 	switch (clock_idx) {
1248 	case CPUCLOCK_PROF:
1249 		if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1250 			tsk->signal->cputime_expires.prof_exp = *newval;
1251 		break;
1252 	case CPUCLOCK_VIRT:
1253 		if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1254 			tsk->signal->cputime_expires.virt_exp = *newval;
1255 		break;
1256 	}
1257 out:
1258 	posix_cpu_timer_kick_nohz();
1259 }
1260 
1261 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1262 			    struct timespec *rqtp, struct itimerspec *it)
1263 {
1264 	struct k_itimer timer;
1265 	int error;
1266 
1267 	/*
1268 	 * Set up a temporary timer and then wait for it to go off.
1269 	 */
1270 	memset(&timer, 0, sizeof timer);
1271 	spin_lock_init(&timer.it_lock);
1272 	timer.it_clock = which_clock;
1273 	timer.it_overrun = -1;
1274 	error = posix_cpu_timer_create(&timer);
1275 	timer.it_process = current;
1276 	if (!error) {
1277 		static struct itimerspec zero_it;
1278 
1279 		memset(it, 0, sizeof *it);
1280 		it->it_value = *rqtp;
1281 
1282 		spin_lock_irq(&timer.it_lock);
1283 		error = posix_cpu_timer_set(&timer, flags, it, NULL);
1284 		if (error) {
1285 			spin_unlock_irq(&timer.it_lock);
1286 			return error;
1287 		}
1288 
1289 		while (!signal_pending(current)) {
1290 			if (timer.it.cpu.expires == 0) {
1291 				/*
1292 				 * Our timer fired and was reset, below
1293 				 * deletion can not fail.
1294 				 */
1295 				posix_cpu_timer_del(&timer);
1296 				spin_unlock_irq(&timer.it_lock);
1297 				return 0;
1298 			}
1299 
1300 			/*
1301 			 * Block until cpu_timer_fire (or a signal) wakes us.
1302 			 */
1303 			__set_current_state(TASK_INTERRUPTIBLE);
1304 			spin_unlock_irq(&timer.it_lock);
1305 			schedule();
1306 			spin_lock_irq(&timer.it_lock);
1307 		}
1308 
1309 		/*
1310 		 * We were interrupted by a signal.
1311 		 */
1312 		sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1313 		error = posix_cpu_timer_set(&timer, 0, &zero_it, it);
1314 		if (!error) {
1315 			/*
1316 			 * Timer is now unarmed, deletion can not fail.
1317 			 */
1318 			posix_cpu_timer_del(&timer);
1319 		}
1320 		spin_unlock_irq(&timer.it_lock);
1321 
1322 		while (error == TIMER_RETRY) {
1323 			/*
1324 			 * We need to handle case when timer was or is in the
1325 			 * middle of firing. In other cases we already freed
1326 			 * resources.
1327 			 */
1328 			spin_lock_irq(&timer.it_lock);
1329 			error = posix_cpu_timer_del(&timer);
1330 			spin_unlock_irq(&timer.it_lock);
1331 		}
1332 
1333 		if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1334 			/*
1335 			 * It actually did fire already.
1336 			 */
1337 			return 0;
1338 		}
1339 
1340 		error = -ERESTART_RESTARTBLOCK;
1341 	}
1342 
1343 	return error;
1344 }
1345 
1346 static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1347 
1348 static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1349 			    struct timespec *rqtp, struct timespec __user *rmtp)
1350 {
1351 	struct restart_block *restart_block =
1352 		&current_thread_info()->restart_block;
1353 	struct itimerspec it;
1354 	int error;
1355 
1356 	/*
1357 	 * Diagnose required errors first.
1358 	 */
1359 	if (CPUCLOCK_PERTHREAD(which_clock) &&
1360 	    (CPUCLOCK_PID(which_clock) == 0 ||
1361 	     CPUCLOCK_PID(which_clock) == current->pid))
1362 		return -EINVAL;
1363 
1364 	error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1365 
1366 	if (error == -ERESTART_RESTARTBLOCK) {
1367 
1368 		if (flags & TIMER_ABSTIME)
1369 			return -ERESTARTNOHAND;
1370 		/*
1371 		 * Report back to the user the time still remaining.
1372 		 */
1373 		if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1374 			return -EFAULT;
1375 
1376 		restart_block->fn = posix_cpu_nsleep_restart;
1377 		restart_block->nanosleep.clockid = which_clock;
1378 		restart_block->nanosleep.rmtp = rmtp;
1379 		restart_block->nanosleep.expires = timespec_to_ns(rqtp);
1380 	}
1381 	return error;
1382 }
1383 
1384 static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1385 {
1386 	clockid_t which_clock = restart_block->nanosleep.clockid;
1387 	struct timespec t;
1388 	struct itimerspec it;
1389 	int error;
1390 
1391 	t = ns_to_timespec(restart_block->nanosleep.expires);
1392 
1393 	error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1394 
1395 	if (error == -ERESTART_RESTARTBLOCK) {
1396 		struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
1397 		/*
1398 		 * Report back to the user the time still remaining.
1399 		 */
1400 		if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1401 			return -EFAULT;
1402 
1403 		restart_block->nanosleep.expires = timespec_to_ns(&t);
1404 	}
1405 	return error;
1406 
1407 }
1408 
1409 #define PROCESS_CLOCK	MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1410 #define THREAD_CLOCK	MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1411 
1412 static int process_cpu_clock_getres(const clockid_t which_clock,
1413 				    struct timespec *tp)
1414 {
1415 	return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1416 }
1417 static int process_cpu_clock_get(const clockid_t which_clock,
1418 				 struct timespec *tp)
1419 {
1420 	return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1421 }
1422 static int process_cpu_timer_create(struct k_itimer *timer)
1423 {
1424 	timer->it_clock = PROCESS_CLOCK;
1425 	return posix_cpu_timer_create(timer);
1426 }
1427 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1428 			      struct timespec *rqtp,
1429 			      struct timespec __user *rmtp)
1430 {
1431 	return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1432 }
1433 static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1434 {
1435 	return -EINVAL;
1436 }
1437 static int thread_cpu_clock_getres(const clockid_t which_clock,
1438 				   struct timespec *tp)
1439 {
1440 	return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1441 }
1442 static int thread_cpu_clock_get(const clockid_t which_clock,
1443 				struct timespec *tp)
1444 {
1445 	return posix_cpu_clock_get(THREAD_CLOCK, tp);
1446 }
1447 static int thread_cpu_timer_create(struct k_itimer *timer)
1448 {
1449 	timer->it_clock = THREAD_CLOCK;
1450 	return posix_cpu_timer_create(timer);
1451 }
1452 
1453 struct k_clock clock_posix_cpu = {
1454 	.clock_getres	= posix_cpu_clock_getres,
1455 	.clock_set	= posix_cpu_clock_set,
1456 	.clock_get	= posix_cpu_clock_get,
1457 	.timer_create	= posix_cpu_timer_create,
1458 	.nsleep		= posix_cpu_nsleep,
1459 	.nsleep_restart	= posix_cpu_nsleep_restart,
1460 	.timer_set	= posix_cpu_timer_set,
1461 	.timer_del	= posix_cpu_timer_del,
1462 	.timer_get	= posix_cpu_timer_get,
1463 };
1464 
1465 static __init int init_posix_cpu_timers(void)
1466 {
1467 	struct k_clock process = {
1468 		.clock_getres	= process_cpu_clock_getres,
1469 		.clock_get	= process_cpu_clock_get,
1470 		.timer_create	= process_cpu_timer_create,
1471 		.nsleep		= process_cpu_nsleep,
1472 		.nsleep_restart	= process_cpu_nsleep_restart,
1473 	};
1474 	struct k_clock thread = {
1475 		.clock_getres	= thread_cpu_clock_getres,
1476 		.clock_get	= thread_cpu_clock_get,
1477 		.timer_create	= thread_cpu_timer_create,
1478 	};
1479 	struct timespec ts;
1480 
1481 	posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1482 	posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1483 
1484 	cputime_to_timespec(cputime_one_jiffy, &ts);
1485 	onecputick = ts.tv_nsec;
1486 	WARN_ON(ts.tv_sec != 0);
1487 
1488 	return 0;
1489 }
1490 __initcall(init_posix_cpu_timers);
1491