1 /*
2  * Implement CPU time clocks for the POSIX clock interface.
3  */
4 
5 #include <linux/sched/signal.h>
6 #include <linux/sched/cputime.h>
7 #include <linux/posix-timers.h>
8 #include <linux/errno.h>
9 #include <linux/math64.h>
10 #include <linux/uaccess.h>
11 #include <linux/kernel_stat.h>
12 #include <trace/events/timer.h>
13 #include <linux/tick.h>
14 #include <linux/workqueue.h>
15 
16 /*
17  * Called after updating RLIMIT_CPU to run cpu timer and update
18  * tsk->signal->cputime_expires expiration cache if necessary. Needs
19  * siglock protection since other code may update expiration cache as
20  * well.
21  */
22 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
23 {
24 	u64 nsecs = rlim_new * NSEC_PER_SEC;
25 
26 	spin_lock_irq(&task->sighand->siglock);
27 	set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
28 	spin_unlock_irq(&task->sighand->siglock);
29 }
30 
31 static int check_clock(const clockid_t which_clock)
32 {
33 	int error = 0;
34 	struct task_struct *p;
35 	const pid_t pid = CPUCLOCK_PID(which_clock);
36 
37 	if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
38 		return -EINVAL;
39 
40 	if (pid == 0)
41 		return 0;
42 
43 	rcu_read_lock();
44 	p = find_task_by_vpid(pid);
45 	if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
46 		   same_thread_group(p, current) : has_group_leader_pid(p))) {
47 		error = -EINVAL;
48 	}
49 	rcu_read_unlock();
50 
51 	return error;
52 }
53 
54 /*
55  * Update expiry time from increment, and increase overrun count,
56  * given the current clock sample.
57  */
58 static void bump_cpu_timer(struct k_itimer *timer, u64 now)
59 {
60 	int i;
61 	u64 delta, incr;
62 
63 	if (timer->it.cpu.incr == 0)
64 		return;
65 
66 	if (now < timer->it.cpu.expires)
67 		return;
68 
69 	incr = timer->it.cpu.incr;
70 	delta = now + incr - timer->it.cpu.expires;
71 
72 	/* Don't use (incr*2 < delta), incr*2 might overflow. */
73 	for (i = 0; incr < delta - incr; i++)
74 		incr = incr << 1;
75 
76 	for (; i >= 0; incr >>= 1, i--) {
77 		if (delta < incr)
78 			continue;
79 
80 		timer->it.cpu.expires += incr;
81 		timer->it_overrun += 1 << i;
82 		delta -= incr;
83 	}
84 }
85 
86 /**
87  * task_cputime_zero - Check a task_cputime struct for all zero fields.
88  *
89  * @cputime:	The struct to compare.
90  *
91  * Checks @cputime to see if all fields are zero.  Returns true if all fields
92  * are zero, false if any field is nonzero.
93  */
94 static inline int task_cputime_zero(const struct task_cputime *cputime)
95 {
96 	if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
97 		return 1;
98 	return 0;
99 }
100 
101 static inline u64 prof_ticks(struct task_struct *p)
102 {
103 	u64 utime, stime;
104 
105 	task_cputime(p, &utime, &stime);
106 
107 	return utime + stime;
108 }
109 static inline u64 virt_ticks(struct task_struct *p)
110 {
111 	u64 utime, stime;
112 
113 	task_cputime(p, &utime, &stime);
114 
115 	return utime;
116 }
117 
118 static int
119 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
120 {
121 	int error = check_clock(which_clock);
122 	if (!error) {
123 		tp->tv_sec = 0;
124 		tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
125 		if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
126 			/*
127 			 * If sched_clock is using a cycle counter, we
128 			 * don't have any idea of its true resolution
129 			 * exported, but it is much more than 1s/HZ.
130 			 */
131 			tp->tv_nsec = 1;
132 		}
133 	}
134 	return error;
135 }
136 
137 static int
138 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
139 {
140 	/*
141 	 * You can never reset a CPU clock, but we check for other errors
142 	 * in the call before failing with EPERM.
143 	 */
144 	int error = check_clock(which_clock);
145 	if (error == 0) {
146 		error = -EPERM;
147 	}
148 	return error;
149 }
150 
151 
152 /*
153  * Sample a per-thread clock for the given task.
154  */
155 static int cpu_clock_sample(const clockid_t which_clock,
156 			    struct task_struct *p, u64 *sample)
157 {
158 	switch (CPUCLOCK_WHICH(which_clock)) {
159 	default:
160 		return -EINVAL;
161 	case CPUCLOCK_PROF:
162 		*sample = prof_ticks(p);
163 		break;
164 	case CPUCLOCK_VIRT:
165 		*sample = virt_ticks(p);
166 		break;
167 	case CPUCLOCK_SCHED:
168 		*sample = task_sched_runtime(p);
169 		break;
170 	}
171 	return 0;
172 }
173 
174 /*
175  * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
176  * to avoid race conditions with concurrent updates to cputime.
177  */
178 static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
179 {
180 	u64 curr_cputime;
181 retry:
182 	curr_cputime = atomic64_read(cputime);
183 	if (sum_cputime > curr_cputime) {
184 		if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
185 			goto retry;
186 	}
187 }
188 
189 static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum)
190 {
191 	__update_gt_cputime(&cputime_atomic->utime, sum->utime);
192 	__update_gt_cputime(&cputime_atomic->stime, sum->stime);
193 	__update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
194 }
195 
196 /* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
197 static inline void sample_cputime_atomic(struct task_cputime *times,
198 					 struct task_cputime_atomic *atomic_times)
199 {
200 	times->utime = atomic64_read(&atomic_times->utime);
201 	times->stime = atomic64_read(&atomic_times->stime);
202 	times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime);
203 }
204 
205 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
206 {
207 	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
208 	struct task_cputime sum;
209 
210 	/* Check if cputimer isn't running. This is accessed without locking. */
211 	if (!READ_ONCE(cputimer->running)) {
212 		/*
213 		 * The POSIX timer interface allows for absolute time expiry
214 		 * values through the TIMER_ABSTIME flag, therefore we have
215 		 * to synchronize the timer to the clock every time we start it.
216 		 */
217 		thread_group_cputime(tsk, &sum);
218 		update_gt_cputime(&cputimer->cputime_atomic, &sum);
219 
220 		/*
221 		 * We're setting cputimer->running without a lock. Ensure
222 		 * this only gets written to in one operation. We set
223 		 * running after update_gt_cputime() as a small optimization,
224 		 * but barriers are not required because update_gt_cputime()
225 		 * can handle concurrent updates.
226 		 */
227 		WRITE_ONCE(cputimer->running, true);
228 	}
229 	sample_cputime_atomic(times, &cputimer->cputime_atomic);
230 }
231 
232 /*
233  * Sample a process (thread group) clock for the given group_leader task.
234  * Must be called with task sighand lock held for safe while_each_thread()
235  * traversal.
236  */
237 static int cpu_clock_sample_group(const clockid_t which_clock,
238 				  struct task_struct *p,
239 				  u64 *sample)
240 {
241 	struct task_cputime cputime;
242 
243 	switch (CPUCLOCK_WHICH(which_clock)) {
244 	default:
245 		return -EINVAL;
246 	case CPUCLOCK_PROF:
247 		thread_group_cputime(p, &cputime);
248 		*sample = cputime.utime + cputime.stime;
249 		break;
250 	case CPUCLOCK_VIRT:
251 		thread_group_cputime(p, &cputime);
252 		*sample = cputime.utime;
253 		break;
254 	case CPUCLOCK_SCHED:
255 		thread_group_cputime(p, &cputime);
256 		*sample = cputime.sum_exec_runtime;
257 		break;
258 	}
259 	return 0;
260 }
261 
262 static int posix_cpu_clock_get_task(struct task_struct *tsk,
263 				    const clockid_t which_clock,
264 				    struct timespec *tp)
265 {
266 	int err = -EINVAL;
267 	u64 rtn;
268 
269 	if (CPUCLOCK_PERTHREAD(which_clock)) {
270 		if (same_thread_group(tsk, current))
271 			err = cpu_clock_sample(which_clock, tsk, &rtn);
272 	} else {
273 		if (tsk == current || thread_group_leader(tsk))
274 			err = cpu_clock_sample_group(which_clock, tsk, &rtn);
275 	}
276 
277 	if (!err)
278 		*tp = ns_to_timespec(rtn);
279 
280 	return err;
281 }
282 
283 
284 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
285 {
286 	const pid_t pid = CPUCLOCK_PID(which_clock);
287 	int err = -EINVAL;
288 
289 	if (pid == 0) {
290 		/*
291 		 * Special case constant value for our own clocks.
292 		 * We don't have to do any lookup to find ourselves.
293 		 */
294 		err = posix_cpu_clock_get_task(current, which_clock, tp);
295 	} else {
296 		/*
297 		 * Find the given PID, and validate that the caller
298 		 * should be able to see it.
299 		 */
300 		struct task_struct *p;
301 		rcu_read_lock();
302 		p = find_task_by_vpid(pid);
303 		if (p)
304 			err = posix_cpu_clock_get_task(p, which_clock, tp);
305 		rcu_read_unlock();
306 	}
307 
308 	return err;
309 }
310 
311 /*
312  * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
313  * This is called from sys_timer_create() and do_cpu_nanosleep() with the
314  * new timer already all-zeros initialized.
315  */
316 static int posix_cpu_timer_create(struct k_itimer *new_timer)
317 {
318 	int ret = 0;
319 	const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
320 	struct task_struct *p;
321 
322 	if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
323 		return -EINVAL;
324 
325 	INIT_LIST_HEAD(&new_timer->it.cpu.entry);
326 
327 	rcu_read_lock();
328 	if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
329 		if (pid == 0) {
330 			p = current;
331 		} else {
332 			p = find_task_by_vpid(pid);
333 			if (p && !same_thread_group(p, current))
334 				p = NULL;
335 		}
336 	} else {
337 		if (pid == 0) {
338 			p = current->group_leader;
339 		} else {
340 			p = find_task_by_vpid(pid);
341 			if (p && !has_group_leader_pid(p))
342 				p = NULL;
343 		}
344 	}
345 	new_timer->it.cpu.task = p;
346 	if (p) {
347 		get_task_struct(p);
348 	} else {
349 		ret = -EINVAL;
350 	}
351 	rcu_read_unlock();
352 
353 	return ret;
354 }
355 
356 /*
357  * Clean up a CPU-clock timer that is about to be destroyed.
358  * This is called from timer deletion with the timer already locked.
359  * If we return TIMER_RETRY, it's necessary to release the timer's lock
360  * and try again.  (This happens when the timer is in the middle of firing.)
361  */
362 static int posix_cpu_timer_del(struct k_itimer *timer)
363 {
364 	int ret = 0;
365 	unsigned long flags;
366 	struct sighand_struct *sighand;
367 	struct task_struct *p = timer->it.cpu.task;
368 
369 	WARN_ON_ONCE(p == NULL);
370 
371 	/*
372 	 * Protect against sighand release/switch in exit/exec and process/
373 	 * thread timer list entry concurrent read/writes.
374 	 */
375 	sighand = lock_task_sighand(p, &flags);
376 	if (unlikely(sighand == NULL)) {
377 		/*
378 		 * We raced with the reaping of the task.
379 		 * The deletion should have cleared us off the list.
380 		 */
381 		WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
382 	} else {
383 		if (timer->it.cpu.firing)
384 			ret = TIMER_RETRY;
385 		else
386 			list_del(&timer->it.cpu.entry);
387 
388 		unlock_task_sighand(p, &flags);
389 	}
390 
391 	if (!ret)
392 		put_task_struct(p);
393 
394 	return ret;
395 }
396 
397 static void cleanup_timers_list(struct list_head *head)
398 {
399 	struct cpu_timer_list *timer, *next;
400 
401 	list_for_each_entry_safe(timer, next, head, entry)
402 		list_del_init(&timer->entry);
403 }
404 
405 /*
406  * Clean out CPU timers still ticking when a thread exited.  The task
407  * pointer is cleared, and the expiry time is replaced with the residual
408  * time for later timer_gettime calls to return.
409  * This must be called with the siglock held.
410  */
411 static void cleanup_timers(struct list_head *head)
412 {
413 	cleanup_timers_list(head);
414 	cleanup_timers_list(++head);
415 	cleanup_timers_list(++head);
416 }
417 
418 /*
419  * These are both called with the siglock held, when the current thread
420  * is being reaped.  When the final (leader) thread in the group is reaped,
421  * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
422  */
423 void posix_cpu_timers_exit(struct task_struct *tsk)
424 {
425 	cleanup_timers(tsk->cpu_timers);
426 }
427 void posix_cpu_timers_exit_group(struct task_struct *tsk)
428 {
429 	cleanup_timers(tsk->signal->cpu_timers);
430 }
431 
432 static inline int expires_gt(u64 expires, u64 new_exp)
433 {
434 	return expires == 0 || expires > new_exp;
435 }
436 
437 /*
438  * Insert the timer on the appropriate list before any timers that
439  * expire later.  This must be called with the sighand lock held.
440  */
441 static void arm_timer(struct k_itimer *timer)
442 {
443 	struct task_struct *p = timer->it.cpu.task;
444 	struct list_head *head, *listpos;
445 	struct task_cputime *cputime_expires;
446 	struct cpu_timer_list *const nt = &timer->it.cpu;
447 	struct cpu_timer_list *next;
448 
449 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
450 		head = p->cpu_timers;
451 		cputime_expires = &p->cputime_expires;
452 	} else {
453 		head = p->signal->cpu_timers;
454 		cputime_expires = &p->signal->cputime_expires;
455 	}
456 	head += CPUCLOCK_WHICH(timer->it_clock);
457 
458 	listpos = head;
459 	list_for_each_entry(next, head, entry) {
460 		if (nt->expires < next->expires)
461 			break;
462 		listpos = &next->entry;
463 	}
464 	list_add(&nt->entry, listpos);
465 
466 	if (listpos == head) {
467 		u64 exp = nt->expires;
468 
469 		/*
470 		 * We are the new earliest-expiring POSIX 1.b timer, hence
471 		 * need to update expiration cache. Take into account that
472 		 * for process timers we share expiration cache with itimers
473 		 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
474 		 */
475 
476 		switch (CPUCLOCK_WHICH(timer->it_clock)) {
477 		case CPUCLOCK_PROF:
478 			if (expires_gt(cputime_expires->prof_exp, exp))
479 				cputime_expires->prof_exp = exp;
480 			break;
481 		case CPUCLOCK_VIRT:
482 			if (expires_gt(cputime_expires->virt_exp, exp))
483 				cputime_expires->virt_exp = exp;
484 			break;
485 		case CPUCLOCK_SCHED:
486 			if (expires_gt(cputime_expires->sched_exp, exp))
487 				cputime_expires->sched_exp = exp;
488 			break;
489 		}
490 		if (CPUCLOCK_PERTHREAD(timer->it_clock))
491 			tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
492 		else
493 			tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
494 	}
495 }
496 
497 /*
498  * The timer is locked, fire it and arrange for its reload.
499  */
500 static void cpu_timer_fire(struct k_itimer *timer)
501 {
502 	if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
503 		/*
504 		 * User don't want any signal.
505 		 */
506 		timer->it.cpu.expires = 0;
507 	} else if (unlikely(timer->sigq == NULL)) {
508 		/*
509 		 * This a special case for clock_nanosleep,
510 		 * not a normal timer from sys_timer_create.
511 		 */
512 		wake_up_process(timer->it_process);
513 		timer->it.cpu.expires = 0;
514 	} else if (timer->it.cpu.incr == 0) {
515 		/*
516 		 * One-shot timer.  Clear it as soon as it's fired.
517 		 */
518 		posix_timer_event(timer, 0);
519 		timer->it.cpu.expires = 0;
520 	} else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
521 		/*
522 		 * The signal did not get queued because the signal
523 		 * was ignored, so we won't get any callback to
524 		 * reload the timer.  But we need to keep it
525 		 * ticking in case the signal is deliverable next time.
526 		 */
527 		posix_cpu_timer_schedule(timer);
528 	}
529 }
530 
531 /*
532  * Sample a process (thread group) timer for the given group_leader task.
533  * Must be called with task sighand lock held for safe while_each_thread()
534  * traversal.
535  */
536 static int cpu_timer_sample_group(const clockid_t which_clock,
537 				  struct task_struct *p, u64 *sample)
538 {
539 	struct task_cputime cputime;
540 
541 	thread_group_cputimer(p, &cputime);
542 	switch (CPUCLOCK_WHICH(which_clock)) {
543 	default:
544 		return -EINVAL;
545 	case CPUCLOCK_PROF:
546 		*sample = cputime.utime + cputime.stime;
547 		break;
548 	case CPUCLOCK_VIRT:
549 		*sample = cputime.utime;
550 		break;
551 	case CPUCLOCK_SCHED:
552 		*sample = cputime.sum_exec_runtime;
553 		break;
554 	}
555 	return 0;
556 }
557 
558 /*
559  * Guts of sys_timer_settime for CPU timers.
560  * This is called with the timer locked and interrupts disabled.
561  * If we return TIMER_RETRY, it's necessary to release the timer's lock
562  * and try again.  (This happens when the timer is in the middle of firing.)
563  */
564 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
565 			       struct itimerspec *new, struct itimerspec *old)
566 {
567 	unsigned long flags;
568 	struct sighand_struct *sighand;
569 	struct task_struct *p = timer->it.cpu.task;
570 	u64 old_expires, new_expires, old_incr, val;
571 	int ret;
572 
573 	WARN_ON_ONCE(p == NULL);
574 
575 	new_expires = timespec_to_ns(&new->it_value);
576 
577 	/*
578 	 * Protect against sighand release/switch in exit/exec and p->cpu_timers
579 	 * and p->signal->cpu_timers read/write in arm_timer()
580 	 */
581 	sighand = lock_task_sighand(p, &flags);
582 	/*
583 	 * If p has just been reaped, we can no
584 	 * longer get any information about it at all.
585 	 */
586 	if (unlikely(sighand == NULL)) {
587 		return -ESRCH;
588 	}
589 
590 	/*
591 	 * Disarm any old timer after extracting its expiry time.
592 	 */
593 	WARN_ON_ONCE(!irqs_disabled());
594 
595 	ret = 0;
596 	old_incr = timer->it.cpu.incr;
597 	old_expires = timer->it.cpu.expires;
598 	if (unlikely(timer->it.cpu.firing)) {
599 		timer->it.cpu.firing = -1;
600 		ret = TIMER_RETRY;
601 	} else
602 		list_del_init(&timer->it.cpu.entry);
603 
604 	/*
605 	 * We need to sample the current value to convert the new
606 	 * value from to relative and absolute, and to convert the
607 	 * old value from absolute to relative.  To set a process
608 	 * timer, we need a sample to balance the thread expiry
609 	 * times (in arm_timer).  With an absolute time, we must
610 	 * check if it's already passed.  In short, we need a sample.
611 	 */
612 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
613 		cpu_clock_sample(timer->it_clock, p, &val);
614 	} else {
615 		cpu_timer_sample_group(timer->it_clock, p, &val);
616 	}
617 
618 	if (old) {
619 		if (old_expires == 0) {
620 			old->it_value.tv_sec = 0;
621 			old->it_value.tv_nsec = 0;
622 		} else {
623 			/*
624 			 * Update the timer in case it has
625 			 * overrun already.  If it has,
626 			 * we'll report it as having overrun
627 			 * and with the next reloaded timer
628 			 * already ticking, though we are
629 			 * swallowing that pending
630 			 * notification here to install the
631 			 * new setting.
632 			 */
633 			bump_cpu_timer(timer, val);
634 			if (val < timer->it.cpu.expires) {
635 				old_expires = timer->it.cpu.expires - val;
636 				old->it_value = ns_to_timespec(old_expires);
637 			} else {
638 				old->it_value.tv_nsec = 1;
639 				old->it_value.tv_sec = 0;
640 			}
641 		}
642 	}
643 
644 	if (unlikely(ret)) {
645 		/*
646 		 * We are colliding with the timer actually firing.
647 		 * Punt after filling in the timer's old value, and
648 		 * disable this firing since we are already reporting
649 		 * it as an overrun (thanks to bump_cpu_timer above).
650 		 */
651 		unlock_task_sighand(p, &flags);
652 		goto out;
653 	}
654 
655 	if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
656 		new_expires += val;
657 	}
658 
659 	/*
660 	 * Install the new expiry time (or zero).
661 	 * For a timer with no notification action, we don't actually
662 	 * arm the timer (we'll just fake it for timer_gettime).
663 	 */
664 	timer->it.cpu.expires = new_expires;
665 	if (new_expires != 0 && val < new_expires) {
666 		arm_timer(timer);
667 	}
668 
669 	unlock_task_sighand(p, &flags);
670 	/*
671 	 * Install the new reload setting, and
672 	 * set up the signal and overrun bookkeeping.
673 	 */
674 	timer->it.cpu.incr = timespec_to_ns(&new->it_interval);
675 
676 	/*
677 	 * This acts as a modification timestamp for the timer,
678 	 * so any automatic reload attempt will punt on seeing
679 	 * that we have reset the timer manually.
680 	 */
681 	timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
682 		~REQUEUE_PENDING;
683 	timer->it_overrun_last = 0;
684 	timer->it_overrun = -1;
685 
686 	if (new_expires != 0 && !(val < new_expires)) {
687 		/*
688 		 * The designated time already passed, so we notify
689 		 * immediately, even if the thread never runs to
690 		 * accumulate more time on this clock.
691 		 */
692 		cpu_timer_fire(timer);
693 	}
694 
695 	ret = 0;
696  out:
697 	if (old)
698 		old->it_interval = ns_to_timespec(old_incr);
699 
700 	return ret;
701 }
702 
703 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
704 {
705 	u64 now;
706 	struct task_struct *p = timer->it.cpu.task;
707 
708 	WARN_ON_ONCE(p == NULL);
709 
710 	/*
711 	 * Easy part: convert the reload time.
712 	 */
713 	itp->it_interval = ns_to_timespec(timer->it.cpu.incr);
714 
715 	if (timer->it.cpu.expires == 0) {	/* Timer not armed at all.  */
716 		itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
717 		return;
718 	}
719 
720 	/*
721 	 * Sample the clock to take the difference with the expiry time.
722 	 */
723 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
724 		cpu_clock_sample(timer->it_clock, p, &now);
725 	} else {
726 		struct sighand_struct *sighand;
727 		unsigned long flags;
728 
729 		/*
730 		 * Protect against sighand release/switch in exit/exec and
731 		 * also make timer sampling safe if it ends up calling
732 		 * thread_group_cputime().
733 		 */
734 		sighand = lock_task_sighand(p, &flags);
735 		if (unlikely(sighand == NULL)) {
736 			/*
737 			 * The process has been reaped.
738 			 * We can't even collect a sample any more.
739 			 * Call the timer disarmed, nothing else to do.
740 			 */
741 			timer->it.cpu.expires = 0;
742 			itp->it_value = ns_to_timespec(timer->it.cpu.expires);
743 			return;
744 		} else {
745 			cpu_timer_sample_group(timer->it_clock, p, &now);
746 			unlock_task_sighand(p, &flags);
747 		}
748 	}
749 
750 	if (now < timer->it.cpu.expires) {
751 		itp->it_value = ns_to_timespec(timer->it.cpu.expires - now);
752 	} else {
753 		/*
754 		 * The timer should have expired already, but the firing
755 		 * hasn't taken place yet.  Say it's just about to expire.
756 		 */
757 		itp->it_value.tv_nsec = 1;
758 		itp->it_value.tv_sec = 0;
759 	}
760 }
761 
762 static unsigned long long
763 check_timers_list(struct list_head *timers,
764 		  struct list_head *firing,
765 		  unsigned long long curr)
766 {
767 	int maxfire = 20;
768 
769 	while (!list_empty(timers)) {
770 		struct cpu_timer_list *t;
771 
772 		t = list_first_entry(timers, struct cpu_timer_list, entry);
773 
774 		if (!--maxfire || curr < t->expires)
775 			return t->expires;
776 
777 		t->firing = 1;
778 		list_move_tail(&t->entry, firing);
779 	}
780 
781 	return 0;
782 }
783 
784 /*
785  * Check for any per-thread CPU timers that have fired and move them off
786  * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
787  * tsk->it_*_expires values to reflect the remaining thread CPU timers.
788  */
789 static void check_thread_timers(struct task_struct *tsk,
790 				struct list_head *firing)
791 {
792 	struct list_head *timers = tsk->cpu_timers;
793 	struct signal_struct *const sig = tsk->signal;
794 	struct task_cputime *tsk_expires = &tsk->cputime_expires;
795 	u64 expires;
796 	unsigned long soft;
797 
798 	/*
799 	 * If cputime_expires is zero, then there are no active
800 	 * per thread CPU timers.
801 	 */
802 	if (task_cputime_zero(&tsk->cputime_expires))
803 		return;
804 
805 	expires = check_timers_list(timers, firing, prof_ticks(tsk));
806 	tsk_expires->prof_exp = expires;
807 
808 	expires = check_timers_list(++timers, firing, virt_ticks(tsk));
809 	tsk_expires->virt_exp = expires;
810 
811 	tsk_expires->sched_exp = check_timers_list(++timers, firing,
812 						   tsk->se.sum_exec_runtime);
813 
814 	/*
815 	 * Check for the special case thread timers.
816 	 */
817 	soft = READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
818 	if (soft != RLIM_INFINITY) {
819 		unsigned long hard =
820 			READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
821 
822 		if (hard != RLIM_INFINITY &&
823 		    tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
824 			/*
825 			 * At the hard limit, we just die.
826 			 * No need to calculate anything else now.
827 			 */
828 			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
829 			return;
830 		}
831 		if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
832 			/*
833 			 * At the soft limit, send a SIGXCPU every second.
834 			 */
835 			if (soft < hard) {
836 				soft += USEC_PER_SEC;
837 				sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
838 			}
839 			printk(KERN_INFO
840 				"RT Watchdog Timeout: %s[%d]\n",
841 				tsk->comm, task_pid_nr(tsk));
842 			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
843 		}
844 	}
845 	if (task_cputime_zero(tsk_expires))
846 		tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
847 }
848 
849 static inline void stop_process_timers(struct signal_struct *sig)
850 {
851 	struct thread_group_cputimer *cputimer = &sig->cputimer;
852 
853 	/* Turn off cputimer->running. This is done without locking. */
854 	WRITE_ONCE(cputimer->running, false);
855 	tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
856 }
857 
858 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
859 			     u64 *expires, u64 cur_time, int signo)
860 {
861 	if (!it->expires)
862 		return;
863 
864 	if (cur_time >= it->expires) {
865 		if (it->incr)
866 			it->expires += it->incr;
867 		else
868 			it->expires = 0;
869 
870 		trace_itimer_expire(signo == SIGPROF ?
871 				    ITIMER_PROF : ITIMER_VIRTUAL,
872 				    tsk->signal->leader_pid, cur_time);
873 		__group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
874 	}
875 
876 	if (it->expires && (!*expires || it->expires < *expires))
877 		*expires = it->expires;
878 }
879 
880 /*
881  * Check for any per-thread CPU timers that have fired and move them
882  * off the tsk->*_timers list onto the firing list.  Per-thread timers
883  * have already been taken off.
884  */
885 static void check_process_timers(struct task_struct *tsk,
886 				 struct list_head *firing)
887 {
888 	struct signal_struct *const sig = tsk->signal;
889 	u64 utime, ptime, virt_expires, prof_expires;
890 	u64 sum_sched_runtime, sched_expires;
891 	struct list_head *timers = sig->cpu_timers;
892 	struct task_cputime cputime;
893 	unsigned long soft;
894 
895 	/*
896 	 * If cputimer is not running, then there are no active
897 	 * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU).
898 	 */
899 	if (!READ_ONCE(tsk->signal->cputimer.running))
900 		return;
901 
902         /*
903 	 * Signify that a thread is checking for process timers.
904 	 * Write access to this field is protected by the sighand lock.
905 	 */
906 	sig->cputimer.checking_timer = true;
907 
908 	/*
909 	 * Collect the current process totals.
910 	 */
911 	thread_group_cputimer(tsk, &cputime);
912 	utime = cputime.utime;
913 	ptime = utime + cputime.stime;
914 	sum_sched_runtime = cputime.sum_exec_runtime;
915 
916 	prof_expires = check_timers_list(timers, firing, ptime);
917 	virt_expires = check_timers_list(++timers, firing, utime);
918 	sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
919 
920 	/*
921 	 * Check for the special case process timers.
922 	 */
923 	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
924 			 SIGPROF);
925 	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
926 			 SIGVTALRM);
927 	soft = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
928 	if (soft != RLIM_INFINITY) {
929 		unsigned long psecs = div_u64(ptime, NSEC_PER_SEC);
930 		unsigned long hard =
931 			READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
932 		u64 x;
933 		if (psecs >= hard) {
934 			/*
935 			 * At the hard limit, we just die.
936 			 * No need to calculate anything else now.
937 			 */
938 			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
939 			return;
940 		}
941 		if (psecs >= soft) {
942 			/*
943 			 * At the soft limit, send a SIGXCPU every second.
944 			 */
945 			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
946 			if (soft < hard) {
947 				soft++;
948 				sig->rlim[RLIMIT_CPU].rlim_cur = soft;
949 			}
950 		}
951 		x = soft * NSEC_PER_SEC;
952 		if (!prof_expires || x < prof_expires)
953 			prof_expires = x;
954 	}
955 
956 	sig->cputime_expires.prof_exp = prof_expires;
957 	sig->cputime_expires.virt_exp = virt_expires;
958 	sig->cputime_expires.sched_exp = sched_expires;
959 	if (task_cputime_zero(&sig->cputime_expires))
960 		stop_process_timers(sig);
961 
962 	sig->cputimer.checking_timer = false;
963 }
964 
965 /*
966  * This is called from the signal code (via do_schedule_next_timer)
967  * when the last timer signal was delivered and we have to reload the timer.
968  */
969 void posix_cpu_timer_schedule(struct k_itimer *timer)
970 {
971 	struct sighand_struct *sighand;
972 	unsigned long flags;
973 	struct task_struct *p = timer->it.cpu.task;
974 	u64 now;
975 
976 	WARN_ON_ONCE(p == NULL);
977 
978 	/*
979 	 * Fetch the current sample and update the timer's expiry time.
980 	 */
981 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
982 		cpu_clock_sample(timer->it_clock, p, &now);
983 		bump_cpu_timer(timer, now);
984 		if (unlikely(p->exit_state))
985 			goto out;
986 
987 		/* Protect timer list r/w in arm_timer() */
988 		sighand = lock_task_sighand(p, &flags);
989 		if (!sighand)
990 			goto out;
991 	} else {
992 		/*
993 		 * Protect arm_timer() and timer sampling in case of call to
994 		 * thread_group_cputime().
995 		 */
996 		sighand = lock_task_sighand(p, &flags);
997 		if (unlikely(sighand == NULL)) {
998 			/*
999 			 * The process has been reaped.
1000 			 * We can't even collect a sample any more.
1001 			 */
1002 			timer->it.cpu.expires = 0;
1003 			goto out;
1004 		} else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1005 			unlock_task_sighand(p, &flags);
1006 			/* Optimizations: if the process is dying, no need to rearm */
1007 			goto out;
1008 		}
1009 		cpu_timer_sample_group(timer->it_clock, p, &now);
1010 		bump_cpu_timer(timer, now);
1011 		/* Leave the sighand locked for the call below.  */
1012 	}
1013 
1014 	/*
1015 	 * Now re-arm for the new expiry time.
1016 	 */
1017 	WARN_ON_ONCE(!irqs_disabled());
1018 	arm_timer(timer);
1019 	unlock_task_sighand(p, &flags);
1020 
1021 out:
1022 	timer->it_overrun_last = timer->it_overrun;
1023 	timer->it_overrun = -1;
1024 	++timer->it_requeue_pending;
1025 }
1026 
1027 /**
1028  * task_cputime_expired - Compare two task_cputime entities.
1029  *
1030  * @sample:	The task_cputime structure to be checked for expiration.
1031  * @expires:	Expiration times, against which @sample will be checked.
1032  *
1033  * Checks @sample against @expires to see if any field of @sample has expired.
1034  * Returns true if any field of the former is greater than the corresponding
1035  * field of the latter if the latter field is set.  Otherwise returns false.
1036  */
1037 static inline int task_cputime_expired(const struct task_cputime *sample,
1038 					const struct task_cputime *expires)
1039 {
1040 	if (expires->utime && sample->utime >= expires->utime)
1041 		return 1;
1042 	if (expires->stime && sample->utime + sample->stime >= expires->stime)
1043 		return 1;
1044 	if (expires->sum_exec_runtime != 0 &&
1045 	    sample->sum_exec_runtime >= expires->sum_exec_runtime)
1046 		return 1;
1047 	return 0;
1048 }
1049 
1050 /**
1051  * fastpath_timer_check - POSIX CPU timers fast path.
1052  *
1053  * @tsk:	The task (thread) being checked.
1054  *
1055  * Check the task and thread group timers.  If both are zero (there are no
1056  * timers set) return false.  Otherwise snapshot the task and thread group
1057  * timers and compare them with the corresponding expiration times.  Return
1058  * true if a timer has expired, else return false.
1059  */
1060 static inline int fastpath_timer_check(struct task_struct *tsk)
1061 {
1062 	struct signal_struct *sig;
1063 
1064 	if (!task_cputime_zero(&tsk->cputime_expires)) {
1065 		struct task_cputime task_sample;
1066 
1067 		task_cputime(tsk, &task_sample.utime, &task_sample.stime);
1068 		task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime;
1069 		if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1070 			return 1;
1071 	}
1072 
1073 	sig = tsk->signal;
1074 	/*
1075 	 * Check if thread group timers expired when the cputimer is
1076 	 * running and no other thread in the group is already checking
1077 	 * for thread group cputimers. These fields are read without the
1078 	 * sighand lock. However, this is fine because this is meant to
1079 	 * be a fastpath heuristic to determine whether we should try to
1080 	 * acquire the sighand lock to check/handle timers.
1081 	 *
1082 	 * In the worst case scenario, if 'running' or 'checking_timer' gets
1083 	 * set but the current thread doesn't see the change yet, we'll wait
1084 	 * until the next thread in the group gets a scheduler interrupt to
1085 	 * handle the timer. This isn't an issue in practice because these
1086 	 * types of delays with signals actually getting sent are expected.
1087 	 */
1088 	if (READ_ONCE(sig->cputimer.running) &&
1089 	    !READ_ONCE(sig->cputimer.checking_timer)) {
1090 		struct task_cputime group_sample;
1091 
1092 		sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic);
1093 
1094 		if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1095 			return 1;
1096 	}
1097 
1098 	return 0;
1099 }
1100 
1101 /*
1102  * This is called from the timer interrupt handler.  The irq handler has
1103  * already updated our counts.  We need to check if any timers fire now.
1104  * Interrupts are disabled.
1105  */
1106 void run_posix_cpu_timers(struct task_struct *tsk)
1107 {
1108 	LIST_HEAD(firing);
1109 	struct k_itimer *timer, *next;
1110 	unsigned long flags;
1111 
1112 	WARN_ON_ONCE(!irqs_disabled());
1113 
1114 	/*
1115 	 * The fast path checks that there are no expired thread or thread
1116 	 * group timers.  If that's so, just return.
1117 	 */
1118 	if (!fastpath_timer_check(tsk))
1119 		return;
1120 
1121 	if (!lock_task_sighand(tsk, &flags))
1122 		return;
1123 	/*
1124 	 * Here we take off tsk->signal->cpu_timers[N] and
1125 	 * tsk->cpu_timers[N] all the timers that are firing, and
1126 	 * put them on the firing list.
1127 	 */
1128 	check_thread_timers(tsk, &firing);
1129 
1130 	check_process_timers(tsk, &firing);
1131 
1132 	/*
1133 	 * We must release these locks before taking any timer's lock.
1134 	 * There is a potential race with timer deletion here, as the
1135 	 * siglock now protects our private firing list.  We have set
1136 	 * the firing flag in each timer, so that a deletion attempt
1137 	 * that gets the timer lock before we do will give it up and
1138 	 * spin until we've taken care of that timer below.
1139 	 */
1140 	unlock_task_sighand(tsk, &flags);
1141 
1142 	/*
1143 	 * Now that all the timers on our list have the firing flag,
1144 	 * no one will touch their list entries but us.  We'll take
1145 	 * each timer's lock before clearing its firing flag, so no
1146 	 * timer call will interfere.
1147 	 */
1148 	list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1149 		int cpu_firing;
1150 
1151 		spin_lock(&timer->it_lock);
1152 		list_del_init(&timer->it.cpu.entry);
1153 		cpu_firing = timer->it.cpu.firing;
1154 		timer->it.cpu.firing = 0;
1155 		/*
1156 		 * The firing flag is -1 if we collided with a reset
1157 		 * of the timer, which already reported this
1158 		 * almost-firing as an overrun.  So don't generate an event.
1159 		 */
1160 		if (likely(cpu_firing >= 0))
1161 			cpu_timer_fire(timer);
1162 		spin_unlock(&timer->it_lock);
1163 	}
1164 }
1165 
1166 /*
1167  * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1168  * The tsk->sighand->siglock must be held by the caller.
1169  */
1170 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1171 			   u64 *newval, u64 *oldval)
1172 {
1173 	u64 now;
1174 
1175 	WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
1176 	cpu_timer_sample_group(clock_idx, tsk, &now);
1177 
1178 	if (oldval) {
1179 		/*
1180 		 * We are setting itimer. The *oldval is absolute and we update
1181 		 * it to be relative, *newval argument is relative and we update
1182 		 * it to be absolute.
1183 		 */
1184 		if (*oldval) {
1185 			if (*oldval <= now) {
1186 				/* Just about to fire. */
1187 				*oldval = TICK_NSEC;
1188 			} else {
1189 				*oldval -= now;
1190 			}
1191 		}
1192 
1193 		if (!*newval)
1194 			return;
1195 		*newval += now;
1196 	}
1197 
1198 	/*
1199 	 * Update expiration cache if we are the earliest timer, or eventually
1200 	 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1201 	 */
1202 	switch (clock_idx) {
1203 	case CPUCLOCK_PROF:
1204 		if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1205 			tsk->signal->cputime_expires.prof_exp = *newval;
1206 		break;
1207 	case CPUCLOCK_VIRT:
1208 		if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1209 			tsk->signal->cputime_expires.virt_exp = *newval;
1210 		break;
1211 	}
1212 
1213 	tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER);
1214 }
1215 
1216 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1217 			    struct timespec *rqtp, struct itimerspec *it)
1218 {
1219 	struct k_itimer timer;
1220 	int error;
1221 
1222 	/*
1223 	 * Set up a temporary timer and then wait for it to go off.
1224 	 */
1225 	memset(&timer, 0, sizeof timer);
1226 	spin_lock_init(&timer.it_lock);
1227 	timer.it_clock = which_clock;
1228 	timer.it_overrun = -1;
1229 	error = posix_cpu_timer_create(&timer);
1230 	timer.it_process = current;
1231 	if (!error) {
1232 		static struct itimerspec zero_it;
1233 
1234 		memset(it, 0, sizeof *it);
1235 		it->it_value = *rqtp;
1236 
1237 		spin_lock_irq(&timer.it_lock);
1238 		error = posix_cpu_timer_set(&timer, flags, it, NULL);
1239 		if (error) {
1240 			spin_unlock_irq(&timer.it_lock);
1241 			return error;
1242 		}
1243 
1244 		while (!signal_pending(current)) {
1245 			if (timer.it.cpu.expires == 0) {
1246 				/*
1247 				 * Our timer fired and was reset, below
1248 				 * deletion can not fail.
1249 				 */
1250 				posix_cpu_timer_del(&timer);
1251 				spin_unlock_irq(&timer.it_lock);
1252 				return 0;
1253 			}
1254 
1255 			/*
1256 			 * Block until cpu_timer_fire (or a signal) wakes us.
1257 			 */
1258 			__set_current_state(TASK_INTERRUPTIBLE);
1259 			spin_unlock_irq(&timer.it_lock);
1260 			schedule();
1261 			spin_lock_irq(&timer.it_lock);
1262 		}
1263 
1264 		/*
1265 		 * We were interrupted by a signal.
1266 		 */
1267 		*rqtp = ns_to_timespec(timer.it.cpu.expires);
1268 		error = posix_cpu_timer_set(&timer, 0, &zero_it, it);
1269 		if (!error) {
1270 			/*
1271 			 * Timer is now unarmed, deletion can not fail.
1272 			 */
1273 			posix_cpu_timer_del(&timer);
1274 		}
1275 		spin_unlock_irq(&timer.it_lock);
1276 
1277 		while (error == TIMER_RETRY) {
1278 			/*
1279 			 * We need to handle case when timer was or is in the
1280 			 * middle of firing. In other cases we already freed
1281 			 * resources.
1282 			 */
1283 			spin_lock_irq(&timer.it_lock);
1284 			error = posix_cpu_timer_del(&timer);
1285 			spin_unlock_irq(&timer.it_lock);
1286 		}
1287 
1288 		if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1289 			/*
1290 			 * It actually did fire already.
1291 			 */
1292 			return 0;
1293 		}
1294 
1295 		error = -ERESTART_RESTARTBLOCK;
1296 	}
1297 
1298 	return error;
1299 }
1300 
1301 static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1302 
1303 static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1304 			    struct timespec *rqtp, struct timespec __user *rmtp)
1305 {
1306 	struct restart_block *restart_block = &current->restart_block;
1307 	struct itimerspec it;
1308 	int error;
1309 
1310 	/*
1311 	 * Diagnose required errors first.
1312 	 */
1313 	if (CPUCLOCK_PERTHREAD(which_clock) &&
1314 	    (CPUCLOCK_PID(which_clock) == 0 ||
1315 	     CPUCLOCK_PID(which_clock) == current->pid))
1316 		return -EINVAL;
1317 
1318 	error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1319 
1320 	if (error == -ERESTART_RESTARTBLOCK) {
1321 
1322 		if (flags & TIMER_ABSTIME)
1323 			return -ERESTARTNOHAND;
1324 		/*
1325 		 * Report back to the user the time still remaining.
1326 		 */
1327 		if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1328 			return -EFAULT;
1329 
1330 		restart_block->fn = posix_cpu_nsleep_restart;
1331 		restart_block->nanosleep.clockid = which_clock;
1332 		restart_block->nanosleep.rmtp = rmtp;
1333 		restart_block->nanosleep.expires = timespec_to_ns(rqtp);
1334 	}
1335 	return error;
1336 }
1337 
1338 static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1339 {
1340 	clockid_t which_clock = restart_block->nanosleep.clockid;
1341 	struct timespec t;
1342 	struct itimerspec it;
1343 	int error;
1344 
1345 	t = ns_to_timespec(restart_block->nanosleep.expires);
1346 
1347 	error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1348 
1349 	if (error == -ERESTART_RESTARTBLOCK) {
1350 		struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
1351 		/*
1352 		 * Report back to the user the time still remaining.
1353 		 */
1354 		if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1355 			return -EFAULT;
1356 
1357 		restart_block->nanosleep.expires = timespec_to_ns(&t);
1358 	}
1359 	return error;
1360 
1361 }
1362 
1363 #define PROCESS_CLOCK	MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1364 #define THREAD_CLOCK	MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1365 
1366 static int process_cpu_clock_getres(const clockid_t which_clock,
1367 				    struct timespec *tp)
1368 {
1369 	return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1370 }
1371 static int process_cpu_clock_get(const clockid_t which_clock,
1372 				 struct timespec *tp)
1373 {
1374 	return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1375 }
1376 static int process_cpu_timer_create(struct k_itimer *timer)
1377 {
1378 	timer->it_clock = PROCESS_CLOCK;
1379 	return posix_cpu_timer_create(timer);
1380 }
1381 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1382 			      struct timespec *rqtp,
1383 			      struct timespec __user *rmtp)
1384 {
1385 	return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1386 }
1387 static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1388 {
1389 	return -EINVAL;
1390 }
1391 static int thread_cpu_clock_getres(const clockid_t which_clock,
1392 				   struct timespec *tp)
1393 {
1394 	return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1395 }
1396 static int thread_cpu_clock_get(const clockid_t which_clock,
1397 				struct timespec *tp)
1398 {
1399 	return posix_cpu_clock_get(THREAD_CLOCK, tp);
1400 }
1401 static int thread_cpu_timer_create(struct k_itimer *timer)
1402 {
1403 	timer->it_clock = THREAD_CLOCK;
1404 	return posix_cpu_timer_create(timer);
1405 }
1406 
1407 struct k_clock clock_posix_cpu = {
1408 	.clock_getres	= posix_cpu_clock_getres,
1409 	.clock_set	= posix_cpu_clock_set,
1410 	.clock_get	= posix_cpu_clock_get,
1411 	.timer_create	= posix_cpu_timer_create,
1412 	.nsleep		= posix_cpu_nsleep,
1413 	.nsleep_restart	= posix_cpu_nsleep_restart,
1414 	.timer_set	= posix_cpu_timer_set,
1415 	.timer_del	= posix_cpu_timer_del,
1416 	.timer_get	= posix_cpu_timer_get,
1417 };
1418 
1419 static __init int init_posix_cpu_timers(void)
1420 {
1421 	struct k_clock process = {
1422 		.clock_getres	= process_cpu_clock_getres,
1423 		.clock_get	= process_cpu_clock_get,
1424 		.timer_create	= process_cpu_timer_create,
1425 		.nsleep		= process_cpu_nsleep,
1426 		.nsleep_restart	= process_cpu_nsleep_restart,
1427 	};
1428 	struct k_clock thread = {
1429 		.clock_getres	= thread_cpu_clock_getres,
1430 		.clock_get	= thread_cpu_clock_get,
1431 		.timer_create	= thread_cpu_timer_create,
1432 	};
1433 
1434 	posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1435 	posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1436 
1437 	return 0;
1438 }
1439 __initcall(init_posix_cpu_timers);
1440