1 /*
2  * Implement CPU time clocks for the POSIX clock interface.
3  */
4 
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
11 #include <trace/events/timer.h>
12 #include <linux/random.h>
13 #include <linux/tick.h>
14 #include <linux/workqueue.h>
15 
16 /*
17  * Called after updating RLIMIT_CPU to run cpu timer and update
18  * tsk->signal->cputime_expires expiration cache if necessary. Needs
19  * siglock protection since other code may update expiration cache as
20  * well.
21  */
22 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
23 {
24 	cputime_t cputime = secs_to_cputime(rlim_new);
25 
26 	spin_lock_irq(&task->sighand->siglock);
27 	set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL);
28 	spin_unlock_irq(&task->sighand->siglock);
29 }
30 
31 static int check_clock(const clockid_t which_clock)
32 {
33 	int error = 0;
34 	struct task_struct *p;
35 	const pid_t pid = CPUCLOCK_PID(which_clock);
36 
37 	if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
38 		return -EINVAL;
39 
40 	if (pid == 0)
41 		return 0;
42 
43 	rcu_read_lock();
44 	p = find_task_by_vpid(pid);
45 	if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
46 		   same_thread_group(p, current) : has_group_leader_pid(p))) {
47 		error = -EINVAL;
48 	}
49 	rcu_read_unlock();
50 
51 	return error;
52 }
53 
54 static inline unsigned long long
55 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
56 {
57 	unsigned long long ret;
58 
59 	ret = 0;		/* high half always zero when .cpu used */
60 	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
61 		ret = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
62 	} else {
63 		ret = cputime_to_expires(timespec_to_cputime(tp));
64 	}
65 	return ret;
66 }
67 
68 static void sample_to_timespec(const clockid_t which_clock,
69 			       unsigned long long expires,
70 			       struct timespec *tp)
71 {
72 	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
73 		*tp = ns_to_timespec(expires);
74 	else
75 		cputime_to_timespec((__force cputime_t)expires, tp);
76 }
77 
78 /*
79  * Update expiry time from increment, and increase overrun count,
80  * given the current clock sample.
81  */
82 static void bump_cpu_timer(struct k_itimer *timer,
83 			   unsigned long long now)
84 {
85 	int i;
86 	unsigned long long delta, incr;
87 
88 	if (timer->it.cpu.incr == 0)
89 		return;
90 
91 	if (now < timer->it.cpu.expires)
92 		return;
93 
94 	incr = timer->it.cpu.incr;
95 	delta = now + incr - timer->it.cpu.expires;
96 
97 	/* Don't use (incr*2 < delta), incr*2 might overflow. */
98 	for (i = 0; incr < delta - incr; i++)
99 		incr = incr << 1;
100 
101 	for (; i >= 0; incr >>= 1, i--) {
102 		if (delta < incr)
103 			continue;
104 
105 		timer->it.cpu.expires += incr;
106 		timer->it_overrun += 1 << i;
107 		delta -= incr;
108 	}
109 }
110 
111 /**
112  * task_cputime_zero - Check a task_cputime struct for all zero fields.
113  *
114  * @cputime:	The struct to compare.
115  *
116  * Checks @cputime to see if all fields are zero.  Returns true if all fields
117  * are zero, false if any field is nonzero.
118  */
119 static inline int task_cputime_zero(const struct task_cputime *cputime)
120 {
121 	if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
122 		return 1;
123 	return 0;
124 }
125 
126 static inline unsigned long long prof_ticks(struct task_struct *p)
127 {
128 	cputime_t utime, stime;
129 
130 	task_cputime(p, &utime, &stime);
131 
132 	return cputime_to_expires(utime + stime);
133 }
134 static inline unsigned long long virt_ticks(struct task_struct *p)
135 {
136 	cputime_t utime;
137 
138 	task_cputime(p, &utime, NULL);
139 
140 	return cputime_to_expires(utime);
141 }
142 
143 static int
144 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
145 {
146 	int error = check_clock(which_clock);
147 	if (!error) {
148 		tp->tv_sec = 0;
149 		tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
150 		if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
151 			/*
152 			 * If sched_clock is using a cycle counter, we
153 			 * don't have any idea of its true resolution
154 			 * exported, but it is much more than 1s/HZ.
155 			 */
156 			tp->tv_nsec = 1;
157 		}
158 	}
159 	return error;
160 }
161 
162 static int
163 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
164 {
165 	/*
166 	 * You can never reset a CPU clock, but we check for other errors
167 	 * in the call before failing with EPERM.
168 	 */
169 	int error = check_clock(which_clock);
170 	if (error == 0) {
171 		error = -EPERM;
172 	}
173 	return error;
174 }
175 
176 
177 /*
178  * Sample a per-thread clock for the given task.
179  */
180 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
181 			    unsigned long long *sample)
182 {
183 	switch (CPUCLOCK_WHICH(which_clock)) {
184 	default:
185 		return -EINVAL;
186 	case CPUCLOCK_PROF:
187 		*sample = prof_ticks(p);
188 		break;
189 	case CPUCLOCK_VIRT:
190 		*sample = virt_ticks(p);
191 		break;
192 	case CPUCLOCK_SCHED:
193 		*sample = task_sched_runtime(p);
194 		break;
195 	}
196 	return 0;
197 }
198 
199 /*
200  * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
201  * to avoid race conditions with concurrent updates to cputime.
202  */
203 static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
204 {
205 	u64 curr_cputime;
206 retry:
207 	curr_cputime = atomic64_read(cputime);
208 	if (sum_cputime > curr_cputime) {
209 		if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
210 			goto retry;
211 	}
212 }
213 
214 static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum)
215 {
216 	__update_gt_cputime(&cputime_atomic->utime, sum->utime);
217 	__update_gt_cputime(&cputime_atomic->stime, sum->stime);
218 	__update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
219 }
220 
221 /* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
222 static inline void sample_cputime_atomic(struct task_cputime *times,
223 					 struct task_cputime_atomic *atomic_times)
224 {
225 	times->utime = atomic64_read(&atomic_times->utime);
226 	times->stime = atomic64_read(&atomic_times->stime);
227 	times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime);
228 }
229 
230 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
231 {
232 	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
233 	struct task_cputime sum;
234 
235 	/* Check if cputimer isn't running. This is accessed without locking. */
236 	if (!READ_ONCE(cputimer->running)) {
237 		/*
238 		 * The POSIX timer interface allows for absolute time expiry
239 		 * values through the TIMER_ABSTIME flag, therefore we have
240 		 * to synchronize the timer to the clock every time we start it.
241 		 */
242 		thread_group_cputime(tsk, &sum);
243 		update_gt_cputime(&cputimer->cputime_atomic, &sum);
244 
245 		/*
246 		 * We're setting cputimer->running without a lock. Ensure
247 		 * this only gets written to in one operation. We set
248 		 * running after update_gt_cputime() as a small optimization,
249 		 * but barriers are not required because update_gt_cputime()
250 		 * can handle concurrent updates.
251 		 */
252 		WRITE_ONCE(cputimer->running, true);
253 	}
254 	sample_cputime_atomic(times, &cputimer->cputime_atomic);
255 }
256 
257 /*
258  * Sample a process (thread group) clock for the given group_leader task.
259  * Must be called with task sighand lock held for safe while_each_thread()
260  * traversal.
261  */
262 static int cpu_clock_sample_group(const clockid_t which_clock,
263 				  struct task_struct *p,
264 				  unsigned long long *sample)
265 {
266 	struct task_cputime cputime;
267 
268 	switch (CPUCLOCK_WHICH(which_clock)) {
269 	default:
270 		return -EINVAL;
271 	case CPUCLOCK_PROF:
272 		thread_group_cputime(p, &cputime);
273 		*sample = cputime_to_expires(cputime.utime + cputime.stime);
274 		break;
275 	case CPUCLOCK_VIRT:
276 		thread_group_cputime(p, &cputime);
277 		*sample = cputime_to_expires(cputime.utime);
278 		break;
279 	case CPUCLOCK_SCHED:
280 		thread_group_cputime(p, &cputime);
281 		*sample = cputime.sum_exec_runtime;
282 		break;
283 	}
284 	return 0;
285 }
286 
287 static int posix_cpu_clock_get_task(struct task_struct *tsk,
288 				    const clockid_t which_clock,
289 				    struct timespec *tp)
290 {
291 	int err = -EINVAL;
292 	unsigned long long rtn;
293 
294 	if (CPUCLOCK_PERTHREAD(which_clock)) {
295 		if (same_thread_group(tsk, current))
296 			err = cpu_clock_sample(which_clock, tsk, &rtn);
297 	} else {
298 		if (tsk == current || thread_group_leader(tsk))
299 			err = cpu_clock_sample_group(which_clock, tsk, &rtn);
300 	}
301 
302 	if (!err)
303 		sample_to_timespec(which_clock, rtn, tp);
304 
305 	return err;
306 }
307 
308 
309 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
310 {
311 	const pid_t pid = CPUCLOCK_PID(which_clock);
312 	int err = -EINVAL;
313 
314 	if (pid == 0) {
315 		/*
316 		 * Special case constant value for our own clocks.
317 		 * We don't have to do any lookup to find ourselves.
318 		 */
319 		err = posix_cpu_clock_get_task(current, which_clock, tp);
320 	} else {
321 		/*
322 		 * Find the given PID, and validate that the caller
323 		 * should be able to see it.
324 		 */
325 		struct task_struct *p;
326 		rcu_read_lock();
327 		p = find_task_by_vpid(pid);
328 		if (p)
329 			err = posix_cpu_clock_get_task(p, which_clock, tp);
330 		rcu_read_unlock();
331 	}
332 
333 	return err;
334 }
335 
336 
337 /*
338  * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
339  * This is called from sys_timer_create() and do_cpu_nanosleep() with the
340  * new timer already all-zeros initialized.
341  */
342 static int posix_cpu_timer_create(struct k_itimer *new_timer)
343 {
344 	int ret = 0;
345 	const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
346 	struct task_struct *p;
347 
348 	if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
349 		return -EINVAL;
350 
351 	INIT_LIST_HEAD(&new_timer->it.cpu.entry);
352 
353 	rcu_read_lock();
354 	if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
355 		if (pid == 0) {
356 			p = current;
357 		} else {
358 			p = find_task_by_vpid(pid);
359 			if (p && !same_thread_group(p, current))
360 				p = NULL;
361 		}
362 	} else {
363 		if (pid == 0) {
364 			p = current->group_leader;
365 		} else {
366 			p = find_task_by_vpid(pid);
367 			if (p && !has_group_leader_pid(p))
368 				p = NULL;
369 		}
370 	}
371 	new_timer->it.cpu.task = p;
372 	if (p) {
373 		get_task_struct(p);
374 	} else {
375 		ret = -EINVAL;
376 	}
377 	rcu_read_unlock();
378 
379 	return ret;
380 }
381 
382 /*
383  * Clean up a CPU-clock timer that is about to be destroyed.
384  * This is called from timer deletion with the timer already locked.
385  * If we return TIMER_RETRY, it's necessary to release the timer's lock
386  * and try again.  (This happens when the timer is in the middle of firing.)
387  */
388 static int posix_cpu_timer_del(struct k_itimer *timer)
389 {
390 	int ret = 0;
391 	unsigned long flags;
392 	struct sighand_struct *sighand;
393 	struct task_struct *p = timer->it.cpu.task;
394 
395 	WARN_ON_ONCE(p == NULL);
396 
397 	/*
398 	 * Protect against sighand release/switch in exit/exec and process/
399 	 * thread timer list entry concurrent read/writes.
400 	 */
401 	sighand = lock_task_sighand(p, &flags);
402 	if (unlikely(sighand == NULL)) {
403 		/*
404 		 * We raced with the reaping of the task.
405 		 * The deletion should have cleared us off the list.
406 		 */
407 		WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
408 	} else {
409 		if (timer->it.cpu.firing)
410 			ret = TIMER_RETRY;
411 		else
412 			list_del(&timer->it.cpu.entry);
413 
414 		unlock_task_sighand(p, &flags);
415 	}
416 
417 	if (!ret)
418 		put_task_struct(p);
419 
420 	return ret;
421 }
422 
423 static void cleanup_timers_list(struct list_head *head)
424 {
425 	struct cpu_timer_list *timer, *next;
426 
427 	list_for_each_entry_safe(timer, next, head, entry)
428 		list_del_init(&timer->entry);
429 }
430 
431 /*
432  * Clean out CPU timers still ticking when a thread exited.  The task
433  * pointer is cleared, and the expiry time is replaced with the residual
434  * time for later timer_gettime calls to return.
435  * This must be called with the siglock held.
436  */
437 static void cleanup_timers(struct list_head *head)
438 {
439 	cleanup_timers_list(head);
440 	cleanup_timers_list(++head);
441 	cleanup_timers_list(++head);
442 }
443 
444 /*
445  * These are both called with the siglock held, when the current thread
446  * is being reaped.  When the final (leader) thread in the group is reaped,
447  * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
448  */
449 void posix_cpu_timers_exit(struct task_struct *tsk)
450 {
451 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
452 						sizeof(unsigned long long));
453 	cleanup_timers(tsk->cpu_timers);
454 
455 }
456 void posix_cpu_timers_exit_group(struct task_struct *tsk)
457 {
458 	cleanup_timers(tsk->signal->cpu_timers);
459 }
460 
461 static inline int expires_gt(cputime_t expires, cputime_t new_exp)
462 {
463 	return expires == 0 || expires > new_exp;
464 }
465 
466 /*
467  * Insert the timer on the appropriate list before any timers that
468  * expire later.  This must be called with the sighand lock held.
469  */
470 static void arm_timer(struct k_itimer *timer)
471 {
472 	struct task_struct *p = timer->it.cpu.task;
473 	struct list_head *head, *listpos;
474 	struct task_cputime *cputime_expires;
475 	struct cpu_timer_list *const nt = &timer->it.cpu;
476 	struct cpu_timer_list *next;
477 
478 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
479 		head = p->cpu_timers;
480 		cputime_expires = &p->cputime_expires;
481 	} else {
482 		head = p->signal->cpu_timers;
483 		cputime_expires = &p->signal->cputime_expires;
484 	}
485 	head += CPUCLOCK_WHICH(timer->it_clock);
486 
487 	listpos = head;
488 	list_for_each_entry(next, head, entry) {
489 		if (nt->expires < next->expires)
490 			break;
491 		listpos = &next->entry;
492 	}
493 	list_add(&nt->entry, listpos);
494 
495 	if (listpos == head) {
496 		unsigned long long exp = nt->expires;
497 
498 		/*
499 		 * We are the new earliest-expiring POSIX 1.b timer, hence
500 		 * need to update expiration cache. Take into account that
501 		 * for process timers we share expiration cache with itimers
502 		 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
503 		 */
504 
505 		switch (CPUCLOCK_WHICH(timer->it_clock)) {
506 		case CPUCLOCK_PROF:
507 			if (expires_gt(cputime_expires->prof_exp, expires_to_cputime(exp)))
508 				cputime_expires->prof_exp = expires_to_cputime(exp);
509 			break;
510 		case CPUCLOCK_VIRT:
511 			if (expires_gt(cputime_expires->virt_exp, expires_to_cputime(exp)))
512 				cputime_expires->virt_exp = expires_to_cputime(exp);
513 			break;
514 		case CPUCLOCK_SCHED:
515 			if (cputime_expires->sched_exp == 0 ||
516 			    cputime_expires->sched_exp > exp)
517 				cputime_expires->sched_exp = exp;
518 			break;
519 		}
520 	}
521 }
522 
523 /*
524  * The timer is locked, fire it and arrange for its reload.
525  */
526 static void cpu_timer_fire(struct k_itimer *timer)
527 {
528 	if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
529 		/*
530 		 * User don't want any signal.
531 		 */
532 		timer->it.cpu.expires = 0;
533 	} else if (unlikely(timer->sigq == NULL)) {
534 		/*
535 		 * This a special case for clock_nanosleep,
536 		 * not a normal timer from sys_timer_create.
537 		 */
538 		wake_up_process(timer->it_process);
539 		timer->it.cpu.expires = 0;
540 	} else if (timer->it.cpu.incr == 0) {
541 		/*
542 		 * One-shot timer.  Clear it as soon as it's fired.
543 		 */
544 		posix_timer_event(timer, 0);
545 		timer->it.cpu.expires = 0;
546 	} else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
547 		/*
548 		 * The signal did not get queued because the signal
549 		 * was ignored, so we won't get any callback to
550 		 * reload the timer.  But we need to keep it
551 		 * ticking in case the signal is deliverable next time.
552 		 */
553 		posix_cpu_timer_schedule(timer);
554 	}
555 }
556 
557 /*
558  * Sample a process (thread group) timer for the given group_leader task.
559  * Must be called with task sighand lock held for safe while_each_thread()
560  * traversal.
561  */
562 static int cpu_timer_sample_group(const clockid_t which_clock,
563 				  struct task_struct *p,
564 				  unsigned long long *sample)
565 {
566 	struct task_cputime cputime;
567 
568 	thread_group_cputimer(p, &cputime);
569 	switch (CPUCLOCK_WHICH(which_clock)) {
570 	default:
571 		return -EINVAL;
572 	case CPUCLOCK_PROF:
573 		*sample = cputime_to_expires(cputime.utime + cputime.stime);
574 		break;
575 	case CPUCLOCK_VIRT:
576 		*sample = cputime_to_expires(cputime.utime);
577 		break;
578 	case CPUCLOCK_SCHED:
579 		*sample = cputime.sum_exec_runtime;
580 		break;
581 	}
582 	return 0;
583 }
584 
585 #ifdef CONFIG_NO_HZ_FULL
586 static void nohz_kick_work_fn(struct work_struct *work)
587 {
588 	tick_nohz_full_kick_all();
589 }
590 
591 static DECLARE_WORK(nohz_kick_work, nohz_kick_work_fn);
592 
593 /*
594  * We need the IPIs to be sent from sane process context.
595  * The posix cpu timers are always set with irqs disabled.
596  */
597 static void posix_cpu_timer_kick_nohz(void)
598 {
599 	if (context_tracking_is_enabled())
600 		schedule_work(&nohz_kick_work);
601 }
602 
603 bool posix_cpu_timers_can_stop_tick(struct task_struct *tsk)
604 {
605 	if (!task_cputime_zero(&tsk->cputime_expires))
606 		return false;
607 
608 	/* Check if cputimer is running. This is accessed without locking. */
609 	if (READ_ONCE(tsk->signal->cputimer.running))
610 		return false;
611 
612 	return true;
613 }
614 #else
615 static inline void posix_cpu_timer_kick_nohz(void) { }
616 #endif
617 
618 /*
619  * Guts of sys_timer_settime for CPU timers.
620  * This is called with the timer locked and interrupts disabled.
621  * If we return TIMER_RETRY, it's necessary to release the timer's lock
622  * and try again.  (This happens when the timer is in the middle of firing.)
623  */
624 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
625 			       struct itimerspec *new, struct itimerspec *old)
626 {
627 	unsigned long flags;
628 	struct sighand_struct *sighand;
629 	struct task_struct *p = timer->it.cpu.task;
630 	unsigned long long old_expires, new_expires, old_incr, val;
631 	int ret;
632 
633 	WARN_ON_ONCE(p == NULL);
634 
635 	new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
636 
637 	/*
638 	 * Protect against sighand release/switch in exit/exec and p->cpu_timers
639 	 * and p->signal->cpu_timers read/write in arm_timer()
640 	 */
641 	sighand = lock_task_sighand(p, &flags);
642 	/*
643 	 * If p has just been reaped, we can no
644 	 * longer get any information about it at all.
645 	 */
646 	if (unlikely(sighand == NULL)) {
647 		return -ESRCH;
648 	}
649 
650 	/*
651 	 * Disarm any old timer after extracting its expiry time.
652 	 */
653 	WARN_ON_ONCE(!irqs_disabled());
654 
655 	ret = 0;
656 	old_incr = timer->it.cpu.incr;
657 	old_expires = timer->it.cpu.expires;
658 	if (unlikely(timer->it.cpu.firing)) {
659 		timer->it.cpu.firing = -1;
660 		ret = TIMER_RETRY;
661 	} else
662 		list_del_init(&timer->it.cpu.entry);
663 
664 	/*
665 	 * We need to sample the current value to convert the new
666 	 * value from to relative and absolute, and to convert the
667 	 * old value from absolute to relative.  To set a process
668 	 * timer, we need a sample to balance the thread expiry
669 	 * times (in arm_timer).  With an absolute time, we must
670 	 * check if it's already passed.  In short, we need a sample.
671 	 */
672 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
673 		cpu_clock_sample(timer->it_clock, p, &val);
674 	} else {
675 		cpu_timer_sample_group(timer->it_clock, p, &val);
676 	}
677 
678 	if (old) {
679 		if (old_expires == 0) {
680 			old->it_value.tv_sec = 0;
681 			old->it_value.tv_nsec = 0;
682 		} else {
683 			/*
684 			 * Update the timer in case it has
685 			 * overrun already.  If it has,
686 			 * we'll report it as having overrun
687 			 * and with the next reloaded timer
688 			 * already ticking, though we are
689 			 * swallowing that pending
690 			 * notification here to install the
691 			 * new setting.
692 			 */
693 			bump_cpu_timer(timer, val);
694 			if (val < timer->it.cpu.expires) {
695 				old_expires = timer->it.cpu.expires - val;
696 				sample_to_timespec(timer->it_clock,
697 						   old_expires,
698 						   &old->it_value);
699 			} else {
700 				old->it_value.tv_nsec = 1;
701 				old->it_value.tv_sec = 0;
702 			}
703 		}
704 	}
705 
706 	if (unlikely(ret)) {
707 		/*
708 		 * We are colliding with the timer actually firing.
709 		 * Punt after filling in the timer's old value, and
710 		 * disable this firing since we are already reporting
711 		 * it as an overrun (thanks to bump_cpu_timer above).
712 		 */
713 		unlock_task_sighand(p, &flags);
714 		goto out;
715 	}
716 
717 	if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
718 		new_expires += val;
719 	}
720 
721 	/*
722 	 * Install the new expiry time (or zero).
723 	 * For a timer with no notification action, we don't actually
724 	 * arm the timer (we'll just fake it for timer_gettime).
725 	 */
726 	timer->it.cpu.expires = new_expires;
727 	if (new_expires != 0 && val < new_expires) {
728 		arm_timer(timer);
729 	}
730 
731 	unlock_task_sighand(p, &flags);
732 	/*
733 	 * Install the new reload setting, and
734 	 * set up the signal and overrun bookkeeping.
735 	 */
736 	timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
737 						&new->it_interval);
738 
739 	/*
740 	 * This acts as a modification timestamp for the timer,
741 	 * so any automatic reload attempt will punt on seeing
742 	 * that we have reset the timer manually.
743 	 */
744 	timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
745 		~REQUEUE_PENDING;
746 	timer->it_overrun_last = 0;
747 	timer->it_overrun = -1;
748 
749 	if (new_expires != 0 && !(val < new_expires)) {
750 		/*
751 		 * The designated time already passed, so we notify
752 		 * immediately, even if the thread never runs to
753 		 * accumulate more time on this clock.
754 		 */
755 		cpu_timer_fire(timer);
756 	}
757 
758 	ret = 0;
759  out:
760 	if (old) {
761 		sample_to_timespec(timer->it_clock,
762 				   old_incr, &old->it_interval);
763 	}
764 	if (!ret)
765 		posix_cpu_timer_kick_nohz();
766 	return ret;
767 }
768 
769 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
770 {
771 	unsigned long long now;
772 	struct task_struct *p = timer->it.cpu.task;
773 
774 	WARN_ON_ONCE(p == NULL);
775 
776 	/*
777 	 * Easy part: convert the reload time.
778 	 */
779 	sample_to_timespec(timer->it_clock,
780 			   timer->it.cpu.incr, &itp->it_interval);
781 
782 	if (timer->it.cpu.expires == 0) {	/* Timer not armed at all.  */
783 		itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
784 		return;
785 	}
786 
787 	/*
788 	 * Sample the clock to take the difference with the expiry time.
789 	 */
790 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
791 		cpu_clock_sample(timer->it_clock, p, &now);
792 	} else {
793 		struct sighand_struct *sighand;
794 		unsigned long flags;
795 
796 		/*
797 		 * Protect against sighand release/switch in exit/exec and
798 		 * also make timer sampling safe if it ends up calling
799 		 * thread_group_cputime().
800 		 */
801 		sighand = lock_task_sighand(p, &flags);
802 		if (unlikely(sighand == NULL)) {
803 			/*
804 			 * The process has been reaped.
805 			 * We can't even collect a sample any more.
806 			 * Call the timer disarmed, nothing else to do.
807 			 */
808 			timer->it.cpu.expires = 0;
809 			sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
810 					   &itp->it_value);
811 		} else {
812 			cpu_timer_sample_group(timer->it_clock, p, &now);
813 			unlock_task_sighand(p, &flags);
814 		}
815 	}
816 
817 	if (now < timer->it.cpu.expires) {
818 		sample_to_timespec(timer->it_clock,
819 				   timer->it.cpu.expires - now,
820 				   &itp->it_value);
821 	} else {
822 		/*
823 		 * The timer should have expired already, but the firing
824 		 * hasn't taken place yet.  Say it's just about to expire.
825 		 */
826 		itp->it_value.tv_nsec = 1;
827 		itp->it_value.tv_sec = 0;
828 	}
829 }
830 
831 static unsigned long long
832 check_timers_list(struct list_head *timers,
833 		  struct list_head *firing,
834 		  unsigned long long curr)
835 {
836 	int maxfire = 20;
837 
838 	while (!list_empty(timers)) {
839 		struct cpu_timer_list *t;
840 
841 		t = list_first_entry(timers, struct cpu_timer_list, entry);
842 
843 		if (!--maxfire || curr < t->expires)
844 			return t->expires;
845 
846 		t->firing = 1;
847 		list_move_tail(&t->entry, firing);
848 	}
849 
850 	return 0;
851 }
852 
853 /*
854  * Check for any per-thread CPU timers that have fired and move them off
855  * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
856  * tsk->it_*_expires values to reflect the remaining thread CPU timers.
857  */
858 static void check_thread_timers(struct task_struct *tsk,
859 				struct list_head *firing)
860 {
861 	struct list_head *timers = tsk->cpu_timers;
862 	struct signal_struct *const sig = tsk->signal;
863 	struct task_cputime *tsk_expires = &tsk->cputime_expires;
864 	unsigned long long expires;
865 	unsigned long soft;
866 
867 	/*
868 	 * If cputime_expires is zero, then there are no active
869 	 * per thread CPU timers.
870 	 */
871 	if (task_cputime_zero(&tsk->cputime_expires))
872 		return;
873 
874 	expires = check_timers_list(timers, firing, prof_ticks(tsk));
875 	tsk_expires->prof_exp = expires_to_cputime(expires);
876 
877 	expires = check_timers_list(++timers, firing, virt_ticks(tsk));
878 	tsk_expires->virt_exp = expires_to_cputime(expires);
879 
880 	tsk_expires->sched_exp = check_timers_list(++timers, firing,
881 						   tsk->se.sum_exec_runtime);
882 
883 	/*
884 	 * Check for the special case thread timers.
885 	 */
886 	soft = READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
887 	if (soft != RLIM_INFINITY) {
888 		unsigned long hard =
889 			READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
890 
891 		if (hard != RLIM_INFINITY &&
892 		    tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
893 			/*
894 			 * At the hard limit, we just die.
895 			 * No need to calculate anything else now.
896 			 */
897 			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
898 			return;
899 		}
900 		if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
901 			/*
902 			 * At the soft limit, send a SIGXCPU every second.
903 			 */
904 			if (soft < hard) {
905 				soft += USEC_PER_SEC;
906 				sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
907 			}
908 			printk(KERN_INFO
909 				"RT Watchdog Timeout: %s[%d]\n",
910 				tsk->comm, task_pid_nr(tsk));
911 			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
912 		}
913 	}
914 }
915 
916 static inline void stop_process_timers(struct signal_struct *sig)
917 {
918 	struct thread_group_cputimer *cputimer = &sig->cputimer;
919 
920 	/* Turn off cputimer->running. This is done without locking. */
921 	WRITE_ONCE(cputimer->running, false);
922 }
923 
924 static u32 onecputick;
925 
926 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
927 			     unsigned long long *expires,
928 			     unsigned long long cur_time, int signo)
929 {
930 	if (!it->expires)
931 		return;
932 
933 	if (cur_time >= it->expires) {
934 		if (it->incr) {
935 			it->expires += it->incr;
936 			it->error += it->incr_error;
937 			if (it->error >= onecputick) {
938 				it->expires -= cputime_one_jiffy;
939 				it->error -= onecputick;
940 			}
941 		} else {
942 			it->expires = 0;
943 		}
944 
945 		trace_itimer_expire(signo == SIGPROF ?
946 				    ITIMER_PROF : ITIMER_VIRTUAL,
947 				    tsk->signal->leader_pid, cur_time);
948 		__group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
949 	}
950 
951 	if (it->expires && (!*expires || it->expires < *expires)) {
952 		*expires = it->expires;
953 	}
954 }
955 
956 /*
957  * Check for any per-thread CPU timers that have fired and move them
958  * off the tsk->*_timers list onto the firing list.  Per-thread timers
959  * have already been taken off.
960  */
961 static void check_process_timers(struct task_struct *tsk,
962 				 struct list_head *firing)
963 {
964 	struct signal_struct *const sig = tsk->signal;
965 	unsigned long long utime, ptime, virt_expires, prof_expires;
966 	unsigned long long sum_sched_runtime, sched_expires;
967 	struct list_head *timers = sig->cpu_timers;
968 	struct task_cputime cputime;
969 	unsigned long soft;
970 
971 	/*
972 	 * If cputimer is not running, then there are no active
973 	 * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU).
974 	 */
975 	if (!READ_ONCE(tsk->signal->cputimer.running))
976 		return;
977 
978         /*
979 	 * Signify that a thread is checking for process timers.
980 	 * Write access to this field is protected by the sighand lock.
981 	 */
982 	sig->cputimer.checking_timer = true;
983 
984 	/*
985 	 * Collect the current process totals.
986 	 */
987 	thread_group_cputimer(tsk, &cputime);
988 	utime = cputime_to_expires(cputime.utime);
989 	ptime = utime + cputime_to_expires(cputime.stime);
990 	sum_sched_runtime = cputime.sum_exec_runtime;
991 
992 	prof_expires = check_timers_list(timers, firing, ptime);
993 	virt_expires = check_timers_list(++timers, firing, utime);
994 	sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
995 
996 	/*
997 	 * Check for the special case process timers.
998 	 */
999 	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
1000 			 SIGPROF);
1001 	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
1002 			 SIGVTALRM);
1003 	soft = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1004 	if (soft != RLIM_INFINITY) {
1005 		unsigned long psecs = cputime_to_secs(ptime);
1006 		unsigned long hard =
1007 			READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
1008 		cputime_t x;
1009 		if (psecs >= hard) {
1010 			/*
1011 			 * At the hard limit, we just die.
1012 			 * No need to calculate anything else now.
1013 			 */
1014 			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1015 			return;
1016 		}
1017 		if (psecs >= soft) {
1018 			/*
1019 			 * At the soft limit, send a SIGXCPU every second.
1020 			 */
1021 			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1022 			if (soft < hard) {
1023 				soft++;
1024 				sig->rlim[RLIMIT_CPU].rlim_cur = soft;
1025 			}
1026 		}
1027 		x = secs_to_cputime(soft);
1028 		if (!prof_expires || x < prof_expires) {
1029 			prof_expires = x;
1030 		}
1031 	}
1032 
1033 	sig->cputime_expires.prof_exp = expires_to_cputime(prof_expires);
1034 	sig->cputime_expires.virt_exp = expires_to_cputime(virt_expires);
1035 	sig->cputime_expires.sched_exp = sched_expires;
1036 	if (task_cputime_zero(&sig->cputime_expires))
1037 		stop_process_timers(sig);
1038 
1039 	sig->cputimer.checking_timer = false;
1040 }
1041 
1042 /*
1043  * This is called from the signal code (via do_schedule_next_timer)
1044  * when the last timer signal was delivered and we have to reload the timer.
1045  */
1046 void posix_cpu_timer_schedule(struct k_itimer *timer)
1047 {
1048 	struct sighand_struct *sighand;
1049 	unsigned long flags;
1050 	struct task_struct *p = timer->it.cpu.task;
1051 	unsigned long long now;
1052 
1053 	WARN_ON_ONCE(p == NULL);
1054 
1055 	/*
1056 	 * Fetch the current sample and update the timer's expiry time.
1057 	 */
1058 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1059 		cpu_clock_sample(timer->it_clock, p, &now);
1060 		bump_cpu_timer(timer, now);
1061 		if (unlikely(p->exit_state))
1062 			goto out;
1063 
1064 		/* Protect timer list r/w in arm_timer() */
1065 		sighand = lock_task_sighand(p, &flags);
1066 		if (!sighand)
1067 			goto out;
1068 	} else {
1069 		/*
1070 		 * Protect arm_timer() and timer sampling in case of call to
1071 		 * thread_group_cputime().
1072 		 */
1073 		sighand = lock_task_sighand(p, &flags);
1074 		if (unlikely(sighand == NULL)) {
1075 			/*
1076 			 * The process has been reaped.
1077 			 * We can't even collect a sample any more.
1078 			 */
1079 			timer->it.cpu.expires = 0;
1080 			goto out;
1081 		} else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1082 			unlock_task_sighand(p, &flags);
1083 			/* Optimizations: if the process is dying, no need to rearm */
1084 			goto out;
1085 		}
1086 		cpu_timer_sample_group(timer->it_clock, p, &now);
1087 		bump_cpu_timer(timer, now);
1088 		/* Leave the sighand locked for the call below.  */
1089 	}
1090 
1091 	/*
1092 	 * Now re-arm for the new expiry time.
1093 	 */
1094 	WARN_ON_ONCE(!irqs_disabled());
1095 	arm_timer(timer);
1096 	unlock_task_sighand(p, &flags);
1097 
1098 	/* Kick full dynticks CPUs in case they need to tick on the new timer */
1099 	posix_cpu_timer_kick_nohz();
1100 out:
1101 	timer->it_overrun_last = timer->it_overrun;
1102 	timer->it_overrun = -1;
1103 	++timer->it_requeue_pending;
1104 }
1105 
1106 /**
1107  * task_cputime_expired - Compare two task_cputime entities.
1108  *
1109  * @sample:	The task_cputime structure to be checked for expiration.
1110  * @expires:	Expiration times, against which @sample will be checked.
1111  *
1112  * Checks @sample against @expires to see if any field of @sample has expired.
1113  * Returns true if any field of the former is greater than the corresponding
1114  * field of the latter if the latter field is set.  Otherwise returns false.
1115  */
1116 static inline int task_cputime_expired(const struct task_cputime *sample,
1117 					const struct task_cputime *expires)
1118 {
1119 	if (expires->utime && sample->utime >= expires->utime)
1120 		return 1;
1121 	if (expires->stime && sample->utime + sample->stime >= expires->stime)
1122 		return 1;
1123 	if (expires->sum_exec_runtime != 0 &&
1124 	    sample->sum_exec_runtime >= expires->sum_exec_runtime)
1125 		return 1;
1126 	return 0;
1127 }
1128 
1129 /**
1130  * fastpath_timer_check - POSIX CPU timers fast path.
1131  *
1132  * @tsk:	The task (thread) being checked.
1133  *
1134  * Check the task and thread group timers.  If both are zero (there are no
1135  * timers set) return false.  Otherwise snapshot the task and thread group
1136  * timers and compare them with the corresponding expiration times.  Return
1137  * true if a timer has expired, else return false.
1138  */
1139 static inline int fastpath_timer_check(struct task_struct *tsk)
1140 {
1141 	struct signal_struct *sig;
1142 
1143 	if (!task_cputime_zero(&tsk->cputime_expires)) {
1144 		struct task_cputime task_sample;
1145 
1146 		task_cputime(tsk, &task_sample.utime, &task_sample.stime);
1147 		task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime;
1148 		if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1149 			return 1;
1150 	}
1151 
1152 	sig = tsk->signal;
1153 	/*
1154 	 * Check if thread group timers expired when the cputimer is
1155 	 * running and no other thread in the group is already checking
1156 	 * for thread group cputimers. These fields are read without the
1157 	 * sighand lock. However, this is fine because this is meant to
1158 	 * be a fastpath heuristic to determine whether we should try to
1159 	 * acquire the sighand lock to check/handle timers.
1160 	 *
1161 	 * In the worst case scenario, if 'running' or 'checking_timer' gets
1162 	 * set but the current thread doesn't see the change yet, we'll wait
1163 	 * until the next thread in the group gets a scheduler interrupt to
1164 	 * handle the timer. This isn't an issue in practice because these
1165 	 * types of delays with signals actually getting sent are expected.
1166 	 */
1167 	if (READ_ONCE(sig->cputimer.running) &&
1168 	    !READ_ONCE(sig->cputimer.checking_timer)) {
1169 		struct task_cputime group_sample;
1170 
1171 		sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic);
1172 
1173 		if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1174 			return 1;
1175 	}
1176 
1177 	return 0;
1178 }
1179 
1180 /*
1181  * This is called from the timer interrupt handler.  The irq handler has
1182  * already updated our counts.  We need to check if any timers fire now.
1183  * Interrupts are disabled.
1184  */
1185 void run_posix_cpu_timers(struct task_struct *tsk)
1186 {
1187 	LIST_HEAD(firing);
1188 	struct k_itimer *timer, *next;
1189 	unsigned long flags;
1190 
1191 	WARN_ON_ONCE(!irqs_disabled());
1192 
1193 	/*
1194 	 * The fast path checks that there are no expired thread or thread
1195 	 * group timers.  If that's so, just return.
1196 	 */
1197 	if (!fastpath_timer_check(tsk))
1198 		return;
1199 
1200 	if (!lock_task_sighand(tsk, &flags))
1201 		return;
1202 	/*
1203 	 * Here we take off tsk->signal->cpu_timers[N] and
1204 	 * tsk->cpu_timers[N] all the timers that are firing, and
1205 	 * put them on the firing list.
1206 	 */
1207 	check_thread_timers(tsk, &firing);
1208 
1209 	check_process_timers(tsk, &firing);
1210 
1211 	/*
1212 	 * We must release these locks before taking any timer's lock.
1213 	 * There is a potential race with timer deletion here, as the
1214 	 * siglock now protects our private firing list.  We have set
1215 	 * the firing flag in each timer, so that a deletion attempt
1216 	 * that gets the timer lock before we do will give it up and
1217 	 * spin until we've taken care of that timer below.
1218 	 */
1219 	unlock_task_sighand(tsk, &flags);
1220 
1221 	/*
1222 	 * Now that all the timers on our list have the firing flag,
1223 	 * no one will touch their list entries but us.  We'll take
1224 	 * each timer's lock before clearing its firing flag, so no
1225 	 * timer call will interfere.
1226 	 */
1227 	list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1228 		int cpu_firing;
1229 
1230 		spin_lock(&timer->it_lock);
1231 		list_del_init(&timer->it.cpu.entry);
1232 		cpu_firing = timer->it.cpu.firing;
1233 		timer->it.cpu.firing = 0;
1234 		/*
1235 		 * The firing flag is -1 if we collided with a reset
1236 		 * of the timer, which already reported this
1237 		 * almost-firing as an overrun.  So don't generate an event.
1238 		 */
1239 		if (likely(cpu_firing >= 0))
1240 			cpu_timer_fire(timer);
1241 		spin_unlock(&timer->it_lock);
1242 	}
1243 }
1244 
1245 /*
1246  * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1247  * The tsk->sighand->siglock must be held by the caller.
1248  */
1249 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1250 			   cputime_t *newval, cputime_t *oldval)
1251 {
1252 	unsigned long long now;
1253 
1254 	WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
1255 	cpu_timer_sample_group(clock_idx, tsk, &now);
1256 
1257 	if (oldval) {
1258 		/*
1259 		 * We are setting itimer. The *oldval is absolute and we update
1260 		 * it to be relative, *newval argument is relative and we update
1261 		 * it to be absolute.
1262 		 */
1263 		if (*oldval) {
1264 			if (*oldval <= now) {
1265 				/* Just about to fire. */
1266 				*oldval = cputime_one_jiffy;
1267 			} else {
1268 				*oldval -= now;
1269 			}
1270 		}
1271 
1272 		if (!*newval)
1273 			goto out;
1274 		*newval += now;
1275 	}
1276 
1277 	/*
1278 	 * Update expiration cache if we are the earliest timer, or eventually
1279 	 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1280 	 */
1281 	switch (clock_idx) {
1282 	case CPUCLOCK_PROF:
1283 		if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1284 			tsk->signal->cputime_expires.prof_exp = *newval;
1285 		break;
1286 	case CPUCLOCK_VIRT:
1287 		if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1288 			tsk->signal->cputime_expires.virt_exp = *newval;
1289 		break;
1290 	}
1291 out:
1292 	posix_cpu_timer_kick_nohz();
1293 }
1294 
1295 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1296 			    struct timespec *rqtp, struct itimerspec *it)
1297 {
1298 	struct k_itimer timer;
1299 	int error;
1300 
1301 	/*
1302 	 * Set up a temporary timer and then wait for it to go off.
1303 	 */
1304 	memset(&timer, 0, sizeof timer);
1305 	spin_lock_init(&timer.it_lock);
1306 	timer.it_clock = which_clock;
1307 	timer.it_overrun = -1;
1308 	error = posix_cpu_timer_create(&timer);
1309 	timer.it_process = current;
1310 	if (!error) {
1311 		static struct itimerspec zero_it;
1312 
1313 		memset(it, 0, sizeof *it);
1314 		it->it_value = *rqtp;
1315 
1316 		spin_lock_irq(&timer.it_lock);
1317 		error = posix_cpu_timer_set(&timer, flags, it, NULL);
1318 		if (error) {
1319 			spin_unlock_irq(&timer.it_lock);
1320 			return error;
1321 		}
1322 
1323 		while (!signal_pending(current)) {
1324 			if (timer.it.cpu.expires == 0) {
1325 				/*
1326 				 * Our timer fired and was reset, below
1327 				 * deletion can not fail.
1328 				 */
1329 				posix_cpu_timer_del(&timer);
1330 				spin_unlock_irq(&timer.it_lock);
1331 				return 0;
1332 			}
1333 
1334 			/*
1335 			 * Block until cpu_timer_fire (or a signal) wakes us.
1336 			 */
1337 			__set_current_state(TASK_INTERRUPTIBLE);
1338 			spin_unlock_irq(&timer.it_lock);
1339 			schedule();
1340 			spin_lock_irq(&timer.it_lock);
1341 		}
1342 
1343 		/*
1344 		 * We were interrupted by a signal.
1345 		 */
1346 		sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1347 		error = posix_cpu_timer_set(&timer, 0, &zero_it, it);
1348 		if (!error) {
1349 			/*
1350 			 * Timer is now unarmed, deletion can not fail.
1351 			 */
1352 			posix_cpu_timer_del(&timer);
1353 		}
1354 		spin_unlock_irq(&timer.it_lock);
1355 
1356 		while (error == TIMER_RETRY) {
1357 			/*
1358 			 * We need to handle case when timer was or is in the
1359 			 * middle of firing. In other cases we already freed
1360 			 * resources.
1361 			 */
1362 			spin_lock_irq(&timer.it_lock);
1363 			error = posix_cpu_timer_del(&timer);
1364 			spin_unlock_irq(&timer.it_lock);
1365 		}
1366 
1367 		if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1368 			/*
1369 			 * It actually did fire already.
1370 			 */
1371 			return 0;
1372 		}
1373 
1374 		error = -ERESTART_RESTARTBLOCK;
1375 	}
1376 
1377 	return error;
1378 }
1379 
1380 static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1381 
1382 static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1383 			    struct timespec *rqtp, struct timespec __user *rmtp)
1384 {
1385 	struct restart_block *restart_block = &current->restart_block;
1386 	struct itimerspec it;
1387 	int error;
1388 
1389 	/*
1390 	 * Diagnose required errors first.
1391 	 */
1392 	if (CPUCLOCK_PERTHREAD(which_clock) &&
1393 	    (CPUCLOCK_PID(which_clock) == 0 ||
1394 	     CPUCLOCK_PID(which_clock) == current->pid))
1395 		return -EINVAL;
1396 
1397 	error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1398 
1399 	if (error == -ERESTART_RESTARTBLOCK) {
1400 
1401 		if (flags & TIMER_ABSTIME)
1402 			return -ERESTARTNOHAND;
1403 		/*
1404 		 * Report back to the user the time still remaining.
1405 		 */
1406 		if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1407 			return -EFAULT;
1408 
1409 		restart_block->fn = posix_cpu_nsleep_restart;
1410 		restart_block->nanosleep.clockid = which_clock;
1411 		restart_block->nanosleep.rmtp = rmtp;
1412 		restart_block->nanosleep.expires = timespec_to_ns(rqtp);
1413 	}
1414 	return error;
1415 }
1416 
1417 static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1418 {
1419 	clockid_t which_clock = restart_block->nanosleep.clockid;
1420 	struct timespec t;
1421 	struct itimerspec it;
1422 	int error;
1423 
1424 	t = ns_to_timespec(restart_block->nanosleep.expires);
1425 
1426 	error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1427 
1428 	if (error == -ERESTART_RESTARTBLOCK) {
1429 		struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
1430 		/*
1431 		 * Report back to the user the time still remaining.
1432 		 */
1433 		if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1434 			return -EFAULT;
1435 
1436 		restart_block->nanosleep.expires = timespec_to_ns(&t);
1437 	}
1438 	return error;
1439 
1440 }
1441 
1442 #define PROCESS_CLOCK	MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1443 #define THREAD_CLOCK	MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1444 
1445 static int process_cpu_clock_getres(const clockid_t which_clock,
1446 				    struct timespec *tp)
1447 {
1448 	return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1449 }
1450 static int process_cpu_clock_get(const clockid_t which_clock,
1451 				 struct timespec *tp)
1452 {
1453 	return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1454 }
1455 static int process_cpu_timer_create(struct k_itimer *timer)
1456 {
1457 	timer->it_clock = PROCESS_CLOCK;
1458 	return posix_cpu_timer_create(timer);
1459 }
1460 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1461 			      struct timespec *rqtp,
1462 			      struct timespec __user *rmtp)
1463 {
1464 	return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1465 }
1466 static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1467 {
1468 	return -EINVAL;
1469 }
1470 static int thread_cpu_clock_getres(const clockid_t which_clock,
1471 				   struct timespec *tp)
1472 {
1473 	return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1474 }
1475 static int thread_cpu_clock_get(const clockid_t which_clock,
1476 				struct timespec *tp)
1477 {
1478 	return posix_cpu_clock_get(THREAD_CLOCK, tp);
1479 }
1480 static int thread_cpu_timer_create(struct k_itimer *timer)
1481 {
1482 	timer->it_clock = THREAD_CLOCK;
1483 	return posix_cpu_timer_create(timer);
1484 }
1485 
1486 struct k_clock clock_posix_cpu = {
1487 	.clock_getres	= posix_cpu_clock_getres,
1488 	.clock_set	= posix_cpu_clock_set,
1489 	.clock_get	= posix_cpu_clock_get,
1490 	.timer_create	= posix_cpu_timer_create,
1491 	.nsleep		= posix_cpu_nsleep,
1492 	.nsleep_restart	= posix_cpu_nsleep_restart,
1493 	.timer_set	= posix_cpu_timer_set,
1494 	.timer_del	= posix_cpu_timer_del,
1495 	.timer_get	= posix_cpu_timer_get,
1496 };
1497 
1498 static __init int init_posix_cpu_timers(void)
1499 {
1500 	struct k_clock process = {
1501 		.clock_getres	= process_cpu_clock_getres,
1502 		.clock_get	= process_cpu_clock_get,
1503 		.timer_create	= process_cpu_timer_create,
1504 		.nsleep		= process_cpu_nsleep,
1505 		.nsleep_restart	= process_cpu_nsleep_restart,
1506 	};
1507 	struct k_clock thread = {
1508 		.clock_getres	= thread_cpu_clock_getres,
1509 		.clock_get	= thread_cpu_clock_get,
1510 		.timer_create	= thread_cpu_timer_create,
1511 	};
1512 	struct timespec ts;
1513 
1514 	posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1515 	posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1516 
1517 	cputime_to_timespec(cputime_one_jiffy, &ts);
1518 	onecputick = ts.tv_nsec;
1519 	WARN_ON(ts.tv_sec != 0);
1520 
1521 	return 0;
1522 }
1523 __initcall(init_posix_cpu_timers);
1524