1 /* 2 * Implement CPU time clocks for the POSIX clock interface. 3 */ 4 5 #include <linux/sched/signal.h> 6 #include <linux/sched/cputime.h> 7 #include <linux/posix-timers.h> 8 #include <linux/errno.h> 9 #include <linux/math64.h> 10 #include <linux/uaccess.h> 11 #include <linux/kernel_stat.h> 12 #include <trace/events/timer.h> 13 #include <linux/tick.h> 14 #include <linux/workqueue.h> 15 16 /* 17 * Called after updating RLIMIT_CPU to run cpu timer and update 18 * tsk->signal->cputime_expires expiration cache if necessary. Needs 19 * siglock protection since other code may update expiration cache as 20 * well. 21 */ 22 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new) 23 { 24 u64 nsecs = rlim_new * NSEC_PER_SEC; 25 26 spin_lock_irq(&task->sighand->siglock); 27 set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL); 28 spin_unlock_irq(&task->sighand->siglock); 29 } 30 31 static int check_clock(const clockid_t which_clock) 32 { 33 int error = 0; 34 struct task_struct *p; 35 const pid_t pid = CPUCLOCK_PID(which_clock); 36 37 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX) 38 return -EINVAL; 39 40 if (pid == 0) 41 return 0; 42 43 rcu_read_lock(); 44 p = find_task_by_vpid(pid); 45 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ? 46 same_thread_group(p, current) : has_group_leader_pid(p))) { 47 error = -EINVAL; 48 } 49 rcu_read_unlock(); 50 51 return error; 52 } 53 54 /* 55 * Update expiry time from increment, and increase overrun count, 56 * given the current clock sample. 57 */ 58 static void bump_cpu_timer(struct k_itimer *timer, u64 now) 59 { 60 int i; 61 u64 delta, incr; 62 63 if (timer->it.cpu.incr == 0) 64 return; 65 66 if (now < timer->it.cpu.expires) 67 return; 68 69 incr = timer->it.cpu.incr; 70 delta = now + incr - timer->it.cpu.expires; 71 72 /* Don't use (incr*2 < delta), incr*2 might overflow. */ 73 for (i = 0; incr < delta - incr; i++) 74 incr = incr << 1; 75 76 for (; i >= 0; incr >>= 1, i--) { 77 if (delta < incr) 78 continue; 79 80 timer->it.cpu.expires += incr; 81 timer->it_overrun += 1 << i; 82 delta -= incr; 83 } 84 } 85 86 /** 87 * task_cputime_zero - Check a task_cputime struct for all zero fields. 88 * 89 * @cputime: The struct to compare. 90 * 91 * Checks @cputime to see if all fields are zero. Returns true if all fields 92 * are zero, false if any field is nonzero. 93 */ 94 static inline int task_cputime_zero(const struct task_cputime *cputime) 95 { 96 if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime) 97 return 1; 98 return 0; 99 } 100 101 static inline u64 prof_ticks(struct task_struct *p) 102 { 103 u64 utime, stime; 104 105 task_cputime(p, &utime, &stime); 106 107 return utime + stime; 108 } 109 static inline u64 virt_ticks(struct task_struct *p) 110 { 111 u64 utime, stime; 112 113 task_cputime(p, &utime, &stime); 114 115 return utime; 116 } 117 118 static int 119 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp) 120 { 121 int error = check_clock(which_clock); 122 if (!error) { 123 tp->tv_sec = 0; 124 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ); 125 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { 126 /* 127 * If sched_clock is using a cycle counter, we 128 * don't have any idea of its true resolution 129 * exported, but it is much more than 1s/HZ. 130 */ 131 tp->tv_nsec = 1; 132 } 133 } 134 return error; 135 } 136 137 static int 138 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp) 139 { 140 /* 141 * You can never reset a CPU clock, but we check for other errors 142 * in the call before failing with EPERM. 143 */ 144 int error = check_clock(which_clock); 145 if (error == 0) { 146 error = -EPERM; 147 } 148 return error; 149 } 150 151 152 /* 153 * Sample a per-thread clock for the given task. 154 */ 155 static int cpu_clock_sample(const clockid_t which_clock, 156 struct task_struct *p, u64 *sample) 157 { 158 switch (CPUCLOCK_WHICH(which_clock)) { 159 default: 160 return -EINVAL; 161 case CPUCLOCK_PROF: 162 *sample = prof_ticks(p); 163 break; 164 case CPUCLOCK_VIRT: 165 *sample = virt_ticks(p); 166 break; 167 case CPUCLOCK_SCHED: 168 *sample = task_sched_runtime(p); 169 break; 170 } 171 return 0; 172 } 173 174 /* 175 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg 176 * to avoid race conditions with concurrent updates to cputime. 177 */ 178 static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime) 179 { 180 u64 curr_cputime; 181 retry: 182 curr_cputime = atomic64_read(cputime); 183 if (sum_cputime > curr_cputime) { 184 if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime) 185 goto retry; 186 } 187 } 188 189 static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum) 190 { 191 __update_gt_cputime(&cputime_atomic->utime, sum->utime); 192 __update_gt_cputime(&cputime_atomic->stime, sum->stime); 193 __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime); 194 } 195 196 /* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */ 197 static inline void sample_cputime_atomic(struct task_cputime *times, 198 struct task_cputime_atomic *atomic_times) 199 { 200 times->utime = atomic64_read(&atomic_times->utime); 201 times->stime = atomic64_read(&atomic_times->stime); 202 times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime); 203 } 204 205 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times) 206 { 207 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; 208 struct task_cputime sum; 209 210 /* Check if cputimer isn't running. This is accessed without locking. */ 211 if (!READ_ONCE(cputimer->running)) { 212 /* 213 * The POSIX timer interface allows for absolute time expiry 214 * values through the TIMER_ABSTIME flag, therefore we have 215 * to synchronize the timer to the clock every time we start it. 216 */ 217 thread_group_cputime(tsk, &sum); 218 update_gt_cputime(&cputimer->cputime_atomic, &sum); 219 220 /* 221 * We're setting cputimer->running without a lock. Ensure 222 * this only gets written to in one operation. We set 223 * running after update_gt_cputime() as a small optimization, 224 * but barriers are not required because update_gt_cputime() 225 * can handle concurrent updates. 226 */ 227 WRITE_ONCE(cputimer->running, true); 228 } 229 sample_cputime_atomic(times, &cputimer->cputime_atomic); 230 } 231 232 /* 233 * Sample a process (thread group) clock for the given group_leader task. 234 * Must be called with task sighand lock held for safe while_each_thread() 235 * traversal. 236 */ 237 static int cpu_clock_sample_group(const clockid_t which_clock, 238 struct task_struct *p, 239 u64 *sample) 240 { 241 struct task_cputime cputime; 242 243 switch (CPUCLOCK_WHICH(which_clock)) { 244 default: 245 return -EINVAL; 246 case CPUCLOCK_PROF: 247 thread_group_cputime(p, &cputime); 248 *sample = cputime.utime + cputime.stime; 249 break; 250 case CPUCLOCK_VIRT: 251 thread_group_cputime(p, &cputime); 252 *sample = cputime.utime; 253 break; 254 case CPUCLOCK_SCHED: 255 thread_group_cputime(p, &cputime); 256 *sample = cputime.sum_exec_runtime; 257 break; 258 } 259 return 0; 260 } 261 262 static int posix_cpu_clock_get_task(struct task_struct *tsk, 263 const clockid_t which_clock, 264 struct timespec *tp) 265 { 266 int err = -EINVAL; 267 u64 rtn; 268 269 if (CPUCLOCK_PERTHREAD(which_clock)) { 270 if (same_thread_group(tsk, current)) 271 err = cpu_clock_sample(which_clock, tsk, &rtn); 272 } else { 273 if (tsk == current || thread_group_leader(tsk)) 274 err = cpu_clock_sample_group(which_clock, tsk, &rtn); 275 } 276 277 if (!err) 278 *tp = ns_to_timespec(rtn); 279 280 return err; 281 } 282 283 284 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp) 285 { 286 const pid_t pid = CPUCLOCK_PID(which_clock); 287 int err = -EINVAL; 288 289 if (pid == 0) { 290 /* 291 * Special case constant value for our own clocks. 292 * We don't have to do any lookup to find ourselves. 293 */ 294 err = posix_cpu_clock_get_task(current, which_clock, tp); 295 } else { 296 /* 297 * Find the given PID, and validate that the caller 298 * should be able to see it. 299 */ 300 struct task_struct *p; 301 rcu_read_lock(); 302 p = find_task_by_vpid(pid); 303 if (p) 304 err = posix_cpu_clock_get_task(p, which_clock, tp); 305 rcu_read_unlock(); 306 } 307 308 return err; 309 } 310 311 /* 312 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer. 313 * This is called from sys_timer_create() and do_cpu_nanosleep() with the 314 * new timer already all-zeros initialized. 315 */ 316 static int posix_cpu_timer_create(struct k_itimer *new_timer) 317 { 318 int ret = 0; 319 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock); 320 struct task_struct *p; 321 322 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX) 323 return -EINVAL; 324 325 INIT_LIST_HEAD(&new_timer->it.cpu.entry); 326 327 rcu_read_lock(); 328 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) { 329 if (pid == 0) { 330 p = current; 331 } else { 332 p = find_task_by_vpid(pid); 333 if (p && !same_thread_group(p, current)) 334 p = NULL; 335 } 336 } else { 337 if (pid == 0) { 338 p = current->group_leader; 339 } else { 340 p = find_task_by_vpid(pid); 341 if (p && !has_group_leader_pid(p)) 342 p = NULL; 343 } 344 } 345 new_timer->it.cpu.task = p; 346 if (p) { 347 get_task_struct(p); 348 } else { 349 ret = -EINVAL; 350 } 351 rcu_read_unlock(); 352 353 return ret; 354 } 355 356 /* 357 * Clean up a CPU-clock timer that is about to be destroyed. 358 * This is called from timer deletion with the timer already locked. 359 * If we return TIMER_RETRY, it's necessary to release the timer's lock 360 * and try again. (This happens when the timer is in the middle of firing.) 361 */ 362 static int posix_cpu_timer_del(struct k_itimer *timer) 363 { 364 int ret = 0; 365 unsigned long flags; 366 struct sighand_struct *sighand; 367 struct task_struct *p = timer->it.cpu.task; 368 369 WARN_ON_ONCE(p == NULL); 370 371 /* 372 * Protect against sighand release/switch in exit/exec and process/ 373 * thread timer list entry concurrent read/writes. 374 */ 375 sighand = lock_task_sighand(p, &flags); 376 if (unlikely(sighand == NULL)) { 377 /* 378 * We raced with the reaping of the task. 379 * The deletion should have cleared us off the list. 380 */ 381 WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry)); 382 } else { 383 if (timer->it.cpu.firing) 384 ret = TIMER_RETRY; 385 else 386 list_del(&timer->it.cpu.entry); 387 388 unlock_task_sighand(p, &flags); 389 } 390 391 if (!ret) 392 put_task_struct(p); 393 394 return ret; 395 } 396 397 static void cleanup_timers_list(struct list_head *head) 398 { 399 struct cpu_timer_list *timer, *next; 400 401 list_for_each_entry_safe(timer, next, head, entry) 402 list_del_init(&timer->entry); 403 } 404 405 /* 406 * Clean out CPU timers still ticking when a thread exited. The task 407 * pointer is cleared, and the expiry time is replaced with the residual 408 * time for later timer_gettime calls to return. 409 * This must be called with the siglock held. 410 */ 411 static void cleanup_timers(struct list_head *head) 412 { 413 cleanup_timers_list(head); 414 cleanup_timers_list(++head); 415 cleanup_timers_list(++head); 416 } 417 418 /* 419 * These are both called with the siglock held, when the current thread 420 * is being reaped. When the final (leader) thread in the group is reaped, 421 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit. 422 */ 423 void posix_cpu_timers_exit(struct task_struct *tsk) 424 { 425 cleanup_timers(tsk->cpu_timers); 426 } 427 void posix_cpu_timers_exit_group(struct task_struct *tsk) 428 { 429 cleanup_timers(tsk->signal->cpu_timers); 430 } 431 432 static inline int expires_gt(u64 expires, u64 new_exp) 433 { 434 return expires == 0 || expires > new_exp; 435 } 436 437 /* 438 * Insert the timer on the appropriate list before any timers that 439 * expire later. This must be called with the sighand lock held. 440 */ 441 static void arm_timer(struct k_itimer *timer) 442 { 443 struct task_struct *p = timer->it.cpu.task; 444 struct list_head *head, *listpos; 445 struct task_cputime *cputime_expires; 446 struct cpu_timer_list *const nt = &timer->it.cpu; 447 struct cpu_timer_list *next; 448 449 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 450 head = p->cpu_timers; 451 cputime_expires = &p->cputime_expires; 452 } else { 453 head = p->signal->cpu_timers; 454 cputime_expires = &p->signal->cputime_expires; 455 } 456 head += CPUCLOCK_WHICH(timer->it_clock); 457 458 listpos = head; 459 list_for_each_entry(next, head, entry) { 460 if (nt->expires < next->expires) 461 break; 462 listpos = &next->entry; 463 } 464 list_add(&nt->entry, listpos); 465 466 if (listpos == head) { 467 u64 exp = nt->expires; 468 469 /* 470 * We are the new earliest-expiring POSIX 1.b timer, hence 471 * need to update expiration cache. Take into account that 472 * for process timers we share expiration cache with itimers 473 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME. 474 */ 475 476 switch (CPUCLOCK_WHICH(timer->it_clock)) { 477 case CPUCLOCK_PROF: 478 if (expires_gt(cputime_expires->prof_exp, exp)) 479 cputime_expires->prof_exp = exp; 480 break; 481 case CPUCLOCK_VIRT: 482 if (expires_gt(cputime_expires->virt_exp, exp)) 483 cputime_expires->virt_exp = exp; 484 break; 485 case CPUCLOCK_SCHED: 486 if (expires_gt(cputime_expires->sched_exp, exp)) 487 cputime_expires->sched_exp = exp; 488 break; 489 } 490 if (CPUCLOCK_PERTHREAD(timer->it_clock)) 491 tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER); 492 else 493 tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER); 494 } 495 } 496 497 /* 498 * The timer is locked, fire it and arrange for its reload. 499 */ 500 static void cpu_timer_fire(struct k_itimer *timer) 501 { 502 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { 503 /* 504 * User don't want any signal. 505 */ 506 timer->it.cpu.expires = 0; 507 } else if (unlikely(timer->sigq == NULL)) { 508 /* 509 * This a special case for clock_nanosleep, 510 * not a normal timer from sys_timer_create. 511 */ 512 wake_up_process(timer->it_process); 513 timer->it.cpu.expires = 0; 514 } else if (timer->it.cpu.incr == 0) { 515 /* 516 * One-shot timer. Clear it as soon as it's fired. 517 */ 518 posix_timer_event(timer, 0); 519 timer->it.cpu.expires = 0; 520 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) { 521 /* 522 * The signal did not get queued because the signal 523 * was ignored, so we won't get any callback to 524 * reload the timer. But we need to keep it 525 * ticking in case the signal is deliverable next time. 526 */ 527 posix_cpu_timer_schedule(timer); 528 } 529 } 530 531 /* 532 * Sample a process (thread group) timer for the given group_leader task. 533 * Must be called with task sighand lock held for safe while_each_thread() 534 * traversal. 535 */ 536 static int cpu_timer_sample_group(const clockid_t which_clock, 537 struct task_struct *p, u64 *sample) 538 { 539 struct task_cputime cputime; 540 541 thread_group_cputimer(p, &cputime); 542 switch (CPUCLOCK_WHICH(which_clock)) { 543 default: 544 return -EINVAL; 545 case CPUCLOCK_PROF: 546 *sample = cputime.utime + cputime.stime; 547 break; 548 case CPUCLOCK_VIRT: 549 *sample = cputime.utime; 550 break; 551 case CPUCLOCK_SCHED: 552 *sample = cputime.sum_exec_runtime; 553 break; 554 } 555 return 0; 556 } 557 558 /* 559 * Guts of sys_timer_settime for CPU timers. 560 * This is called with the timer locked and interrupts disabled. 561 * If we return TIMER_RETRY, it's necessary to release the timer's lock 562 * and try again. (This happens when the timer is in the middle of firing.) 563 */ 564 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags, 565 struct itimerspec *new, struct itimerspec *old) 566 { 567 unsigned long flags; 568 struct sighand_struct *sighand; 569 struct task_struct *p = timer->it.cpu.task; 570 u64 old_expires, new_expires, old_incr, val; 571 int ret; 572 573 WARN_ON_ONCE(p == NULL); 574 575 new_expires = timespec_to_ns(&new->it_value); 576 577 /* 578 * Protect against sighand release/switch in exit/exec and p->cpu_timers 579 * and p->signal->cpu_timers read/write in arm_timer() 580 */ 581 sighand = lock_task_sighand(p, &flags); 582 /* 583 * If p has just been reaped, we can no 584 * longer get any information about it at all. 585 */ 586 if (unlikely(sighand == NULL)) { 587 return -ESRCH; 588 } 589 590 /* 591 * Disarm any old timer after extracting its expiry time. 592 */ 593 WARN_ON_ONCE(!irqs_disabled()); 594 595 ret = 0; 596 old_incr = timer->it.cpu.incr; 597 old_expires = timer->it.cpu.expires; 598 if (unlikely(timer->it.cpu.firing)) { 599 timer->it.cpu.firing = -1; 600 ret = TIMER_RETRY; 601 } else 602 list_del_init(&timer->it.cpu.entry); 603 604 /* 605 * We need to sample the current value to convert the new 606 * value from to relative and absolute, and to convert the 607 * old value from absolute to relative. To set a process 608 * timer, we need a sample to balance the thread expiry 609 * times (in arm_timer). With an absolute time, we must 610 * check if it's already passed. In short, we need a sample. 611 */ 612 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 613 cpu_clock_sample(timer->it_clock, p, &val); 614 } else { 615 cpu_timer_sample_group(timer->it_clock, p, &val); 616 } 617 618 if (old) { 619 if (old_expires == 0) { 620 old->it_value.tv_sec = 0; 621 old->it_value.tv_nsec = 0; 622 } else { 623 /* 624 * Update the timer in case it has 625 * overrun already. If it has, 626 * we'll report it as having overrun 627 * and with the next reloaded timer 628 * already ticking, though we are 629 * swallowing that pending 630 * notification here to install the 631 * new setting. 632 */ 633 bump_cpu_timer(timer, val); 634 if (val < timer->it.cpu.expires) { 635 old_expires = timer->it.cpu.expires - val; 636 old->it_value = ns_to_timespec(old_expires); 637 } else { 638 old->it_value.tv_nsec = 1; 639 old->it_value.tv_sec = 0; 640 } 641 } 642 } 643 644 if (unlikely(ret)) { 645 /* 646 * We are colliding with the timer actually firing. 647 * Punt after filling in the timer's old value, and 648 * disable this firing since we are already reporting 649 * it as an overrun (thanks to bump_cpu_timer above). 650 */ 651 unlock_task_sighand(p, &flags); 652 goto out; 653 } 654 655 if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) { 656 new_expires += val; 657 } 658 659 /* 660 * Install the new expiry time (or zero). 661 * For a timer with no notification action, we don't actually 662 * arm the timer (we'll just fake it for timer_gettime). 663 */ 664 timer->it.cpu.expires = new_expires; 665 if (new_expires != 0 && val < new_expires) { 666 arm_timer(timer); 667 } 668 669 unlock_task_sighand(p, &flags); 670 /* 671 * Install the new reload setting, and 672 * set up the signal and overrun bookkeeping. 673 */ 674 timer->it.cpu.incr = timespec_to_ns(&new->it_interval); 675 676 /* 677 * This acts as a modification timestamp for the timer, 678 * so any automatic reload attempt will punt on seeing 679 * that we have reset the timer manually. 680 */ 681 timer->it_requeue_pending = (timer->it_requeue_pending + 2) & 682 ~REQUEUE_PENDING; 683 timer->it_overrun_last = 0; 684 timer->it_overrun = -1; 685 686 if (new_expires != 0 && !(val < new_expires)) { 687 /* 688 * The designated time already passed, so we notify 689 * immediately, even if the thread never runs to 690 * accumulate more time on this clock. 691 */ 692 cpu_timer_fire(timer); 693 } 694 695 ret = 0; 696 out: 697 if (old) 698 old->it_interval = ns_to_timespec(old_incr); 699 700 return ret; 701 } 702 703 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp) 704 { 705 u64 now; 706 struct task_struct *p = timer->it.cpu.task; 707 708 WARN_ON_ONCE(p == NULL); 709 710 /* 711 * Easy part: convert the reload time. 712 */ 713 itp->it_interval = ns_to_timespec(timer->it.cpu.incr); 714 715 if (timer->it.cpu.expires == 0) { /* Timer not armed at all. */ 716 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0; 717 return; 718 } 719 720 /* 721 * Sample the clock to take the difference with the expiry time. 722 */ 723 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 724 cpu_clock_sample(timer->it_clock, p, &now); 725 } else { 726 struct sighand_struct *sighand; 727 unsigned long flags; 728 729 /* 730 * Protect against sighand release/switch in exit/exec and 731 * also make timer sampling safe if it ends up calling 732 * thread_group_cputime(). 733 */ 734 sighand = lock_task_sighand(p, &flags); 735 if (unlikely(sighand == NULL)) { 736 /* 737 * The process has been reaped. 738 * We can't even collect a sample any more. 739 * Call the timer disarmed, nothing else to do. 740 */ 741 timer->it.cpu.expires = 0; 742 itp->it_value = ns_to_timespec(timer->it.cpu.expires); 743 return; 744 } else { 745 cpu_timer_sample_group(timer->it_clock, p, &now); 746 unlock_task_sighand(p, &flags); 747 } 748 } 749 750 if (now < timer->it.cpu.expires) { 751 itp->it_value = ns_to_timespec(timer->it.cpu.expires - now); 752 } else { 753 /* 754 * The timer should have expired already, but the firing 755 * hasn't taken place yet. Say it's just about to expire. 756 */ 757 itp->it_value.tv_nsec = 1; 758 itp->it_value.tv_sec = 0; 759 } 760 } 761 762 static unsigned long long 763 check_timers_list(struct list_head *timers, 764 struct list_head *firing, 765 unsigned long long curr) 766 { 767 int maxfire = 20; 768 769 while (!list_empty(timers)) { 770 struct cpu_timer_list *t; 771 772 t = list_first_entry(timers, struct cpu_timer_list, entry); 773 774 if (!--maxfire || curr < t->expires) 775 return t->expires; 776 777 t->firing = 1; 778 list_move_tail(&t->entry, firing); 779 } 780 781 return 0; 782 } 783 784 /* 785 * Check for any per-thread CPU timers that have fired and move them off 786 * the tsk->cpu_timers[N] list onto the firing list. Here we update the 787 * tsk->it_*_expires values to reflect the remaining thread CPU timers. 788 */ 789 static void check_thread_timers(struct task_struct *tsk, 790 struct list_head *firing) 791 { 792 struct list_head *timers = tsk->cpu_timers; 793 struct signal_struct *const sig = tsk->signal; 794 struct task_cputime *tsk_expires = &tsk->cputime_expires; 795 u64 expires; 796 unsigned long soft; 797 798 /* 799 * If cputime_expires is zero, then there are no active 800 * per thread CPU timers. 801 */ 802 if (task_cputime_zero(&tsk->cputime_expires)) 803 return; 804 805 expires = check_timers_list(timers, firing, prof_ticks(tsk)); 806 tsk_expires->prof_exp = expires; 807 808 expires = check_timers_list(++timers, firing, virt_ticks(tsk)); 809 tsk_expires->virt_exp = expires; 810 811 tsk_expires->sched_exp = check_timers_list(++timers, firing, 812 tsk->se.sum_exec_runtime); 813 814 /* 815 * Check for the special case thread timers. 816 */ 817 soft = READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur); 818 if (soft != RLIM_INFINITY) { 819 unsigned long hard = 820 READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max); 821 822 if (hard != RLIM_INFINITY && 823 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) { 824 /* 825 * At the hard limit, we just die. 826 * No need to calculate anything else now. 827 */ 828 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); 829 return; 830 } 831 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) { 832 /* 833 * At the soft limit, send a SIGXCPU every second. 834 */ 835 if (soft < hard) { 836 soft += USEC_PER_SEC; 837 sig->rlim[RLIMIT_RTTIME].rlim_cur = soft; 838 } 839 printk(KERN_INFO 840 "RT Watchdog Timeout: %s[%d]\n", 841 tsk->comm, task_pid_nr(tsk)); 842 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); 843 } 844 } 845 if (task_cputime_zero(tsk_expires)) 846 tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER); 847 } 848 849 static inline void stop_process_timers(struct signal_struct *sig) 850 { 851 struct thread_group_cputimer *cputimer = &sig->cputimer; 852 853 /* Turn off cputimer->running. This is done without locking. */ 854 WRITE_ONCE(cputimer->running, false); 855 tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER); 856 } 857 858 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it, 859 u64 *expires, u64 cur_time, int signo) 860 { 861 if (!it->expires) 862 return; 863 864 if (cur_time >= it->expires) { 865 if (it->incr) 866 it->expires += it->incr; 867 else 868 it->expires = 0; 869 870 trace_itimer_expire(signo == SIGPROF ? 871 ITIMER_PROF : ITIMER_VIRTUAL, 872 tsk->signal->leader_pid, cur_time); 873 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk); 874 } 875 876 if (it->expires && (!*expires || it->expires < *expires)) 877 *expires = it->expires; 878 } 879 880 /* 881 * Check for any per-thread CPU timers that have fired and move them 882 * off the tsk->*_timers list onto the firing list. Per-thread timers 883 * have already been taken off. 884 */ 885 static void check_process_timers(struct task_struct *tsk, 886 struct list_head *firing) 887 { 888 struct signal_struct *const sig = tsk->signal; 889 u64 utime, ptime, virt_expires, prof_expires; 890 u64 sum_sched_runtime, sched_expires; 891 struct list_head *timers = sig->cpu_timers; 892 struct task_cputime cputime; 893 unsigned long soft; 894 895 /* 896 * If cputimer is not running, then there are no active 897 * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU). 898 */ 899 if (!READ_ONCE(tsk->signal->cputimer.running)) 900 return; 901 902 /* 903 * Signify that a thread is checking for process timers. 904 * Write access to this field is protected by the sighand lock. 905 */ 906 sig->cputimer.checking_timer = true; 907 908 /* 909 * Collect the current process totals. 910 */ 911 thread_group_cputimer(tsk, &cputime); 912 utime = cputime.utime; 913 ptime = utime + cputime.stime; 914 sum_sched_runtime = cputime.sum_exec_runtime; 915 916 prof_expires = check_timers_list(timers, firing, ptime); 917 virt_expires = check_timers_list(++timers, firing, utime); 918 sched_expires = check_timers_list(++timers, firing, sum_sched_runtime); 919 920 /* 921 * Check for the special case process timers. 922 */ 923 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime, 924 SIGPROF); 925 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime, 926 SIGVTALRM); 927 soft = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 928 if (soft != RLIM_INFINITY) { 929 unsigned long psecs = div_u64(ptime, NSEC_PER_SEC); 930 unsigned long hard = 931 READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_max); 932 u64 x; 933 if (psecs >= hard) { 934 /* 935 * At the hard limit, we just die. 936 * No need to calculate anything else now. 937 */ 938 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); 939 return; 940 } 941 if (psecs >= soft) { 942 /* 943 * At the soft limit, send a SIGXCPU every second. 944 */ 945 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); 946 if (soft < hard) { 947 soft++; 948 sig->rlim[RLIMIT_CPU].rlim_cur = soft; 949 } 950 } 951 x = soft * NSEC_PER_SEC; 952 if (!prof_expires || x < prof_expires) 953 prof_expires = x; 954 } 955 956 sig->cputime_expires.prof_exp = prof_expires; 957 sig->cputime_expires.virt_exp = virt_expires; 958 sig->cputime_expires.sched_exp = sched_expires; 959 if (task_cputime_zero(&sig->cputime_expires)) 960 stop_process_timers(sig); 961 962 sig->cputimer.checking_timer = false; 963 } 964 965 /* 966 * This is called from the signal code (via do_schedule_next_timer) 967 * when the last timer signal was delivered and we have to reload the timer. 968 */ 969 void posix_cpu_timer_schedule(struct k_itimer *timer) 970 { 971 struct sighand_struct *sighand; 972 unsigned long flags; 973 struct task_struct *p = timer->it.cpu.task; 974 u64 now; 975 976 WARN_ON_ONCE(p == NULL); 977 978 /* 979 * Fetch the current sample and update the timer's expiry time. 980 */ 981 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 982 cpu_clock_sample(timer->it_clock, p, &now); 983 bump_cpu_timer(timer, now); 984 if (unlikely(p->exit_state)) 985 goto out; 986 987 /* Protect timer list r/w in arm_timer() */ 988 sighand = lock_task_sighand(p, &flags); 989 if (!sighand) 990 goto out; 991 } else { 992 /* 993 * Protect arm_timer() and timer sampling in case of call to 994 * thread_group_cputime(). 995 */ 996 sighand = lock_task_sighand(p, &flags); 997 if (unlikely(sighand == NULL)) { 998 /* 999 * The process has been reaped. 1000 * We can't even collect a sample any more. 1001 */ 1002 timer->it.cpu.expires = 0; 1003 goto out; 1004 } else if (unlikely(p->exit_state) && thread_group_empty(p)) { 1005 unlock_task_sighand(p, &flags); 1006 /* Optimizations: if the process is dying, no need to rearm */ 1007 goto out; 1008 } 1009 cpu_timer_sample_group(timer->it_clock, p, &now); 1010 bump_cpu_timer(timer, now); 1011 /* Leave the sighand locked for the call below. */ 1012 } 1013 1014 /* 1015 * Now re-arm for the new expiry time. 1016 */ 1017 WARN_ON_ONCE(!irqs_disabled()); 1018 arm_timer(timer); 1019 unlock_task_sighand(p, &flags); 1020 1021 out: 1022 timer->it_overrun_last = timer->it_overrun; 1023 timer->it_overrun = -1; 1024 ++timer->it_requeue_pending; 1025 } 1026 1027 /** 1028 * task_cputime_expired - Compare two task_cputime entities. 1029 * 1030 * @sample: The task_cputime structure to be checked for expiration. 1031 * @expires: Expiration times, against which @sample will be checked. 1032 * 1033 * Checks @sample against @expires to see if any field of @sample has expired. 1034 * Returns true if any field of the former is greater than the corresponding 1035 * field of the latter if the latter field is set. Otherwise returns false. 1036 */ 1037 static inline int task_cputime_expired(const struct task_cputime *sample, 1038 const struct task_cputime *expires) 1039 { 1040 if (expires->utime && sample->utime >= expires->utime) 1041 return 1; 1042 if (expires->stime && sample->utime + sample->stime >= expires->stime) 1043 return 1; 1044 if (expires->sum_exec_runtime != 0 && 1045 sample->sum_exec_runtime >= expires->sum_exec_runtime) 1046 return 1; 1047 return 0; 1048 } 1049 1050 /** 1051 * fastpath_timer_check - POSIX CPU timers fast path. 1052 * 1053 * @tsk: The task (thread) being checked. 1054 * 1055 * Check the task and thread group timers. If both are zero (there are no 1056 * timers set) return false. Otherwise snapshot the task and thread group 1057 * timers and compare them with the corresponding expiration times. Return 1058 * true if a timer has expired, else return false. 1059 */ 1060 static inline int fastpath_timer_check(struct task_struct *tsk) 1061 { 1062 struct signal_struct *sig; 1063 1064 if (!task_cputime_zero(&tsk->cputime_expires)) { 1065 struct task_cputime task_sample; 1066 1067 task_cputime(tsk, &task_sample.utime, &task_sample.stime); 1068 task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime; 1069 if (task_cputime_expired(&task_sample, &tsk->cputime_expires)) 1070 return 1; 1071 } 1072 1073 sig = tsk->signal; 1074 /* 1075 * Check if thread group timers expired when the cputimer is 1076 * running and no other thread in the group is already checking 1077 * for thread group cputimers. These fields are read without the 1078 * sighand lock. However, this is fine because this is meant to 1079 * be a fastpath heuristic to determine whether we should try to 1080 * acquire the sighand lock to check/handle timers. 1081 * 1082 * In the worst case scenario, if 'running' or 'checking_timer' gets 1083 * set but the current thread doesn't see the change yet, we'll wait 1084 * until the next thread in the group gets a scheduler interrupt to 1085 * handle the timer. This isn't an issue in practice because these 1086 * types of delays with signals actually getting sent are expected. 1087 */ 1088 if (READ_ONCE(sig->cputimer.running) && 1089 !READ_ONCE(sig->cputimer.checking_timer)) { 1090 struct task_cputime group_sample; 1091 1092 sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic); 1093 1094 if (task_cputime_expired(&group_sample, &sig->cputime_expires)) 1095 return 1; 1096 } 1097 1098 return 0; 1099 } 1100 1101 /* 1102 * This is called from the timer interrupt handler. The irq handler has 1103 * already updated our counts. We need to check if any timers fire now. 1104 * Interrupts are disabled. 1105 */ 1106 void run_posix_cpu_timers(struct task_struct *tsk) 1107 { 1108 LIST_HEAD(firing); 1109 struct k_itimer *timer, *next; 1110 unsigned long flags; 1111 1112 WARN_ON_ONCE(!irqs_disabled()); 1113 1114 /* 1115 * The fast path checks that there are no expired thread or thread 1116 * group timers. If that's so, just return. 1117 */ 1118 if (!fastpath_timer_check(tsk)) 1119 return; 1120 1121 if (!lock_task_sighand(tsk, &flags)) 1122 return; 1123 /* 1124 * Here we take off tsk->signal->cpu_timers[N] and 1125 * tsk->cpu_timers[N] all the timers that are firing, and 1126 * put them on the firing list. 1127 */ 1128 check_thread_timers(tsk, &firing); 1129 1130 check_process_timers(tsk, &firing); 1131 1132 /* 1133 * We must release these locks before taking any timer's lock. 1134 * There is a potential race with timer deletion here, as the 1135 * siglock now protects our private firing list. We have set 1136 * the firing flag in each timer, so that a deletion attempt 1137 * that gets the timer lock before we do will give it up and 1138 * spin until we've taken care of that timer below. 1139 */ 1140 unlock_task_sighand(tsk, &flags); 1141 1142 /* 1143 * Now that all the timers on our list have the firing flag, 1144 * no one will touch their list entries but us. We'll take 1145 * each timer's lock before clearing its firing flag, so no 1146 * timer call will interfere. 1147 */ 1148 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) { 1149 int cpu_firing; 1150 1151 spin_lock(&timer->it_lock); 1152 list_del_init(&timer->it.cpu.entry); 1153 cpu_firing = timer->it.cpu.firing; 1154 timer->it.cpu.firing = 0; 1155 /* 1156 * The firing flag is -1 if we collided with a reset 1157 * of the timer, which already reported this 1158 * almost-firing as an overrun. So don't generate an event. 1159 */ 1160 if (likely(cpu_firing >= 0)) 1161 cpu_timer_fire(timer); 1162 spin_unlock(&timer->it_lock); 1163 } 1164 } 1165 1166 /* 1167 * Set one of the process-wide special case CPU timers or RLIMIT_CPU. 1168 * The tsk->sighand->siglock must be held by the caller. 1169 */ 1170 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx, 1171 u64 *newval, u64 *oldval) 1172 { 1173 u64 now; 1174 1175 WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED); 1176 cpu_timer_sample_group(clock_idx, tsk, &now); 1177 1178 if (oldval) { 1179 /* 1180 * We are setting itimer. The *oldval is absolute and we update 1181 * it to be relative, *newval argument is relative and we update 1182 * it to be absolute. 1183 */ 1184 if (*oldval) { 1185 if (*oldval <= now) { 1186 /* Just about to fire. */ 1187 *oldval = TICK_NSEC; 1188 } else { 1189 *oldval -= now; 1190 } 1191 } 1192 1193 if (!*newval) 1194 return; 1195 *newval += now; 1196 } 1197 1198 /* 1199 * Update expiration cache if we are the earliest timer, or eventually 1200 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire. 1201 */ 1202 switch (clock_idx) { 1203 case CPUCLOCK_PROF: 1204 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval)) 1205 tsk->signal->cputime_expires.prof_exp = *newval; 1206 break; 1207 case CPUCLOCK_VIRT: 1208 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval)) 1209 tsk->signal->cputime_expires.virt_exp = *newval; 1210 break; 1211 } 1212 1213 tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER); 1214 } 1215 1216 static int do_cpu_nanosleep(const clockid_t which_clock, int flags, 1217 struct timespec *rqtp, struct itimerspec *it) 1218 { 1219 struct k_itimer timer; 1220 int error; 1221 1222 /* 1223 * Set up a temporary timer and then wait for it to go off. 1224 */ 1225 memset(&timer, 0, sizeof timer); 1226 spin_lock_init(&timer.it_lock); 1227 timer.it_clock = which_clock; 1228 timer.it_overrun = -1; 1229 error = posix_cpu_timer_create(&timer); 1230 timer.it_process = current; 1231 if (!error) { 1232 static struct itimerspec zero_it; 1233 1234 memset(it, 0, sizeof *it); 1235 it->it_value = *rqtp; 1236 1237 spin_lock_irq(&timer.it_lock); 1238 error = posix_cpu_timer_set(&timer, flags, it, NULL); 1239 if (error) { 1240 spin_unlock_irq(&timer.it_lock); 1241 return error; 1242 } 1243 1244 while (!signal_pending(current)) { 1245 if (timer.it.cpu.expires == 0) { 1246 /* 1247 * Our timer fired and was reset, below 1248 * deletion can not fail. 1249 */ 1250 posix_cpu_timer_del(&timer); 1251 spin_unlock_irq(&timer.it_lock); 1252 return 0; 1253 } 1254 1255 /* 1256 * Block until cpu_timer_fire (or a signal) wakes us. 1257 */ 1258 __set_current_state(TASK_INTERRUPTIBLE); 1259 spin_unlock_irq(&timer.it_lock); 1260 schedule(); 1261 spin_lock_irq(&timer.it_lock); 1262 } 1263 1264 /* 1265 * We were interrupted by a signal. 1266 */ 1267 *rqtp = ns_to_timespec(timer.it.cpu.expires); 1268 error = posix_cpu_timer_set(&timer, 0, &zero_it, it); 1269 if (!error) { 1270 /* 1271 * Timer is now unarmed, deletion can not fail. 1272 */ 1273 posix_cpu_timer_del(&timer); 1274 } 1275 spin_unlock_irq(&timer.it_lock); 1276 1277 while (error == TIMER_RETRY) { 1278 /* 1279 * We need to handle case when timer was or is in the 1280 * middle of firing. In other cases we already freed 1281 * resources. 1282 */ 1283 spin_lock_irq(&timer.it_lock); 1284 error = posix_cpu_timer_del(&timer); 1285 spin_unlock_irq(&timer.it_lock); 1286 } 1287 1288 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) { 1289 /* 1290 * It actually did fire already. 1291 */ 1292 return 0; 1293 } 1294 1295 error = -ERESTART_RESTARTBLOCK; 1296 } 1297 1298 return error; 1299 } 1300 1301 static long posix_cpu_nsleep_restart(struct restart_block *restart_block); 1302 1303 static int posix_cpu_nsleep(const clockid_t which_clock, int flags, 1304 struct timespec *rqtp, struct timespec __user *rmtp) 1305 { 1306 struct restart_block *restart_block = ¤t->restart_block; 1307 struct itimerspec it; 1308 int error; 1309 1310 /* 1311 * Diagnose required errors first. 1312 */ 1313 if (CPUCLOCK_PERTHREAD(which_clock) && 1314 (CPUCLOCK_PID(which_clock) == 0 || 1315 CPUCLOCK_PID(which_clock) == current->pid)) 1316 return -EINVAL; 1317 1318 error = do_cpu_nanosleep(which_clock, flags, rqtp, &it); 1319 1320 if (error == -ERESTART_RESTARTBLOCK) { 1321 1322 if (flags & TIMER_ABSTIME) 1323 return -ERESTARTNOHAND; 1324 /* 1325 * Report back to the user the time still remaining. 1326 */ 1327 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp)) 1328 return -EFAULT; 1329 1330 restart_block->fn = posix_cpu_nsleep_restart; 1331 restart_block->nanosleep.clockid = which_clock; 1332 restart_block->nanosleep.rmtp = rmtp; 1333 restart_block->nanosleep.expires = timespec_to_ns(rqtp); 1334 } 1335 return error; 1336 } 1337 1338 static long posix_cpu_nsleep_restart(struct restart_block *restart_block) 1339 { 1340 clockid_t which_clock = restart_block->nanosleep.clockid; 1341 struct timespec t; 1342 struct itimerspec it; 1343 int error; 1344 1345 t = ns_to_timespec(restart_block->nanosleep.expires); 1346 1347 error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it); 1348 1349 if (error == -ERESTART_RESTARTBLOCK) { 1350 struct timespec __user *rmtp = restart_block->nanosleep.rmtp; 1351 /* 1352 * Report back to the user the time still remaining. 1353 */ 1354 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp)) 1355 return -EFAULT; 1356 1357 restart_block->nanosleep.expires = timespec_to_ns(&t); 1358 } 1359 return error; 1360 1361 } 1362 1363 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED) 1364 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED) 1365 1366 static int process_cpu_clock_getres(const clockid_t which_clock, 1367 struct timespec *tp) 1368 { 1369 return posix_cpu_clock_getres(PROCESS_CLOCK, tp); 1370 } 1371 static int process_cpu_clock_get(const clockid_t which_clock, 1372 struct timespec *tp) 1373 { 1374 return posix_cpu_clock_get(PROCESS_CLOCK, tp); 1375 } 1376 static int process_cpu_timer_create(struct k_itimer *timer) 1377 { 1378 timer->it_clock = PROCESS_CLOCK; 1379 return posix_cpu_timer_create(timer); 1380 } 1381 static int process_cpu_nsleep(const clockid_t which_clock, int flags, 1382 struct timespec *rqtp, 1383 struct timespec __user *rmtp) 1384 { 1385 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp); 1386 } 1387 static long process_cpu_nsleep_restart(struct restart_block *restart_block) 1388 { 1389 return -EINVAL; 1390 } 1391 static int thread_cpu_clock_getres(const clockid_t which_clock, 1392 struct timespec *tp) 1393 { 1394 return posix_cpu_clock_getres(THREAD_CLOCK, tp); 1395 } 1396 static int thread_cpu_clock_get(const clockid_t which_clock, 1397 struct timespec *tp) 1398 { 1399 return posix_cpu_clock_get(THREAD_CLOCK, tp); 1400 } 1401 static int thread_cpu_timer_create(struct k_itimer *timer) 1402 { 1403 timer->it_clock = THREAD_CLOCK; 1404 return posix_cpu_timer_create(timer); 1405 } 1406 1407 struct k_clock clock_posix_cpu = { 1408 .clock_getres = posix_cpu_clock_getres, 1409 .clock_set = posix_cpu_clock_set, 1410 .clock_get = posix_cpu_clock_get, 1411 .timer_create = posix_cpu_timer_create, 1412 .nsleep = posix_cpu_nsleep, 1413 .nsleep_restart = posix_cpu_nsleep_restart, 1414 .timer_set = posix_cpu_timer_set, 1415 .timer_del = posix_cpu_timer_del, 1416 .timer_get = posix_cpu_timer_get, 1417 }; 1418 1419 static __init int init_posix_cpu_timers(void) 1420 { 1421 struct k_clock process = { 1422 .clock_getres = process_cpu_clock_getres, 1423 .clock_get = process_cpu_clock_get, 1424 .timer_create = process_cpu_timer_create, 1425 .nsleep = process_cpu_nsleep, 1426 .nsleep_restart = process_cpu_nsleep_restart, 1427 }; 1428 struct k_clock thread = { 1429 .clock_getres = thread_cpu_clock_getres, 1430 .clock_get = thread_cpu_clock_get, 1431 .timer_create = thread_cpu_timer_create, 1432 }; 1433 1434 posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process); 1435 posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread); 1436 1437 return 0; 1438 } 1439 __initcall(init_posix_cpu_timers); 1440