1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Implement CPU time clocks for the POSIX clock interface. 4 */ 5 6 #include <linux/sched/signal.h> 7 #include <linux/sched/cputime.h> 8 #include <linux/posix-timers.h> 9 #include <linux/errno.h> 10 #include <linux/math64.h> 11 #include <linux/uaccess.h> 12 #include <linux/kernel_stat.h> 13 #include <trace/events/timer.h> 14 #include <linux/tick.h> 15 #include <linux/workqueue.h> 16 #include <linux/compat.h> 17 #include <linux/sched/deadline.h> 18 #include <linux/task_work.h> 19 20 #include "posix-timers.h" 21 22 static void posix_cpu_timer_rearm(struct k_itimer *timer); 23 24 void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit) 25 { 26 posix_cputimers_init(pct); 27 if (cpu_limit != RLIM_INFINITY) { 28 pct->bases[CPUCLOCK_PROF].nextevt = cpu_limit * NSEC_PER_SEC; 29 pct->timers_active = true; 30 } 31 } 32 33 /* 34 * Called after updating RLIMIT_CPU to run cpu timer and update 35 * tsk->signal->posix_cputimers.bases[clock].nextevt expiration cache if 36 * necessary. Needs siglock protection since other code may update the 37 * expiration cache as well. 38 * 39 * Returns 0 on success, -ESRCH on failure. Can fail if the task is exiting and 40 * we cannot lock_task_sighand. Cannot fail if task is current. 41 */ 42 int update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new) 43 { 44 u64 nsecs = rlim_new * NSEC_PER_SEC; 45 unsigned long irq_fl; 46 47 if (!lock_task_sighand(task, &irq_fl)) 48 return -ESRCH; 49 set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL); 50 unlock_task_sighand(task, &irq_fl); 51 return 0; 52 } 53 54 /* 55 * Functions for validating access to tasks. 56 */ 57 static struct pid *pid_for_clock(const clockid_t clock, bool gettime) 58 { 59 const bool thread = !!CPUCLOCK_PERTHREAD(clock); 60 const pid_t upid = CPUCLOCK_PID(clock); 61 struct pid *pid; 62 63 if (CPUCLOCK_WHICH(clock) >= CPUCLOCK_MAX) 64 return NULL; 65 66 /* 67 * If the encoded PID is 0, then the timer is targeted at current 68 * or the process to which current belongs. 69 */ 70 if (upid == 0) 71 return thread ? task_pid(current) : task_tgid(current); 72 73 pid = find_vpid(upid); 74 if (!pid) 75 return NULL; 76 77 if (thread) { 78 struct task_struct *tsk = pid_task(pid, PIDTYPE_PID); 79 return (tsk && same_thread_group(tsk, current)) ? pid : NULL; 80 } 81 82 /* 83 * For clock_gettime(PROCESS) allow finding the process by 84 * with the pid of the current task. The code needs the tgid 85 * of the process so that pid_task(pid, PIDTYPE_TGID) can be 86 * used to find the process. 87 */ 88 if (gettime && (pid == task_pid(current))) 89 return task_tgid(current); 90 91 /* 92 * For processes require that pid identifies a process. 93 */ 94 return pid_has_task(pid, PIDTYPE_TGID) ? pid : NULL; 95 } 96 97 static inline int validate_clock_permissions(const clockid_t clock) 98 { 99 int ret; 100 101 rcu_read_lock(); 102 ret = pid_for_clock(clock, false) ? 0 : -EINVAL; 103 rcu_read_unlock(); 104 105 return ret; 106 } 107 108 static inline enum pid_type clock_pid_type(const clockid_t clock) 109 { 110 return CPUCLOCK_PERTHREAD(clock) ? PIDTYPE_PID : PIDTYPE_TGID; 111 } 112 113 static inline struct task_struct *cpu_timer_task_rcu(struct k_itimer *timer) 114 { 115 return pid_task(timer->it.cpu.pid, clock_pid_type(timer->it_clock)); 116 } 117 118 /* 119 * Update expiry time from increment, and increase overrun count, 120 * given the current clock sample. 121 */ 122 static u64 bump_cpu_timer(struct k_itimer *timer, u64 now) 123 { 124 u64 delta, incr, expires = timer->it.cpu.node.expires; 125 int i; 126 127 if (!timer->it_interval) 128 return expires; 129 130 if (now < expires) 131 return expires; 132 133 incr = timer->it_interval; 134 delta = now + incr - expires; 135 136 /* Don't use (incr*2 < delta), incr*2 might overflow. */ 137 for (i = 0; incr < delta - incr; i++) 138 incr = incr << 1; 139 140 for (; i >= 0; incr >>= 1, i--) { 141 if (delta < incr) 142 continue; 143 144 timer->it.cpu.node.expires += incr; 145 timer->it_overrun += 1LL << i; 146 delta -= incr; 147 } 148 return timer->it.cpu.node.expires; 149 } 150 151 /* Check whether all cache entries contain U64_MAX, i.e. eternal expiry time */ 152 static inline bool expiry_cache_is_inactive(const struct posix_cputimers *pct) 153 { 154 return !(~pct->bases[CPUCLOCK_PROF].nextevt | 155 ~pct->bases[CPUCLOCK_VIRT].nextevt | 156 ~pct->bases[CPUCLOCK_SCHED].nextevt); 157 } 158 159 static int 160 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp) 161 { 162 int error = validate_clock_permissions(which_clock); 163 164 if (!error) { 165 tp->tv_sec = 0; 166 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ); 167 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { 168 /* 169 * If sched_clock is using a cycle counter, we 170 * don't have any idea of its true resolution 171 * exported, but it is much more than 1s/HZ. 172 */ 173 tp->tv_nsec = 1; 174 } 175 } 176 return error; 177 } 178 179 static int 180 posix_cpu_clock_set(const clockid_t clock, const struct timespec64 *tp) 181 { 182 int error = validate_clock_permissions(clock); 183 184 /* 185 * You can never reset a CPU clock, but we check for other errors 186 * in the call before failing with EPERM. 187 */ 188 return error ? : -EPERM; 189 } 190 191 /* 192 * Sample a per-thread clock for the given task. clkid is validated. 193 */ 194 static u64 cpu_clock_sample(const clockid_t clkid, struct task_struct *p) 195 { 196 u64 utime, stime; 197 198 if (clkid == CPUCLOCK_SCHED) 199 return task_sched_runtime(p); 200 201 task_cputime(p, &utime, &stime); 202 203 switch (clkid) { 204 case CPUCLOCK_PROF: 205 return utime + stime; 206 case CPUCLOCK_VIRT: 207 return utime; 208 default: 209 WARN_ON_ONCE(1); 210 } 211 return 0; 212 } 213 214 static inline void store_samples(u64 *samples, u64 stime, u64 utime, u64 rtime) 215 { 216 samples[CPUCLOCK_PROF] = stime + utime; 217 samples[CPUCLOCK_VIRT] = utime; 218 samples[CPUCLOCK_SCHED] = rtime; 219 } 220 221 static void task_sample_cputime(struct task_struct *p, u64 *samples) 222 { 223 u64 stime, utime; 224 225 task_cputime(p, &utime, &stime); 226 store_samples(samples, stime, utime, p->se.sum_exec_runtime); 227 } 228 229 static void proc_sample_cputime_atomic(struct task_cputime_atomic *at, 230 u64 *samples) 231 { 232 u64 stime, utime, rtime; 233 234 utime = atomic64_read(&at->utime); 235 stime = atomic64_read(&at->stime); 236 rtime = atomic64_read(&at->sum_exec_runtime); 237 store_samples(samples, stime, utime, rtime); 238 } 239 240 /* 241 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg 242 * to avoid race conditions with concurrent updates to cputime. 243 */ 244 static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime) 245 { 246 u64 curr_cputime; 247 retry: 248 curr_cputime = atomic64_read(cputime); 249 if (sum_cputime > curr_cputime) { 250 if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime) 251 goto retry; 252 } 253 } 254 255 static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, 256 struct task_cputime *sum) 257 { 258 __update_gt_cputime(&cputime_atomic->utime, sum->utime); 259 __update_gt_cputime(&cputime_atomic->stime, sum->stime); 260 __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime); 261 } 262 263 /** 264 * thread_group_sample_cputime - Sample cputime for a given task 265 * @tsk: Task for which cputime needs to be started 266 * @samples: Storage for time samples 267 * 268 * Called from sys_getitimer() to calculate the expiry time of an active 269 * timer. That means group cputime accounting is already active. Called 270 * with task sighand lock held. 271 * 272 * Updates @times with an uptodate sample of the thread group cputimes. 273 */ 274 void thread_group_sample_cputime(struct task_struct *tsk, u64 *samples) 275 { 276 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; 277 struct posix_cputimers *pct = &tsk->signal->posix_cputimers; 278 279 WARN_ON_ONCE(!pct->timers_active); 280 281 proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples); 282 } 283 284 /** 285 * thread_group_start_cputime - Start cputime and return a sample 286 * @tsk: Task for which cputime needs to be started 287 * @samples: Storage for time samples 288 * 289 * The thread group cputime accounting is avoided when there are no posix 290 * CPU timers armed. Before starting a timer it's required to check whether 291 * the time accounting is active. If not, a full update of the atomic 292 * accounting store needs to be done and the accounting enabled. 293 * 294 * Updates @times with an uptodate sample of the thread group cputimes. 295 */ 296 static void thread_group_start_cputime(struct task_struct *tsk, u64 *samples) 297 { 298 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; 299 struct posix_cputimers *pct = &tsk->signal->posix_cputimers; 300 301 lockdep_assert_task_sighand_held(tsk); 302 303 /* Check if cputimer isn't running. This is accessed without locking. */ 304 if (!READ_ONCE(pct->timers_active)) { 305 struct task_cputime sum; 306 307 /* 308 * The POSIX timer interface allows for absolute time expiry 309 * values through the TIMER_ABSTIME flag, therefore we have 310 * to synchronize the timer to the clock every time we start it. 311 */ 312 thread_group_cputime(tsk, &sum); 313 update_gt_cputime(&cputimer->cputime_atomic, &sum); 314 315 /* 316 * We're setting timers_active without a lock. Ensure this 317 * only gets written to in one operation. We set it after 318 * update_gt_cputime() as a small optimization, but 319 * barriers are not required because update_gt_cputime() 320 * can handle concurrent updates. 321 */ 322 WRITE_ONCE(pct->timers_active, true); 323 } 324 proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples); 325 } 326 327 static void __thread_group_cputime(struct task_struct *tsk, u64 *samples) 328 { 329 struct task_cputime ct; 330 331 thread_group_cputime(tsk, &ct); 332 store_samples(samples, ct.stime, ct.utime, ct.sum_exec_runtime); 333 } 334 335 /* 336 * Sample a process (thread group) clock for the given task clkid. If the 337 * group's cputime accounting is already enabled, read the atomic 338 * store. Otherwise a full update is required. clkid is already validated. 339 */ 340 static u64 cpu_clock_sample_group(const clockid_t clkid, struct task_struct *p, 341 bool start) 342 { 343 struct thread_group_cputimer *cputimer = &p->signal->cputimer; 344 struct posix_cputimers *pct = &p->signal->posix_cputimers; 345 u64 samples[CPUCLOCK_MAX]; 346 347 if (!READ_ONCE(pct->timers_active)) { 348 if (start) 349 thread_group_start_cputime(p, samples); 350 else 351 __thread_group_cputime(p, samples); 352 } else { 353 proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples); 354 } 355 356 return samples[clkid]; 357 } 358 359 static int posix_cpu_clock_get(const clockid_t clock, struct timespec64 *tp) 360 { 361 const clockid_t clkid = CPUCLOCK_WHICH(clock); 362 struct task_struct *tsk; 363 u64 t; 364 365 rcu_read_lock(); 366 tsk = pid_task(pid_for_clock(clock, true), clock_pid_type(clock)); 367 if (!tsk) { 368 rcu_read_unlock(); 369 return -EINVAL; 370 } 371 372 if (CPUCLOCK_PERTHREAD(clock)) 373 t = cpu_clock_sample(clkid, tsk); 374 else 375 t = cpu_clock_sample_group(clkid, tsk, false); 376 rcu_read_unlock(); 377 378 *tp = ns_to_timespec64(t); 379 return 0; 380 } 381 382 /* 383 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer. 384 * This is called from sys_timer_create() and do_cpu_nanosleep() with the 385 * new timer already all-zeros initialized. 386 */ 387 static int posix_cpu_timer_create(struct k_itimer *new_timer) 388 { 389 static struct lock_class_key posix_cpu_timers_key; 390 struct pid *pid; 391 392 rcu_read_lock(); 393 pid = pid_for_clock(new_timer->it_clock, false); 394 if (!pid) { 395 rcu_read_unlock(); 396 return -EINVAL; 397 } 398 399 /* 400 * If posix timer expiry is handled in task work context then 401 * timer::it_lock can be taken without disabling interrupts as all 402 * other locking happens in task context. This requires a separate 403 * lock class key otherwise regular posix timer expiry would record 404 * the lock class being taken in interrupt context and generate a 405 * false positive warning. 406 */ 407 if (IS_ENABLED(CONFIG_POSIX_CPU_TIMERS_TASK_WORK)) 408 lockdep_set_class(&new_timer->it_lock, &posix_cpu_timers_key); 409 410 new_timer->kclock = &clock_posix_cpu; 411 timerqueue_init(&new_timer->it.cpu.node); 412 new_timer->it.cpu.pid = get_pid(pid); 413 rcu_read_unlock(); 414 return 0; 415 } 416 417 static struct posix_cputimer_base *timer_base(struct k_itimer *timer, 418 struct task_struct *tsk) 419 { 420 int clkidx = CPUCLOCK_WHICH(timer->it_clock); 421 422 if (CPUCLOCK_PERTHREAD(timer->it_clock)) 423 return tsk->posix_cputimers.bases + clkidx; 424 else 425 return tsk->signal->posix_cputimers.bases + clkidx; 426 } 427 428 /* 429 * Force recalculating the base earliest expiration on the next tick. 430 * This will also re-evaluate the need to keep around the process wide 431 * cputime counter and tick dependency and eventually shut these down 432 * if necessary. 433 */ 434 static void trigger_base_recalc_expires(struct k_itimer *timer, 435 struct task_struct *tsk) 436 { 437 struct posix_cputimer_base *base = timer_base(timer, tsk); 438 439 base->nextevt = 0; 440 } 441 442 /* 443 * Dequeue the timer and reset the base if it was its earliest expiration. 444 * It makes sure the next tick recalculates the base next expiration so we 445 * don't keep the costly process wide cputime counter around for a random 446 * amount of time, along with the tick dependency. 447 * 448 * If another timer gets queued between this and the next tick, its 449 * expiration will update the base next event if necessary on the next 450 * tick. 451 */ 452 static void disarm_timer(struct k_itimer *timer, struct task_struct *p) 453 { 454 struct cpu_timer *ctmr = &timer->it.cpu; 455 struct posix_cputimer_base *base; 456 457 if (!cpu_timer_dequeue(ctmr)) 458 return; 459 460 base = timer_base(timer, p); 461 if (cpu_timer_getexpires(ctmr) == base->nextevt) 462 trigger_base_recalc_expires(timer, p); 463 } 464 465 466 /* 467 * Clean up a CPU-clock timer that is about to be destroyed. 468 * This is called from timer deletion with the timer already locked. 469 * If we return TIMER_RETRY, it's necessary to release the timer's lock 470 * and try again. (This happens when the timer is in the middle of firing.) 471 */ 472 static int posix_cpu_timer_del(struct k_itimer *timer) 473 { 474 struct cpu_timer *ctmr = &timer->it.cpu; 475 struct sighand_struct *sighand; 476 struct task_struct *p; 477 unsigned long flags; 478 int ret = 0; 479 480 rcu_read_lock(); 481 p = cpu_timer_task_rcu(timer); 482 if (!p) 483 goto out; 484 485 /* 486 * Protect against sighand release/switch in exit/exec and process/ 487 * thread timer list entry concurrent read/writes. 488 */ 489 sighand = lock_task_sighand(p, &flags); 490 if (unlikely(sighand == NULL)) { 491 /* 492 * This raced with the reaping of the task. The exit cleanup 493 * should have removed this timer from the timer queue. 494 */ 495 WARN_ON_ONCE(ctmr->head || timerqueue_node_queued(&ctmr->node)); 496 } else { 497 if (timer->it.cpu.firing) 498 ret = TIMER_RETRY; 499 else 500 disarm_timer(timer, p); 501 502 unlock_task_sighand(p, &flags); 503 } 504 505 out: 506 rcu_read_unlock(); 507 if (!ret) 508 put_pid(ctmr->pid); 509 510 return ret; 511 } 512 513 static void cleanup_timerqueue(struct timerqueue_head *head) 514 { 515 struct timerqueue_node *node; 516 struct cpu_timer *ctmr; 517 518 while ((node = timerqueue_getnext(head))) { 519 timerqueue_del(head, node); 520 ctmr = container_of(node, struct cpu_timer, node); 521 ctmr->head = NULL; 522 } 523 } 524 525 /* 526 * Clean out CPU timers which are still armed when a thread exits. The 527 * timers are only removed from the list. No other updates are done. The 528 * corresponding posix timers are still accessible, but cannot be rearmed. 529 * 530 * This must be called with the siglock held. 531 */ 532 static void cleanup_timers(struct posix_cputimers *pct) 533 { 534 cleanup_timerqueue(&pct->bases[CPUCLOCK_PROF].tqhead); 535 cleanup_timerqueue(&pct->bases[CPUCLOCK_VIRT].tqhead); 536 cleanup_timerqueue(&pct->bases[CPUCLOCK_SCHED].tqhead); 537 } 538 539 /* 540 * These are both called with the siglock held, when the current thread 541 * is being reaped. When the final (leader) thread in the group is reaped, 542 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit. 543 */ 544 void posix_cpu_timers_exit(struct task_struct *tsk) 545 { 546 cleanup_timers(&tsk->posix_cputimers); 547 } 548 void posix_cpu_timers_exit_group(struct task_struct *tsk) 549 { 550 cleanup_timers(&tsk->signal->posix_cputimers); 551 } 552 553 /* 554 * Insert the timer on the appropriate list before any timers that 555 * expire later. This must be called with the sighand lock held. 556 */ 557 static void arm_timer(struct k_itimer *timer, struct task_struct *p) 558 { 559 struct posix_cputimer_base *base = timer_base(timer, p); 560 struct cpu_timer *ctmr = &timer->it.cpu; 561 u64 newexp = cpu_timer_getexpires(ctmr); 562 563 if (!cpu_timer_enqueue(&base->tqhead, ctmr)) 564 return; 565 566 /* 567 * We are the new earliest-expiring POSIX 1.b timer, hence 568 * need to update expiration cache. Take into account that 569 * for process timers we share expiration cache with itimers 570 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME. 571 */ 572 if (newexp < base->nextevt) 573 base->nextevt = newexp; 574 575 if (CPUCLOCK_PERTHREAD(timer->it_clock)) 576 tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER); 577 else 578 tick_dep_set_signal(p, TICK_DEP_BIT_POSIX_TIMER); 579 } 580 581 /* 582 * The timer is locked, fire it and arrange for its reload. 583 */ 584 static void cpu_timer_fire(struct k_itimer *timer) 585 { 586 struct cpu_timer *ctmr = &timer->it.cpu; 587 588 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { 589 /* 590 * User don't want any signal. 591 */ 592 cpu_timer_setexpires(ctmr, 0); 593 } else if (unlikely(timer->sigq == NULL)) { 594 /* 595 * This a special case for clock_nanosleep, 596 * not a normal timer from sys_timer_create. 597 */ 598 wake_up_process(timer->it_process); 599 cpu_timer_setexpires(ctmr, 0); 600 } else if (!timer->it_interval) { 601 /* 602 * One-shot timer. Clear it as soon as it's fired. 603 */ 604 posix_timer_event(timer, 0); 605 cpu_timer_setexpires(ctmr, 0); 606 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) { 607 /* 608 * The signal did not get queued because the signal 609 * was ignored, so we won't get any callback to 610 * reload the timer. But we need to keep it 611 * ticking in case the signal is deliverable next time. 612 */ 613 posix_cpu_timer_rearm(timer); 614 ++timer->it_requeue_pending; 615 } 616 } 617 618 /* 619 * Guts of sys_timer_settime for CPU timers. 620 * This is called with the timer locked and interrupts disabled. 621 * If we return TIMER_RETRY, it's necessary to release the timer's lock 622 * and try again. (This happens when the timer is in the middle of firing.) 623 */ 624 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags, 625 struct itimerspec64 *new, struct itimerspec64 *old) 626 { 627 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock); 628 u64 old_expires, new_expires, old_incr, val; 629 struct cpu_timer *ctmr = &timer->it.cpu; 630 struct sighand_struct *sighand; 631 struct task_struct *p; 632 unsigned long flags; 633 int ret = 0; 634 635 rcu_read_lock(); 636 p = cpu_timer_task_rcu(timer); 637 if (!p) { 638 /* 639 * If p has just been reaped, we can no 640 * longer get any information about it at all. 641 */ 642 rcu_read_unlock(); 643 return -ESRCH; 644 } 645 646 /* 647 * Use the to_ktime conversion because that clamps the maximum 648 * value to KTIME_MAX and avoid multiplication overflows. 649 */ 650 new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value)); 651 652 /* 653 * Protect against sighand release/switch in exit/exec and p->cpu_timers 654 * and p->signal->cpu_timers read/write in arm_timer() 655 */ 656 sighand = lock_task_sighand(p, &flags); 657 /* 658 * If p has just been reaped, we can no 659 * longer get any information about it at all. 660 */ 661 if (unlikely(sighand == NULL)) { 662 rcu_read_unlock(); 663 return -ESRCH; 664 } 665 666 /* 667 * Disarm any old timer after extracting its expiry time. 668 */ 669 old_incr = timer->it_interval; 670 old_expires = cpu_timer_getexpires(ctmr); 671 672 if (unlikely(timer->it.cpu.firing)) { 673 timer->it.cpu.firing = -1; 674 ret = TIMER_RETRY; 675 } else { 676 cpu_timer_dequeue(ctmr); 677 } 678 679 /* 680 * We need to sample the current value to convert the new 681 * value from to relative and absolute, and to convert the 682 * old value from absolute to relative. To set a process 683 * timer, we need a sample to balance the thread expiry 684 * times (in arm_timer). With an absolute time, we must 685 * check if it's already passed. In short, we need a sample. 686 */ 687 if (CPUCLOCK_PERTHREAD(timer->it_clock)) 688 val = cpu_clock_sample(clkid, p); 689 else 690 val = cpu_clock_sample_group(clkid, p, true); 691 692 if (old) { 693 if (old_expires == 0) { 694 old->it_value.tv_sec = 0; 695 old->it_value.tv_nsec = 0; 696 } else { 697 /* 698 * Update the timer in case it has overrun already. 699 * If it has, we'll report it as having overrun and 700 * with the next reloaded timer already ticking, 701 * though we are swallowing that pending 702 * notification here to install the new setting. 703 */ 704 u64 exp = bump_cpu_timer(timer, val); 705 706 if (val < exp) { 707 old_expires = exp - val; 708 old->it_value = ns_to_timespec64(old_expires); 709 } else { 710 old->it_value.tv_nsec = 1; 711 old->it_value.tv_sec = 0; 712 } 713 } 714 } 715 716 if (unlikely(ret)) { 717 /* 718 * We are colliding with the timer actually firing. 719 * Punt after filling in the timer's old value, and 720 * disable this firing since we are already reporting 721 * it as an overrun (thanks to bump_cpu_timer above). 722 */ 723 unlock_task_sighand(p, &flags); 724 goto out; 725 } 726 727 if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) { 728 new_expires += val; 729 } 730 731 /* 732 * Install the new expiry time (or zero). 733 * For a timer with no notification action, we don't actually 734 * arm the timer (we'll just fake it for timer_gettime). 735 */ 736 cpu_timer_setexpires(ctmr, new_expires); 737 if (new_expires != 0 && val < new_expires) { 738 arm_timer(timer, p); 739 } 740 741 unlock_task_sighand(p, &flags); 742 /* 743 * Install the new reload setting, and 744 * set up the signal and overrun bookkeeping. 745 */ 746 timer->it_interval = timespec64_to_ktime(new->it_interval); 747 748 /* 749 * This acts as a modification timestamp for the timer, 750 * so any automatic reload attempt will punt on seeing 751 * that we have reset the timer manually. 752 */ 753 timer->it_requeue_pending = (timer->it_requeue_pending + 2) & 754 ~REQUEUE_PENDING; 755 timer->it_overrun_last = 0; 756 timer->it_overrun = -1; 757 758 if (val >= new_expires) { 759 if (new_expires != 0) { 760 /* 761 * The designated time already passed, so we notify 762 * immediately, even if the thread never runs to 763 * accumulate more time on this clock. 764 */ 765 cpu_timer_fire(timer); 766 } 767 768 /* 769 * Make sure we don't keep around the process wide cputime 770 * counter or the tick dependency if they are not necessary. 771 */ 772 sighand = lock_task_sighand(p, &flags); 773 if (!sighand) 774 goto out; 775 776 if (!cpu_timer_queued(ctmr)) 777 trigger_base_recalc_expires(timer, p); 778 779 unlock_task_sighand(p, &flags); 780 } 781 out: 782 rcu_read_unlock(); 783 if (old) 784 old->it_interval = ns_to_timespec64(old_incr); 785 786 return ret; 787 } 788 789 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp) 790 { 791 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock); 792 struct cpu_timer *ctmr = &timer->it.cpu; 793 u64 now, expires = cpu_timer_getexpires(ctmr); 794 struct task_struct *p; 795 796 rcu_read_lock(); 797 p = cpu_timer_task_rcu(timer); 798 if (!p) 799 goto out; 800 801 /* 802 * Easy part: convert the reload time. 803 */ 804 itp->it_interval = ktime_to_timespec64(timer->it_interval); 805 806 if (!expires) 807 goto out; 808 809 /* 810 * Sample the clock to take the difference with the expiry time. 811 */ 812 if (CPUCLOCK_PERTHREAD(timer->it_clock)) 813 now = cpu_clock_sample(clkid, p); 814 else 815 now = cpu_clock_sample_group(clkid, p, false); 816 817 if (now < expires) { 818 itp->it_value = ns_to_timespec64(expires - now); 819 } else { 820 /* 821 * The timer should have expired already, but the firing 822 * hasn't taken place yet. Say it's just about to expire. 823 */ 824 itp->it_value.tv_nsec = 1; 825 itp->it_value.tv_sec = 0; 826 } 827 out: 828 rcu_read_unlock(); 829 } 830 831 #define MAX_COLLECTED 20 832 833 static u64 collect_timerqueue(struct timerqueue_head *head, 834 struct list_head *firing, u64 now) 835 { 836 struct timerqueue_node *next; 837 int i = 0; 838 839 while ((next = timerqueue_getnext(head))) { 840 struct cpu_timer *ctmr; 841 u64 expires; 842 843 ctmr = container_of(next, struct cpu_timer, node); 844 expires = cpu_timer_getexpires(ctmr); 845 /* Limit the number of timers to expire at once */ 846 if (++i == MAX_COLLECTED || now < expires) 847 return expires; 848 849 ctmr->firing = 1; 850 cpu_timer_dequeue(ctmr); 851 list_add_tail(&ctmr->elist, firing); 852 } 853 854 return U64_MAX; 855 } 856 857 static void collect_posix_cputimers(struct posix_cputimers *pct, u64 *samples, 858 struct list_head *firing) 859 { 860 struct posix_cputimer_base *base = pct->bases; 861 int i; 862 863 for (i = 0; i < CPUCLOCK_MAX; i++, base++) { 864 base->nextevt = collect_timerqueue(&base->tqhead, firing, 865 samples[i]); 866 } 867 } 868 869 static inline void check_dl_overrun(struct task_struct *tsk) 870 { 871 if (tsk->dl.dl_overrun) { 872 tsk->dl.dl_overrun = 0; 873 send_signal_locked(SIGXCPU, SEND_SIG_PRIV, tsk, PIDTYPE_TGID); 874 } 875 } 876 877 static bool check_rlimit(u64 time, u64 limit, int signo, bool rt, bool hard) 878 { 879 if (time < limit) 880 return false; 881 882 if (print_fatal_signals) { 883 pr_info("%s Watchdog Timeout (%s): %s[%d]\n", 884 rt ? "RT" : "CPU", hard ? "hard" : "soft", 885 current->comm, task_pid_nr(current)); 886 } 887 send_signal_locked(signo, SEND_SIG_PRIV, current, PIDTYPE_TGID); 888 return true; 889 } 890 891 /* 892 * Check for any per-thread CPU timers that have fired and move them off 893 * the tsk->cpu_timers[N] list onto the firing list. Here we update the 894 * tsk->it_*_expires values to reflect the remaining thread CPU timers. 895 */ 896 static void check_thread_timers(struct task_struct *tsk, 897 struct list_head *firing) 898 { 899 struct posix_cputimers *pct = &tsk->posix_cputimers; 900 u64 samples[CPUCLOCK_MAX]; 901 unsigned long soft; 902 903 if (dl_task(tsk)) 904 check_dl_overrun(tsk); 905 906 if (expiry_cache_is_inactive(pct)) 907 return; 908 909 task_sample_cputime(tsk, samples); 910 collect_posix_cputimers(pct, samples, firing); 911 912 /* 913 * Check for the special case thread timers. 914 */ 915 soft = task_rlimit(tsk, RLIMIT_RTTIME); 916 if (soft != RLIM_INFINITY) { 917 /* Task RT timeout is accounted in jiffies. RTTIME is usec */ 918 unsigned long rttime = tsk->rt.timeout * (USEC_PER_SEC / HZ); 919 unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME); 920 921 /* At the hard limit, send SIGKILL. No further action. */ 922 if (hard != RLIM_INFINITY && 923 check_rlimit(rttime, hard, SIGKILL, true, true)) 924 return; 925 926 /* At the soft limit, send a SIGXCPU every second */ 927 if (check_rlimit(rttime, soft, SIGXCPU, true, false)) { 928 soft += USEC_PER_SEC; 929 tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur = soft; 930 } 931 } 932 933 if (expiry_cache_is_inactive(pct)) 934 tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER); 935 } 936 937 static inline void stop_process_timers(struct signal_struct *sig) 938 { 939 struct posix_cputimers *pct = &sig->posix_cputimers; 940 941 /* Turn off the active flag. This is done without locking. */ 942 WRITE_ONCE(pct->timers_active, false); 943 tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER); 944 } 945 946 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it, 947 u64 *expires, u64 cur_time, int signo) 948 { 949 if (!it->expires) 950 return; 951 952 if (cur_time >= it->expires) { 953 if (it->incr) 954 it->expires += it->incr; 955 else 956 it->expires = 0; 957 958 trace_itimer_expire(signo == SIGPROF ? 959 ITIMER_PROF : ITIMER_VIRTUAL, 960 task_tgid(tsk), cur_time); 961 send_signal_locked(signo, SEND_SIG_PRIV, tsk, PIDTYPE_TGID); 962 } 963 964 if (it->expires && it->expires < *expires) 965 *expires = it->expires; 966 } 967 968 /* 969 * Check for any per-thread CPU timers that have fired and move them 970 * off the tsk->*_timers list onto the firing list. Per-thread timers 971 * have already been taken off. 972 */ 973 static void check_process_timers(struct task_struct *tsk, 974 struct list_head *firing) 975 { 976 struct signal_struct *const sig = tsk->signal; 977 struct posix_cputimers *pct = &sig->posix_cputimers; 978 u64 samples[CPUCLOCK_MAX]; 979 unsigned long soft; 980 981 /* 982 * If there are no active process wide timers (POSIX 1.b, itimers, 983 * RLIMIT_CPU) nothing to check. Also skip the process wide timer 984 * processing when there is already another task handling them. 985 */ 986 if (!READ_ONCE(pct->timers_active) || pct->expiry_active) 987 return; 988 989 /* 990 * Signify that a thread is checking for process timers. 991 * Write access to this field is protected by the sighand lock. 992 */ 993 pct->expiry_active = true; 994 995 /* 996 * Collect the current process totals. Group accounting is active 997 * so the sample can be taken directly. 998 */ 999 proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic, samples); 1000 collect_posix_cputimers(pct, samples, firing); 1001 1002 /* 1003 * Check for the special case process timers. 1004 */ 1005 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], 1006 &pct->bases[CPUCLOCK_PROF].nextevt, 1007 samples[CPUCLOCK_PROF], SIGPROF); 1008 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], 1009 &pct->bases[CPUCLOCK_VIRT].nextevt, 1010 samples[CPUCLOCK_VIRT], SIGVTALRM); 1011 1012 soft = task_rlimit(tsk, RLIMIT_CPU); 1013 if (soft != RLIM_INFINITY) { 1014 /* RLIMIT_CPU is in seconds. Samples are nanoseconds */ 1015 unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU); 1016 u64 ptime = samples[CPUCLOCK_PROF]; 1017 u64 softns = (u64)soft * NSEC_PER_SEC; 1018 u64 hardns = (u64)hard * NSEC_PER_SEC; 1019 1020 /* At the hard limit, send SIGKILL. No further action. */ 1021 if (hard != RLIM_INFINITY && 1022 check_rlimit(ptime, hardns, SIGKILL, false, true)) 1023 return; 1024 1025 /* At the soft limit, send a SIGXCPU every second */ 1026 if (check_rlimit(ptime, softns, SIGXCPU, false, false)) { 1027 sig->rlim[RLIMIT_CPU].rlim_cur = soft + 1; 1028 softns += NSEC_PER_SEC; 1029 } 1030 1031 /* Update the expiry cache */ 1032 if (softns < pct->bases[CPUCLOCK_PROF].nextevt) 1033 pct->bases[CPUCLOCK_PROF].nextevt = softns; 1034 } 1035 1036 if (expiry_cache_is_inactive(pct)) 1037 stop_process_timers(sig); 1038 1039 pct->expiry_active = false; 1040 } 1041 1042 /* 1043 * This is called from the signal code (via posixtimer_rearm) 1044 * when the last timer signal was delivered and we have to reload the timer. 1045 */ 1046 static void posix_cpu_timer_rearm(struct k_itimer *timer) 1047 { 1048 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock); 1049 struct task_struct *p; 1050 struct sighand_struct *sighand; 1051 unsigned long flags; 1052 u64 now; 1053 1054 rcu_read_lock(); 1055 p = cpu_timer_task_rcu(timer); 1056 if (!p) 1057 goto out; 1058 1059 /* Protect timer list r/w in arm_timer() */ 1060 sighand = lock_task_sighand(p, &flags); 1061 if (unlikely(sighand == NULL)) 1062 goto out; 1063 1064 /* 1065 * Fetch the current sample and update the timer's expiry time. 1066 */ 1067 if (CPUCLOCK_PERTHREAD(timer->it_clock)) 1068 now = cpu_clock_sample(clkid, p); 1069 else 1070 now = cpu_clock_sample_group(clkid, p, true); 1071 1072 bump_cpu_timer(timer, now); 1073 1074 /* 1075 * Now re-arm for the new expiry time. 1076 */ 1077 arm_timer(timer, p); 1078 unlock_task_sighand(p, &flags); 1079 out: 1080 rcu_read_unlock(); 1081 } 1082 1083 /** 1084 * task_cputimers_expired - Check whether posix CPU timers are expired 1085 * 1086 * @samples: Array of current samples for the CPUCLOCK clocks 1087 * @pct: Pointer to a posix_cputimers container 1088 * 1089 * Returns true if any member of @samples is greater than the corresponding 1090 * member of @pct->bases[CLK].nextevt. False otherwise 1091 */ 1092 static inline bool 1093 task_cputimers_expired(const u64 *samples, struct posix_cputimers *pct) 1094 { 1095 int i; 1096 1097 for (i = 0; i < CPUCLOCK_MAX; i++) { 1098 if (samples[i] >= pct->bases[i].nextevt) 1099 return true; 1100 } 1101 return false; 1102 } 1103 1104 /** 1105 * fastpath_timer_check - POSIX CPU timers fast path. 1106 * 1107 * @tsk: The task (thread) being checked. 1108 * 1109 * Check the task and thread group timers. If both are zero (there are no 1110 * timers set) return false. Otherwise snapshot the task and thread group 1111 * timers and compare them with the corresponding expiration times. Return 1112 * true if a timer has expired, else return false. 1113 */ 1114 static inline bool fastpath_timer_check(struct task_struct *tsk) 1115 { 1116 struct posix_cputimers *pct = &tsk->posix_cputimers; 1117 struct signal_struct *sig; 1118 1119 if (!expiry_cache_is_inactive(pct)) { 1120 u64 samples[CPUCLOCK_MAX]; 1121 1122 task_sample_cputime(tsk, samples); 1123 if (task_cputimers_expired(samples, pct)) 1124 return true; 1125 } 1126 1127 sig = tsk->signal; 1128 pct = &sig->posix_cputimers; 1129 /* 1130 * Check if thread group timers expired when timers are active and 1131 * no other thread in the group is already handling expiry for 1132 * thread group cputimers. These fields are read without the 1133 * sighand lock. However, this is fine because this is meant to be 1134 * a fastpath heuristic to determine whether we should try to 1135 * acquire the sighand lock to handle timer expiry. 1136 * 1137 * In the worst case scenario, if concurrently timers_active is set 1138 * or expiry_active is cleared, but the current thread doesn't see 1139 * the change yet, the timer checks are delayed until the next 1140 * thread in the group gets a scheduler interrupt to handle the 1141 * timer. This isn't an issue in practice because these types of 1142 * delays with signals actually getting sent are expected. 1143 */ 1144 if (READ_ONCE(pct->timers_active) && !READ_ONCE(pct->expiry_active)) { 1145 u64 samples[CPUCLOCK_MAX]; 1146 1147 proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic, 1148 samples); 1149 1150 if (task_cputimers_expired(samples, pct)) 1151 return true; 1152 } 1153 1154 if (dl_task(tsk) && tsk->dl.dl_overrun) 1155 return true; 1156 1157 return false; 1158 } 1159 1160 static void handle_posix_cpu_timers(struct task_struct *tsk); 1161 1162 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK 1163 static void posix_cpu_timers_work(struct callback_head *work) 1164 { 1165 handle_posix_cpu_timers(current); 1166 } 1167 1168 /* 1169 * Clear existing posix CPU timers task work. 1170 */ 1171 void clear_posix_cputimers_work(struct task_struct *p) 1172 { 1173 /* 1174 * A copied work entry from the old task is not meaningful, clear it. 1175 * N.B. init_task_work will not do this. 1176 */ 1177 memset(&p->posix_cputimers_work.work, 0, 1178 sizeof(p->posix_cputimers_work.work)); 1179 init_task_work(&p->posix_cputimers_work.work, 1180 posix_cpu_timers_work); 1181 p->posix_cputimers_work.scheduled = false; 1182 } 1183 1184 /* 1185 * Initialize posix CPU timers task work in init task. Out of line to 1186 * keep the callback static and to avoid header recursion hell. 1187 */ 1188 void __init posix_cputimers_init_work(void) 1189 { 1190 clear_posix_cputimers_work(current); 1191 } 1192 1193 /* 1194 * Note: All operations on tsk->posix_cputimer_work.scheduled happen either 1195 * in hard interrupt context or in task context with interrupts 1196 * disabled. Aside of that the writer/reader interaction is always in the 1197 * context of the current task, which means they are strict per CPU. 1198 */ 1199 static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk) 1200 { 1201 return tsk->posix_cputimers_work.scheduled; 1202 } 1203 1204 static inline void __run_posix_cpu_timers(struct task_struct *tsk) 1205 { 1206 if (WARN_ON_ONCE(tsk->posix_cputimers_work.scheduled)) 1207 return; 1208 1209 /* Schedule task work to actually expire the timers */ 1210 tsk->posix_cputimers_work.scheduled = true; 1211 task_work_add(tsk, &tsk->posix_cputimers_work.work, TWA_RESUME); 1212 } 1213 1214 static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk, 1215 unsigned long start) 1216 { 1217 bool ret = true; 1218 1219 /* 1220 * On !RT kernels interrupts are disabled while collecting expired 1221 * timers, so no tick can happen and the fast path check can be 1222 * reenabled without further checks. 1223 */ 1224 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 1225 tsk->posix_cputimers_work.scheduled = false; 1226 return true; 1227 } 1228 1229 /* 1230 * On RT enabled kernels ticks can happen while the expired timers 1231 * are collected under sighand lock. But any tick which observes 1232 * the CPUTIMERS_WORK_SCHEDULED bit set, does not run the fastpath 1233 * checks. So reenabling the tick work has do be done carefully: 1234 * 1235 * Disable interrupts and run the fast path check if jiffies have 1236 * advanced since the collecting of expired timers started. If 1237 * jiffies have not advanced or the fast path check did not find 1238 * newly expired timers, reenable the fast path check in the timer 1239 * interrupt. If there are newly expired timers, return false and 1240 * let the collection loop repeat. 1241 */ 1242 local_irq_disable(); 1243 if (start != jiffies && fastpath_timer_check(tsk)) 1244 ret = false; 1245 else 1246 tsk->posix_cputimers_work.scheduled = false; 1247 local_irq_enable(); 1248 1249 return ret; 1250 } 1251 #else /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */ 1252 static inline void __run_posix_cpu_timers(struct task_struct *tsk) 1253 { 1254 lockdep_posixtimer_enter(); 1255 handle_posix_cpu_timers(tsk); 1256 lockdep_posixtimer_exit(); 1257 } 1258 1259 static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk) 1260 { 1261 return false; 1262 } 1263 1264 static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk, 1265 unsigned long start) 1266 { 1267 return true; 1268 } 1269 #endif /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */ 1270 1271 static void handle_posix_cpu_timers(struct task_struct *tsk) 1272 { 1273 struct k_itimer *timer, *next; 1274 unsigned long flags, start; 1275 LIST_HEAD(firing); 1276 1277 if (!lock_task_sighand(tsk, &flags)) 1278 return; 1279 1280 do { 1281 /* 1282 * On RT locking sighand lock does not disable interrupts, 1283 * so this needs to be careful vs. ticks. Store the current 1284 * jiffies value. 1285 */ 1286 start = READ_ONCE(jiffies); 1287 barrier(); 1288 1289 /* 1290 * Here we take off tsk->signal->cpu_timers[N] and 1291 * tsk->cpu_timers[N] all the timers that are firing, and 1292 * put them on the firing list. 1293 */ 1294 check_thread_timers(tsk, &firing); 1295 1296 check_process_timers(tsk, &firing); 1297 1298 /* 1299 * The above timer checks have updated the expiry cache and 1300 * because nothing can have queued or modified timers after 1301 * sighand lock was taken above it is guaranteed to be 1302 * consistent. So the next timer interrupt fastpath check 1303 * will find valid data. 1304 * 1305 * If timer expiry runs in the timer interrupt context then 1306 * the loop is not relevant as timers will be directly 1307 * expired in interrupt context. The stub function below 1308 * returns always true which allows the compiler to 1309 * optimize the loop out. 1310 * 1311 * If timer expiry is deferred to task work context then 1312 * the following rules apply: 1313 * 1314 * - On !RT kernels no tick can have happened on this CPU 1315 * after sighand lock was acquired because interrupts are 1316 * disabled. So reenabling task work before dropping 1317 * sighand lock and reenabling interrupts is race free. 1318 * 1319 * - On RT kernels ticks might have happened but the tick 1320 * work ignored posix CPU timer handling because the 1321 * CPUTIMERS_WORK_SCHEDULED bit is set. Reenabling work 1322 * must be done very carefully including a check whether 1323 * ticks have happened since the start of the timer 1324 * expiry checks. posix_cpu_timers_enable_work() takes 1325 * care of that and eventually lets the expiry checks 1326 * run again. 1327 */ 1328 } while (!posix_cpu_timers_enable_work(tsk, start)); 1329 1330 /* 1331 * We must release sighand lock before taking any timer's lock. 1332 * There is a potential race with timer deletion here, as the 1333 * siglock now protects our private firing list. We have set 1334 * the firing flag in each timer, so that a deletion attempt 1335 * that gets the timer lock before we do will give it up and 1336 * spin until we've taken care of that timer below. 1337 */ 1338 unlock_task_sighand(tsk, &flags); 1339 1340 /* 1341 * Now that all the timers on our list have the firing flag, 1342 * no one will touch their list entries but us. We'll take 1343 * each timer's lock before clearing its firing flag, so no 1344 * timer call will interfere. 1345 */ 1346 list_for_each_entry_safe(timer, next, &firing, it.cpu.elist) { 1347 int cpu_firing; 1348 1349 /* 1350 * spin_lock() is sufficient here even independent of the 1351 * expiry context. If expiry happens in hard interrupt 1352 * context it's obvious. For task work context it's safe 1353 * because all other operations on timer::it_lock happen in 1354 * task context (syscall or exit). 1355 */ 1356 spin_lock(&timer->it_lock); 1357 list_del_init(&timer->it.cpu.elist); 1358 cpu_firing = timer->it.cpu.firing; 1359 timer->it.cpu.firing = 0; 1360 /* 1361 * The firing flag is -1 if we collided with a reset 1362 * of the timer, which already reported this 1363 * almost-firing as an overrun. So don't generate an event. 1364 */ 1365 if (likely(cpu_firing >= 0)) 1366 cpu_timer_fire(timer); 1367 spin_unlock(&timer->it_lock); 1368 } 1369 } 1370 1371 /* 1372 * This is called from the timer interrupt handler. The irq handler has 1373 * already updated our counts. We need to check if any timers fire now. 1374 * Interrupts are disabled. 1375 */ 1376 void run_posix_cpu_timers(void) 1377 { 1378 struct task_struct *tsk = current; 1379 1380 lockdep_assert_irqs_disabled(); 1381 1382 /* 1383 * If the actual expiry is deferred to task work context and the 1384 * work is already scheduled there is no point to do anything here. 1385 */ 1386 if (posix_cpu_timers_work_scheduled(tsk)) 1387 return; 1388 1389 /* 1390 * The fast path checks that there are no expired thread or thread 1391 * group timers. If that's so, just return. 1392 */ 1393 if (!fastpath_timer_check(tsk)) 1394 return; 1395 1396 __run_posix_cpu_timers(tsk); 1397 } 1398 1399 /* 1400 * Set one of the process-wide special case CPU timers or RLIMIT_CPU. 1401 * The tsk->sighand->siglock must be held by the caller. 1402 */ 1403 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clkid, 1404 u64 *newval, u64 *oldval) 1405 { 1406 u64 now, *nextevt; 1407 1408 if (WARN_ON_ONCE(clkid >= CPUCLOCK_SCHED)) 1409 return; 1410 1411 nextevt = &tsk->signal->posix_cputimers.bases[clkid].nextevt; 1412 now = cpu_clock_sample_group(clkid, tsk, true); 1413 1414 if (oldval) { 1415 /* 1416 * We are setting itimer. The *oldval is absolute and we update 1417 * it to be relative, *newval argument is relative and we update 1418 * it to be absolute. 1419 */ 1420 if (*oldval) { 1421 if (*oldval <= now) { 1422 /* Just about to fire. */ 1423 *oldval = TICK_NSEC; 1424 } else { 1425 *oldval -= now; 1426 } 1427 } 1428 1429 if (*newval) 1430 *newval += now; 1431 } 1432 1433 /* 1434 * Update expiration cache if this is the earliest timer. CPUCLOCK_PROF 1435 * expiry cache is also used by RLIMIT_CPU!. 1436 */ 1437 if (*newval < *nextevt) 1438 *nextevt = *newval; 1439 1440 tick_dep_set_signal(tsk, TICK_DEP_BIT_POSIX_TIMER); 1441 } 1442 1443 static int do_cpu_nanosleep(const clockid_t which_clock, int flags, 1444 const struct timespec64 *rqtp) 1445 { 1446 struct itimerspec64 it; 1447 struct k_itimer timer; 1448 u64 expires; 1449 int error; 1450 1451 /* 1452 * Set up a temporary timer and then wait for it to go off. 1453 */ 1454 memset(&timer, 0, sizeof timer); 1455 spin_lock_init(&timer.it_lock); 1456 timer.it_clock = which_clock; 1457 timer.it_overrun = -1; 1458 error = posix_cpu_timer_create(&timer); 1459 timer.it_process = current; 1460 1461 if (!error) { 1462 static struct itimerspec64 zero_it; 1463 struct restart_block *restart; 1464 1465 memset(&it, 0, sizeof(it)); 1466 it.it_value = *rqtp; 1467 1468 spin_lock_irq(&timer.it_lock); 1469 error = posix_cpu_timer_set(&timer, flags, &it, NULL); 1470 if (error) { 1471 spin_unlock_irq(&timer.it_lock); 1472 return error; 1473 } 1474 1475 while (!signal_pending(current)) { 1476 if (!cpu_timer_getexpires(&timer.it.cpu)) { 1477 /* 1478 * Our timer fired and was reset, below 1479 * deletion can not fail. 1480 */ 1481 posix_cpu_timer_del(&timer); 1482 spin_unlock_irq(&timer.it_lock); 1483 return 0; 1484 } 1485 1486 /* 1487 * Block until cpu_timer_fire (or a signal) wakes us. 1488 */ 1489 __set_current_state(TASK_INTERRUPTIBLE); 1490 spin_unlock_irq(&timer.it_lock); 1491 schedule(); 1492 spin_lock_irq(&timer.it_lock); 1493 } 1494 1495 /* 1496 * We were interrupted by a signal. 1497 */ 1498 expires = cpu_timer_getexpires(&timer.it.cpu); 1499 error = posix_cpu_timer_set(&timer, 0, &zero_it, &it); 1500 if (!error) { 1501 /* 1502 * Timer is now unarmed, deletion can not fail. 1503 */ 1504 posix_cpu_timer_del(&timer); 1505 } 1506 spin_unlock_irq(&timer.it_lock); 1507 1508 while (error == TIMER_RETRY) { 1509 /* 1510 * We need to handle case when timer was or is in the 1511 * middle of firing. In other cases we already freed 1512 * resources. 1513 */ 1514 spin_lock_irq(&timer.it_lock); 1515 error = posix_cpu_timer_del(&timer); 1516 spin_unlock_irq(&timer.it_lock); 1517 } 1518 1519 if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) { 1520 /* 1521 * It actually did fire already. 1522 */ 1523 return 0; 1524 } 1525 1526 error = -ERESTART_RESTARTBLOCK; 1527 /* 1528 * Report back to the user the time still remaining. 1529 */ 1530 restart = ¤t->restart_block; 1531 restart->nanosleep.expires = expires; 1532 if (restart->nanosleep.type != TT_NONE) 1533 error = nanosleep_copyout(restart, &it.it_value); 1534 } 1535 1536 return error; 1537 } 1538 1539 static long posix_cpu_nsleep_restart(struct restart_block *restart_block); 1540 1541 static int posix_cpu_nsleep(const clockid_t which_clock, int flags, 1542 const struct timespec64 *rqtp) 1543 { 1544 struct restart_block *restart_block = ¤t->restart_block; 1545 int error; 1546 1547 /* 1548 * Diagnose required errors first. 1549 */ 1550 if (CPUCLOCK_PERTHREAD(which_clock) && 1551 (CPUCLOCK_PID(which_clock) == 0 || 1552 CPUCLOCK_PID(which_clock) == task_pid_vnr(current))) 1553 return -EINVAL; 1554 1555 error = do_cpu_nanosleep(which_clock, flags, rqtp); 1556 1557 if (error == -ERESTART_RESTARTBLOCK) { 1558 1559 if (flags & TIMER_ABSTIME) 1560 return -ERESTARTNOHAND; 1561 1562 restart_block->nanosleep.clockid = which_clock; 1563 set_restart_fn(restart_block, posix_cpu_nsleep_restart); 1564 } 1565 return error; 1566 } 1567 1568 static long posix_cpu_nsleep_restart(struct restart_block *restart_block) 1569 { 1570 clockid_t which_clock = restart_block->nanosleep.clockid; 1571 struct timespec64 t; 1572 1573 t = ns_to_timespec64(restart_block->nanosleep.expires); 1574 1575 return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t); 1576 } 1577 1578 #define PROCESS_CLOCK make_process_cpuclock(0, CPUCLOCK_SCHED) 1579 #define THREAD_CLOCK make_thread_cpuclock(0, CPUCLOCK_SCHED) 1580 1581 static int process_cpu_clock_getres(const clockid_t which_clock, 1582 struct timespec64 *tp) 1583 { 1584 return posix_cpu_clock_getres(PROCESS_CLOCK, tp); 1585 } 1586 static int process_cpu_clock_get(const clockid_t which_clock, 1587 struct timespec64 *tp) 1588 { 1589 return posix_cpu_clock_get(PROCESS_CLOCK, tp); 1590 } 1591 static int process_cpu_timer_create(struct k_itimer *timer) 1592 { 1593 timer->it_clock = PROCESS_CLOCK; 1594 return posix_cpu_timer_create(timer); 1595 } 1596 static int process_cpu_nsleep(const clockid_t which_clock, int flags, 1597 const struct timespec64 *rqtp) 1598 { 1599 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp); 1600 } 1601 static int thread_cpu_clock_getres(const clockid_t which_clock, 1602 struct timespec64 *tp) 1603 { 1604 return posix_cpu_clock_getres(THREAD_CLOCK, tp); 1605 } 1606 static int thread_cpu_clock_get(const clockid_t which_clock, 1607 struct timespec64 *tp) 1608 { 1609 return posix_cpu_clock_get(THREAD_CLOCK, tp); 1610 } 1611 static int thread_cpu_timer_create(struct k_itimer *timer) 1612 { 1613 timer->it_clock = THREAD_CLOCK; 1614 return posix_cpu_timer_create(timer); 1615 } 1616 1617 const struct k_clock clock_posix_cpu = { 1618 .clock_getres = posix_cpu_clock_getres, 1619 .clock_set = posix_cpu_clock_set, 1620 .clock_get_timespec = posix_cpu_clock_get, 1621 .timer_create = posix_cpu_timer_create, 1622 .nsleep = posix_cpu_nsleep, 1623 .timer_set = posix_cpu_timer_set, 1624 .timer_del = posix_cpu_timer_del, 1625 .timer_get = posix_cpu_timer_get, 1626 .timer_rearm = posix_cpu_timer_rearm, 1627 }; 1628 1629 const struct k_clock clock_process = { 1630 .clock_getres = process_cpu_clock_getres, 1631 .clock_get_timespec = process_cpu_clock_get, 1632 .timer_create = process_cpu_timer_create, 1633 .nsleep = process_cpu_nsleep, 1634 }; 1635 1636 const struct k_clock clock_thread = { 1637 .clock_getres = thread_cpu_clock_getres, 1638 .clock_get_timespec = thread_cpu_clock_get, 1639 .timer_create = thread_cpu_timer_create, 1640 }; 1641