1 /*
2  * Implement CPU time clocks for the POSIX clock interface.
3  */
4 
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
11 #include <trace/events/timer.h>
12 #include <linux/random.h>
13 #include <linux/tick.h>
14 #include <linux/workqueue.h>
15 
16 /*
17  * Called after updating RLIMIT_CPU to run cpu timer and update
18  * tsk->signal->cputime_expires expiration cache if necessary. Needs
19  * siglock protection since other code may update expiration cache as
20  * well.
21  */
22 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
23 {
24 	cputime_t cputime = secs_to_cputime(rlim_new);
25 
26 	spin_lock_irq(&task->sighand->siglock);
27 	set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL);
28 	spin_unlock_irq(&task->sighand->siglock);
29 }
30 
31 static int check_clock(const clockid_t which_clock)
32 {
33 	int error = 0;
34 	struct task_struct *p;
35 	const pid_t pid = CPUCLOCK_PID(which_clock);
36 
37 	if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
38 		return -EINVAL;
39 
40 	if (pid == 0)
41 		return 0;
42 
43 	rcu_read_lock();
44 	p = find_task_by_vpid(pid);
45 	if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
46 		   same_thread_group(p, current) : has_group_leader_pid(p))) {
47 		error = -EINVAL;
48 	}
49 	rcu_read_unlock();
50 
51 	return error;
52 }
53 
54 static inline unsigned long long
55 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
56 {
57 	unsigned long long ret;
58 
59 	ret = 0;		/* high half always zero when .cpu used */
60 	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
61 		ret = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
62 	} else {
63 		ret = cputime_to_expires(timespec_to_cputime(tp));
64 	}
65 	return ret;
66 }
67 
68 static void sample_to_timespec(const clockid_t which_clock,
69 			       unsigned long long expires,
70 			       struct timespec *tp)
71 {
72 	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
73 		*tp = ns_to_timespec(expires);
74 	else
75 		cputime_to_timespec((__force cputime_t)expires, tp);
76 }
77 
78 /*
79  * Update expiry time from increment, and increase overrun count,
80  * given the current clock sample.
81  */
82 static void bump_cpu_timer(struct k_itimer *timer,
83 			   unsigned long long now)
84 {
85 	int i;
86 	unsigned long long delta, incr;
87 
88 	if (timer->it.cpu.incr == 0)
89 		return;
90 
91 	if (now < timer->it.cpu.expires)
92 		return;
93 
94 	incr = timer->it.cpu.incr;
95 	delta = now + incr - timer->it.cpu.expires;
96 
97 	/* Don't use (incr*2 < delta), incr*2 might overflow. */
98 	for (i = 0; incr < delta - incr; i++)
99 		incr = incr << 1;
100 
101 	for (; i >= 0; incr >>= 1, i--) {
102 		if (delta < incr)
103 			continue;
104 
105 		timer->it.cpu.expires += incr;
106 		timer->it_overrun += 1 << i;
107 		delta -= incr;
108 	}
109 }
110 
111 /**
112  * task_cputime_zero - Check a task_cputime struct for all zero fields.
113  *
114  * @cputime:	The struct to compare.
115  *
116  * Checks @cputime to see if all fields are zero.  Returns true if all fields
117  * are zero, false if any field is nonzero.
118  */
119 static inline int task_cputime_zero(const struct task_cputime *cputime)
120 {
121 	if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
122 		return 1;
123 	return 0;
124 }
125 
126 static inline unsigned long long prof_ticks(struct task_struct *p)
127 {
128 	cputime_t utime, stime;
129 
130 	task_cputime(p, &utime, &stime);
131 
132 	return cputime_to_expires(utime + stime);
133 }
134 static inline unsigned long long virt_ticks(struct task_struct *p)
135 {
136 	cputime_t utime;
137 
138 	task_cputime(p, &utime, NULL);
139 
140 	return cputime_to_expires(utime);
141 }
142 
143 static int
144 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
145 {
146 	int error = check_clock(which_clock);
147 	if (!error) {
148 		tp->tv_sec = 0;
149 		tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
150 		if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
151 			/*
152 			 * If sched_clock is using a cycle counter, we
153 			 * don't have any idea of its true resolution
154 			 * exported, but it is much more than 1s/HZ.
155 			 */
156 			tp->tv_nsec = 1;
157 		}
158 	}
159 	return error;
160 }
161 
162 static int
163 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
164 {
165 	/*
166 	 * You can never reset a CPU clock, but we check for other errors
167 	 * in the call before failing with EPERM.
168 	 */
169 	int error = check_clock(which_clock);
170 	if (error == 0) {
171 		error = -EPERM;
172 	}
173 	return error;
174 }
175 
176 
177 /*
178  * Sample a per-thread clock for the given task.
179  */
180 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
181 			    unsigned long long *sample)
182 {
183 	switch (CPUCLOCK_WHICH(which_clock)) {
184 	default:
185 		return -EINVAL;
186 	case CPUCLOCK_PROF:
187 		*sample = prof_ticks(p);
188 		break;
189 	case CPUCLOCK_VIRT:
190 		*sample = virt_ticks(p);
191 		break;
192 	case CPUCLOCK_SCHED:
193 		*sample = task_sched_runtime(p);
194 		break;
195 	}
196 	return 0;
197 }
198 
199 /*
200  * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
201  * to avoid race conditions with concurrent updates to cputime.
202  */
203 static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
204 {
205 	u64 curr_cputime;
206 retry:
207 	curr_cputime = atomic64_read(cputime);
208 	if (sum_cputime > curr_cputime) {
209 		if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
210 			goto retry;
211 	}
212 }
213 
214 static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum)
215 {
216 	__update_gt_cputime(&cputime_atomic->utime, sum->utime);
217 	__update_gt_cputime(&cputime_atomic->stime, sum->stime);
218 	__update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
219 }
220 
221 /* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
222 static inline void sample_cputime_atomic(struct task_cputime *times,
223 					 struct task_cputime_atomic *atomic_times)
224 {
225 	times->utime = atomic64_read(&atomic_times->utime);
226 	times->stime = atomic64_read(&atomic_times->stime);
227 	times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime);
228 }
229 
230 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
231 {
232 	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
233 	struct task_cputime sum;
234 
235 	/* Check if cputimer isn't running. This is accessed without locking. */
236 	if (!READ_ONCE(cputimer->running)) {
237 		/*
238 		 * The POSIX timer interface allows for absolute time expiry
239 		 * values through the TIMER_ABSTIME flag, therefore we have
240 		 * to synchronize the timer to the clock every time we start it.
241 		 */
242 		thread_group_cputime(tsk, &sum);
243 		update_gt_cputime(&cputimer->cputime_atomic, &sum);
244 
245 		/*
246 		 * We're setting cputimer->running without a lock. Ensure
247 		 * this only gets written to in one operation. We set
248 		 * running after update_gt_cputime() as a small optimization,
249 		 * but barriers are not required because update_gt_cputime()
250 		 * can handle concurrent updates.
251 		 */
252 		WRITE_ONCE(cputimer->running, true);
253 	}
254 	sample_cputime_atomic(times, &cputimer->cputime_atomic);
255 }
256 
257 /*
258  * Sample a process (thread group) clock for the given group_leader task.
259  * Must be called with task sighand lock held for safe while_each_thread()
260  * traversal.
261  */
262 static int cpu_clock_sample_group(const clockid_t which_clock,
263 				  struct task_struct *p,
264 				  unsigned long long *sample)
265 {
266 	struct task_cputime cputime;
267 
268 	switch (CPUCLOCK_WHICH(which_clock)) {
269 	default:
270 		return -EINVAL;
271 	case CPUCLOCK_PROF:
272 		thread_group_cputime(p, &cputime);
273 		*sample = cputime_to_expires(cputime.utime + cputime.stime);
274 		break;
275 	case CPUCLOCK_VIRT:
276 		thread_group_cputime(p, &cputime);
277 		*sample = cputime_to_expires(cputime.utime);
278 		break;
279 	case CPUCLOCK_SCHED:
280 		thread_group_cputime(p, &cputime);
281 		*sample = cputime.sum_exec_runtime;
282 		break;
283 	}
284 	return 0;
285 }
286 
287 static int posix_cpu_clock_get_task(struct task_struct *tsk,
288 				    const clockid_t which_clock,
289 				    struct timespec *tp)
290 {
291 	int err = -EINVAL;
292 	unsigned long long rtn;
293 
294 	if (CPUCLOCK_PERTHREAD(which_clock)) {
295 		if (same_thread_group(tsk, current))
296 			err = cpu_clock_sample(which_clock, tsk, &rtn);
297 	} else {
298 		if (tsk == current || thread_group_leader(tsk))
299 			err = cpu_clock_sample_group(which_clock, tsk, &rtn);
300 	}
301 
302 	if (!err)
303 		sample_to_timespec(which_clock, rtn, tp);
304 
305 	return err;
306 }
307 
308 
309 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
310 {
311 	const pid_t pid = CPUCLOCK_PID(which_clock);
312 	int err = -EINVAL;
313 
314 	if (pid == 0) {
315 		/*
316 		 * Special case constant value for our own clocks.
317 		 * We don't have to do any lookup to find ourselves.
318 		 */
319 		err = posix_cpu_clock_get_task(current, which_clock, tp);
320 	} else {
321 		/*
322 		 * Find the given PID, and validate that the caller
323 		 * should be able to see it.
324 		 */
325 		struct task_struct *p;
326 		rcu_read_lock();
327 		p = find_task_by_vpid(pid);
328 		if (p)
329 			err = posix_cpu_clock_get_task(p, which_clock, tp);
330 		rcu_read_unlock();
331 	}
332 
333 	return err;
334 }
335 
336 /*
337  * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
338  * This is called from sys_timer_create() and do_cpu_nanosleep() with the
339  * new timer already all-zeros initialized.
340  */
341 static int posix_cpu_timer_create(struct k_itimer *new_timer)
342 {
343 	int ret = 0;
344 	const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
345 	struct task_struct *p;
346 
347 	if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
348 		return -EINVAL;
349 
350 	INIT_LIST_HEAD(&new_timer->it.cpu.entry);
351 
352 	rcu_read_lock();
353 	if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
354 		if (pid == 0) {
355 			p = current;
356 		} else {
357 			p = find_task_by_vpid(pid);
358 			if (p && !same_thread_group(p, current))
359 				p = NULL;
360 		}
361 	} else {
362 		if (pid == 0) {
363 			p = current->group_leader;
364 		} else {
365 			p = find_task_by_vpid(pid);
366 			if (p && !has_group_leader_pid(p))
367 				p = NULL;
368 		}
369 	}
370 	new_timer->it.cpu.task = p;
371 	if (p) {
372 		get_task_struct(p);
373 	} else {
374 		ret = -EINVAL;
375 	}
376 	rcu_read_unlock();
377 
378 	return ret;
379 }
380 
381 /*
382  * Clean up a CPU-clock timer that is about to be destroyed.
383  * This is called from timer deletion with the timer already locked.
384  * If we return TIMER_RETRY, it's necessary to release the timer's lock
385  * and try again.  (This happens when the timer is in the middle of firing.)
386  */
387 static int posix_cpu_timer_del(struct k_itimer *timer)
388 {
389 	int ret = 0;
390 	unsigned long flags;
391 	struct sighand_struct *sighand;
392 	struct task_struct *p = timer->it.cpu.task;
393 
394 	WARN_ON_ONCE(p == NULL);
395 
396 	/*
397 	 * Protect against sighand release/switch in exit/exec and process/
398 	 * thread timer list entry concurrent read/writes.
399 	 */
400 	sighand = lock_task_sighand(p, &flags);
401 	if (unlikely(sighand == NULL)) {
402 		/*
403 		 * We raced with the reaping of the task.
404 		 * The deletion should have cleared us off the list.
405 		 */
406 		WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
407 	} else {
408 		if (timer->it.cpu.firing)
409 			ret = TIMER_RETRY;
410 		else
411 			list_del(&timer->it.cpu.entry);
412 
413 		unlock_task_sighand(p, &flags);
414 	}
415 
416 	if (!ret)
417 		put_task_struct(p);
418 
419 	return ret;
420 }
421 
422 static void cleanup_timers_list(struct list_head *head)
423 {
424 	struct cpu_timer_list *timer, *next;
425 
426 	list_for_each_entry_safe(timer, next, head, entry)
427 		list_del_init(&timer->entry);
428 }
429 
430 /*
431  * Clean out CPU timers still ticking when a thread exited.  The task
432  * pointer is cleared, and the expiry time is replaced with the residual
433  * time for later timer_gettime calls to return.
434  * This must be called with the siglock held.
435  */
436 static void cleanup_timers(struct list_head *head)
437 {
438 	cleanup_timers_list(head);
439 	cleanup_timers_list(++head);
440 	cleanup_timers_list(++head);
441 }
442 
443 /*
444  * These are both called with the siglock held, when the current thread
445  * is being reaped.  When the final (leader) thread in the group is reaped,
446  * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
447  */
448 void posix_cpu_timers_exit(struct task_struct *tsk)
449 {
450 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
451 						sizeof(unsigned long long));
452 	cleanup_timers(tsk->cpu_timers);
453 
454 }
455 void posix_cpu_timers_exit_group(struct task_struct *tsk)
456 {
457 	cleanup_timers(tsk->signal->cpu_timers);
458 }
459 
460 static inline int expires_gt(cputime_t expires, cputime_t new_exp)
461 {
462 	return expires == 0 || expires > new_exp;
463 }
464 
465 /*
466  * Insert the timer on the appropriate list before any timers that
467  * expire later.  This must be called with the sighand lock held.
468  */
469 static void arm_timer(struct k_itimer *timer)
470 {
471 	struct task_struct *p = timer->it.cpu.task;
472 	struct list_head *head, *listpos;
473 	struct task_cputime *cputime_expires;
474 	struct cpu_timer_list *const nt = &timer->it.cpu;
475 	struct cpu_timer_list *next;
476 
477 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
478 		head = p->cpu_timers;
479 		cputime_expires = &p->cputime_expires;
480 	} else {
481 		head = p->signal->cpu_timers;
482 		cputime_expires = &p->signal->cputime_expires;
483 	}
484 	head += CPUCLOCK_WHICH(timer->it_clock);
485 
486 	listpos = head;
487 	list_for_each_entry(next, head, entry) {
488 		if (nt->expires < next->expires)
489 			break;
490 		listpos = &next->entry;
491 	}
492 	list_add(&nt->entry, listpos);
493 
494 	if (listpos == head) {
495 		unsigned long long exp = nt->expires;
496 
497 		/*
498 		 * We are the new earliest-expiring POSIX 1.b timer, hence
499 		 * need to update expiration cache. Take into account that
500 		 * for process timers we share expiration cache with itimers
501 		 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
502 		 */
503 
504 		switch (CPUCLOCK_WHICH(timer->it_clock)) {
505 		case CPUCLOCK_PROF:
506 			if (expires_gt(cputime_expires->prof_exp, expires_to_cputime(exp)))
507 				cputime_expires->prof_exp = expires_to_cputime(exp);
508 			break;
509 		case CPUCLOCK_VIRT:
510 			if (expires_gt(cputime_expires->virt_exp, expires_to_cputime(exp)))
511 				cputime_expires->virt_exp = expires_to_cputime(exp);
512 			break;
513 		case CPUCLOCK_SCHED:
514 			if (cputime_expires->sched_exp == 0 ||
515 			    cputime_expires->sched_exp > exp)
516 				cputime_expires->sched_exp = exp;
517 			break;
518 		}
519 		if (CPUCLOCK_PERTHREAD(timer->it_clock))
520 			tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
521 		else
522 			tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
523 	}
524 }
525 
526 /*
527  * The timer is locked, fire it and arrange for its reload.
528  */
529 static void cpu_timer_fire(struct k_itimer *timer)
530 {
531 	if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
532 		/*
533 		 * User don't want any signal.
534 		 */
535 		timer->it.cpu.expires = 0;
536 	} else if (unlikely(timer->sigq == NULL)) {
537 		/*
538 		 * This a special case for clock_nanosleep,
539 		 * not a normal timer from sys_timer_create.
540 		 */
541 		wake_up_process(timer->it_process);
542 		timer->it.cpu.expires = 0;
543 	} else if (timer->it.cpu.incr == 0) {
544 		/*
545 		 * One-shot timer.  Clear it as soon as it's fired.
546 		 */
547 		posix_timer_event(timer, 0);
548 		timer->it.cpu.expires = 0;
549 	} else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
550 		/*
551 		 * The signal did not get queued because the signal
552 		 * was ignored, so we won't get any callback to
553 		 * reload the timer.  But we need to keep it
554 		 * ticking in case the signal is deliverable next time.
555 		 */
556 		posix_cpu_timer_schedule(timer);
557 	}
558 }
559 
560 /*
561  * Sample a process (thread group) timer for the given group_leader task.
562  * Must be called with task sighand lock held for safe while_each_thread()
563  * traversal.
564  */
565 static int cpu_timer_sample_group(const clockid_t which_clock,
566 				  struct task_struct *p,
567 				  unsigned long long *sample)
568 {
569 	struct task_cputime cputime;
570 
571 	thread_group_cputimer(p, &cputime);
572 	switch (CPUCLOCK_WHICH(which_clock)) {
573 	default:
574 		return -EINVAL;
575 	case CPUCLOCK_PROF:
576 		*sample = cputime_to_expires(cputime.utime + cputime.stime);
577 		break;
578 	case CPUCLOCK_VIRT:
579 		*sample = cputime_to_expires(cputime.utime);
580 		break;
581 	case CPUCLOCK_SCHED:
582 		*sample = cputime.sum_exec_runtime;
583 		break;
584 	}
585 	return 0;
586 }
587 
588 /*
589  * Guts of sys_timer_settime for CPU timers.
590  * This is called with the timer locked and interrupts disabled.
591  * If we return TIMER_RETRY, it's necessary to release the timer's lock
592  * and try again.  (This happens when the timer is in the middle of firing.)
593  */
594 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
595 			       struct itimerspec *new, struct itimerspec *old)
596 {
597 	unsigned long flags;
598 	struct sighand_struct *sighand;
599 	struct task_struct *p = timer->it.cpu.task;
600 	unsigned long long old_expires, new_expires, old_incr, val;
601 	int ret;
602 
603 	WARN_ON_ONCE(p == NULL);
604 
605 	new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
606 
607 	/*
608 	 * Protect against sighand release/switch in exit/exec and p->cpu_timers
609 	 * and p->signal->cpu_timers read/write in arm_timer()
610 	 */
611 	sighand = lock_task_sighand(p, &flags);
612 	/*
613 	 * If p has just been reaped, we can no
614 	 * longer get any information about it at all.
615 	 */
616 	if (unlikely(sighand == NULL)) {
617 		return -ESRCH;
618 	}
619 
620 	/*
621 	 * Disarm any old timer after extracting its expiry time.
622 	 */
623 	WARN_ON_ONCE(!irqs_disabled());
624 
625 	ret = 0;
626 	old_incr = timer->it.cpu.incr;
627 	old_expires = timer->it.cpu.expires;
628 	if (unlikely(timer->it.cpu.firing)) {
629 		timer->it.cpu.firing = -1;
630 		ret = TIMER_RETRY;
631 	} else
632 		list_del_init(&timer->it.cpu.entry);
633 
634 	/*
635 	 * We need to sample the current value to convert the new
636 	 * value from to relative and absolute, and to convert the
637 	 * old value from absolute to relative.  To set a process
638 	 * timer, we need a sample to balance the thread expiry
639 	 * times (in arm_timer).  With an absolute time, we must
640 	 * check if it's already passed.  In short, we need a sample.
641 	 */
642 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
643 		cpu_clock_sample(timer->it_clock, p, &val);
644 	} else {
645 		cpu_timer_sample_group(timer->it_clock, p, &val);
646 	}
647 
648 	if (old) {
649 		if (old_expires == 0) {
650 			old->it_value.tv_sec = 0;
651 			old->it_value.tv_nsec = 0;
652 		} else {
653 			/*
654 			 * Update the timer in case it has
655 			 * overrun already.  If it has,
656 			 * we'll report it as having overrun
657 			 * and with the next reloaded timer
658 			 * already ticking, though we are
659 			 * swallowing that pending
660 			 * notification here to install the
661 			 * new setting.
662 			 */
663 			bump_cpu_timer(timer, val);
664 			if (val < timer->it.cpu.expires) {
665 				old_expires = timer->it.cpu.expires - val;
666 				sample_to_timespec(timer->it_clock,
667 						   old_expires,
668 						   &old->it_value);
669 			} else {
670 				old->it_value.tv_nsec = 1;
671 				old->it_value.tv_sec = 0;
672 			}
673 		}
674 	}
675 
676 	if (unlikely(ret)) {
677 		/*
678 		 * We are colliding with the timer actually firing.
679 		 * Punt after filling in the timer's old value, and
680 		 * disable this firing since we are already reporting
681 		 * it as an overrun (thanks to bump_cpu_timer above).
682 		 */
683 		unlock_task_sighand(p, &flags);
684 		goto out;
685 	}
686 
687 	if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
688 		new_expires += val;
689 	}
690 
691 	/*
692 	 * Install the new expiry time (or zero).
693 	 * For a timer with no notification action, we don't actually
694 	 * arm the timer (we'll just fake it for timer_gettime).
695 	 */
696 	timer->it.cpu.expires = new_expires;
697 	if (new_expires != 0 && val < new_expires) {
698 		arm_timer(timer);
699 	}
700 
701 	unlock_task_sighand(p, &flags);
702 	/*
703 	 * Install the new reload setting, and
704 	 * set up the signal and overrun bookkeeping.
705 	 */
706 	timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
707 						&new->it_interval);
708 
709 	/*
710 	 * This acts as a modification timestamp for the timer,
711 	 * so any automatic reload attempt will punt on seeing
712 	 * that we have reset the timer manually.
713 	 */
714 	timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
715 		~REQUEUE_PENDING;
716 	timer->it_overrun_last = 0;
717 	timer->it_overrun = -1;
718 
719 	if (new_expires != 0 && !(val < new_expires)) {
720 		/*
721 		 * The designated time already passed, so we notify
722 		 * immediately, even if the thread never runs to
723 		 * accumulate more time on this clock.
724 		 */
725 		cpu_timer_fire(timer);
726 	}
727 
728 	ret = 0;
729  out:
730 	if (old) {
731 		sample_to_timespec(timer->it_clock,
732 				   old_incr, &old->it_interval);
733 	}
734 
735 	return ret;
736 }
737 
738 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
739 {
740 	unsigned long long now;
741 	struct task_struct *p = timer->it.cpu.task;
742 
743 	WARN_ON_ONCE(p == NULL);
744 
745 	/*
746 	 * Easy part: convert the reload time.
747 	 */
748 	sample_to_timespec(timer->it_clock,
749 			   timer->it.cpu.incr, &itp->it_interval);
750 
751 	if (timer->it.cpu.expires == 0) {	/* Timer not armed at all.  */
752 		itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
753 		return;
754 	}
755 
756 	/*
757 	 * Sample the clock to take the difference with the expiry time.
758 	 */
759 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
760 		cpu_clock_sample(timer->it_clock, p, &now);
761 	} else {
762 		struct sighand_struct *sighand;
763 		unsigned long flags;
764 
765 		/*
766 		 * Protect against sighand release/switch in exit/exec and
767 		 * also make timer sampling safe if it ends up calling
768 		 * thread_group_cputime().
769 		 */
770 		sighand = lock_task_sighand(p, &flags);
771 		if (unlikely(sighand == NULL)) {
772 			/*
773 			 * The process has been reaped.
774 			 * We can't even collect a sample any more.
775 			 * Call the timer disarmed, nothing else to do.
776 			 */
777 			timer->it.cpu.expires = 0;
778 			sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
779 					   &itp->it_value);
780 		} else {
781 			cpu_timer_sample_group(timer->it_clock, p, &now);
782 			unlock_task_sighand(p, &flags);
783 		}
784 	}
785 
786 	if (now < timer->it.cpu.expires) {
787 		sample_to_timespec(timer->it_clock,
788 				   timer->it.cpu.expires - now,
789 				   &itp->it_value);
790 	} else {
791 		/*
792 		 * The timer should have expired already, but the firing
793 		 * hasn't taken place yet.  Say it's just about to expire.
794 		 */
795 		itp->it_value.tv_nsec = 1;
796 		itp->it_value.tv_sec = 0;
797 	}
798 }
799 
800 static unsigned long long
801 check_timers_list(struct list_head *timers,
802 		  struct list_head *firing,
803 		  unsigned long long curr)
804 {
805 	int maxfire = 20;
806 
807 	while (!list_empty(timers)) {
808 		struct cpu_timer_list *t;
809 
810 		t = list_first_entry(timers, struct cpu_timer_list, entry);
811 
812 		if (!--maxfire || curr < t->expires)
813 			return t->expires;
814 
815 		t->firing = 1;
816 		list_move_tail(&t->entry, firing);
817 	}
818 
819 	return 0;
820 }
821 
822 /*
823  * Check for any per-thread CPU timers that have fired and move them off
824  * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
825  * tsk->it_*_expires values to reflect the remaining thread CPU timers.
826  */
827 static void check_thread_timers(struct task_struct *tsk,
828 				struct list_head *firing)
829 {
830 	struct list_head *timers = tsk->cpu_timers;
831 	struct signal_struct *const sig = tsk->signal;
832 	struct task_cputime *tsk_expires = &tsk->cputime_expires;
833 	unsigned long long expires;
834 	unsigned long soft;
835 
836 	/*
837 	 * If cputime_expires is zero, then there are no active
838 	 * per thread CPU timers.
839 	 */
840 	if (task_cputime_zero(&tsk->cputime_expires))
841 		return;
842 
843 	expires = check_timers_list(timers, firing, prof_ticks(tsk));
844 	tsk_expires->prof_exp = expires_to_cputime(expires);
845 
846 	expires = check_timers_list(++timers, firing, virt_ticks(tsk));
847 	tsk_expires->virt_exp = expires_to_cputime(expires);
848 
849 	tsk_expires->sched_exp = check_timers_list(++timers, firing,
850 						   tsk->se.sum_exec_runtime);
851 
852 	/*
853 	 * Check for the special case thread timers.
854 	 */
855 	soft = READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
856 	if (soft != RLIM_INFINITY) {
857 		unsigned long hard =
858 			READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
859 
860 		if (hard != RLIM_INFINITY &&
861 		    tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
862 			/*
863 			 * At the hard limit, we just die.
864 			 * No need to calculate anything else now.
865 			 */
866 			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
867 			return;
868 		}
869 		if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
870 			/*
871 			 * At the soft limit, send a SIGXCPU every second.
872 			 */
873 			if (soft < hard) {
874 				soft += USEC_PER_SEC;
875 				sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
876 			}
877 			printk(KERN_INFO
878 				"RT Watchdog Timeout: %s[%d]\n",
879 				tsk->comm, task_pid_nr(tsk));
880 			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
881 		}
882 	}
883 	if (task_cputime_zero(tsk_expires))
884 		tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
885 }
886 
887 static inline void stop_process_timers(struct signal_struct *sig)
888 {
889 	struct thread_group_cputimer *cputimer = &sig->cputimer;
890 
891 	/* Turn off cputimer->running. This is done without locking. */
892 	WRITE_ONCE(cputimer->running, false);
893 	tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
894 }
895 
896 static u32 onecputick;
897 
898 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
899 			     unsigned long long *expires,
900 			     unsigned long long cur_time, int signo)
901 {
902 	if (!it->expires)
903 		return;
904 
905 	if (cur_time >= it->expires) {
906 		if (it->incr) {
907 			it->expires += it->incr;
908 			it->error += it->incr_error;
909 			if (it->error >= onecputick) {
910 				it->expires -= cputime_one_jiffy;
911 				it->error -= onecputick;
912 			}
913 		} else {
914 			it->expires = 0;
915 		}
916 
917 		trace_itimer_expire(signo == SIGPROF ?
918 				    ITIMER_PROF : ITIMER_VIRTUAL,
919 				    tsk->signal->leader_pid, cur_time);
920 		__group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
921 	}
922 
923 	if (it->expires && (!*expires || it->expires < *expires)) {
924 		*expires = it->expires;
925 	}
926 }
927 
928 /*
929  * Check for any per-thread CPU timers that have fired and move them
930  * off the tsk->*_timers list onto the firing list.  Per-thread timers
931  * have already been taken off.
932  */
933 static void check_process_timers(struct task_struct *tsk,
934 				 struct list_head *firing)
935 {
936 	struct signal_struct *const sig = tsk->signal;
937 	unsigned long long utime, ptime, virt_expires, prof_expires;
938 	unsigned long long sum_sched_runtime, sched_expires;
939 	struct list_head *timers = sig->cpu_timers;
940 	struct task_cputime cputime;
941 	unsigned long soft;
942 
943 	/*
944 	 * If cputimer is not running, then there are no active
945 	 * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU).
946 	 */
947 	if (!READ_ONCE(tsk->signal->cputimer.running))
948 		return;
949 
950         /*
951 	 * Signify that a thread is checking for process timers.
952 	 * Write access to this field is protected by the sighand lock.
953 	 */
954 	sig->cputimer.checking_timer = true;
955 
956 	/*
957 	 * Collect the current process totals.
958 	 */
959 	thread_group_cputimer(tsk, &cputime);
960 	utime = cputime_to_expires(cputime.utime);
961 	ptime = utime + cputime_to_expires(cputime.stime);
962 	sum_sched_runtime = cputime.sum_exec_runtime;
963 
964 	prof_expires = check_timers_list(timers, firing, ptime);
965 	virt_expires = check_timers_list(++timers, firing, utime);
966 	sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
967 
968 	/*
969 	 * Check for the special case process timers.
970 	 */
971 	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
972 			 SIGPROF);
973 	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
974 			 SIGVTALRM);
975 	soft = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
976 	if (soft != RLIM_INFINITY) {
977 		unsigned long psecs = cputime_to_secs(ptime);
978 		unsigned long hard =
979 			READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
980 		cputime_t x;
981 		if (psecs >= hard) {
982 			/*
983 			 * At the hard limit, we just die.
984 			 * No need to calculate anything else now.
985 			 */
986 			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
987 			return;
988 		}
989 		if (psecs >= soft) {
990 			/*
991 			 * At the soft limit, send a SIGXCPU every second.
992 			 */
993 			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
994 			if (soft < hard) {
995 				soft++;
996 				sig->rlim[RLIMIT_CPU].rlim_cur = soft;
997 			}
998 		}
999 		x = secs_to_cputime(soft);
1000 		if (!prof_expires || x < prof_expires) {
1001 			prof_expires = x;
1002 		}
1003 	}
1004 
1005 	sig->cputime_expires.prof_exp = expires_to_cputime(prof_expires);
1006 	sig->cputime_expires.virt_exp = expires_to_cputime(virt_expires);
1007 	sig->cputime_expires.sched_exp = sched_expires;
1008 	if (task_cputime_zero(&sig->cputime_expires))
1009 		stop_process_timers(sig);
1010 
1011 	sig->cputimer.checking_timer = false;
1012 }
1013 
1014 /*
1015  * This is called from the signal code (via do_schedule_next_timer)
1016  * when the last timer signal was delivered and we have to reload the timer.
1017  */
1018 void posix_cpu_timer_schedule(struct k_itimer *timer)
1019 {
1020 	struct sighand_struct *sighand;
1021 	unsigned long flags;
1022 	struct task_struct *p = timer->it.cpu.task;
1023 	unsigned long long now;
1024 
1025 	WARN_ON_ONCE(p == NULL);
1026 
1027 	/*
1028 	 * Fetch the current sample and update the timer's expiry time.
1029 	 */
1030 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1031 		cpu_clock_sample(timer->it_clock, p, &now);
1032 		bump_cpu_timer(timer, now);
1033 		if (unlikely(p->exit_state))
1034 			goto out;
1035 
1036 		/* Protect timer list r/w in arm_timer() */
1037 		sighand = lock_task_sighand(p, &flags);
1038 		if (!sighand)
1039 			goto out;
1040 	} else {
1041 		/*
1042 		 * Protect arm_timer() and timer sampling in case of call to
1043 		 * thread_group_cputime().
1044 		 */
1045 		sighand = lock_task_sighand(p, &flags);
1046 		if (unlikely(sighand == NULL)) {
1047 			/*
1048 			 * The process has been reaped.
1049 			 * We can't even collect a sample any more.
1050 			 */
1051 			timer->it.cpu.expires = 0;
1052 			goto out;
1053 		} else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1054 			unlock_task_sighand(p, &flags);
1055 			/* Optimizations: if the process is dying, no need to rearm */
1056 			goto out;
1057 		}
1058 		cpu_timer_sample_group(timer->it_clock, p, &now);
1059 		bump_cpu_timer(timer, now);
1060 		/* Leave the sighand locked for the call below.  */
1061 	}
1062 
1063 	/*
1064 	 * Now re-arm for the new expiry time.
1065 	 */
1066 	WARN_ON_ONCE(!irqs_disabled());
1067 	arm_timer(timer);
1068 	unlock_task_sighand(p, &flags);
1069 
1070 out:
1071 	timer->it_overrun_last = timer->it_overrun;
1072 	timer->it_overrun = -1;
1073 	++timer->it_requeue_pending;
1074 }
1075 
1076 /**
1077  * task_cputime_expired - Compare two task_cputime entities.
1078  *
1079  * @sample:	The task_cputime structure to be checked for expiration.
1080  * @expires:	Expiration times, against which @sample will be checked.
1081  *
1082  * Checks @sample against @expires to see if any field of @sample has expired.
1083  * Returns true if any field of the former is greater than the corresponding
1084  * field of the latter if the latter field is set.  Otherwise returns false.
1085  */
1086 static inline int task_cputime_expired(const struct task_cputime *sample,
1087 					const struct task_cputime *expires)
1088 {
1089 	if (expires->utime && sample->utime >= expires->utime)
1090 		return 1;
1091 	if (expires->stime && sample->utime + sample->stime >= expires->stime)
1092 		return 1;
1093 	if (expires->sum_exec_runtime != 0 &&
1094 	    sample->sum_exec_runtime >= expires->sum_exec_runtime)
1095 		return 1;
1096 	return 0;
1097 }
1098 
1099 /**
1100  * fastpath_timer_check - POSIX CPU timers fast path.
1101  *
1102  * @tsk:	The task (thread) being checked.
1103  *
1104  * Check the task and thread group timers.  If both are zero (there are no
1105  * timers set) return false.  Otherwise snapshot the task and thread group
1106  * timers and compare them with the corresponding expiration times.  Return
1107  * true if a timer has expired, else return false.
1108  */
1109 static inline int fastpath_timer_check(struct task_struct *tsk)
1110 {
1111 	struct signal_struct *sig;
1112 
1113 	if (!task_cputime_zero(&tsk->cputime_expires)) {
1114 		struct task_cputime task_sample;
1115 
1116 		task_cputime(tsk, &task_sample.utime, &task_sample.stime);
1117 		task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime;
1118 		if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1119 			return 1;
1120 	}
1121 
1122 	sig = tsk->signal;
1123 	/*
1124 	 * Check if thread group timers expired when the cputimer is
1125 	 * running and no other thread in the group is already checking
1126 	 * for thread group cputimers. These fields are read without the
1127 	 * sighand lock. However, this is fine because this is meant to
1128 	 * be a fastpath heuristic to determine whether we should try to
1129 	 * acquire the sighand lock to check/handle timers.
1130 	 *
1131 	 * In the worst case scenario, if 'running' or 'checking_timer' gets
1132 	 * set but the current thread doesn't see the change yet, we'll wait
1133 	 * until the next thread in the group gets a scheduler interrupt to
1134 	 * handle the timer. This isn't an issue in practice because these
1135 	 * types of delays with signals actually getting sent are expected.
1136 	 */
1137 	if (READ_ONCE(sig->cputimer.running) &&
1138 	    !READ_ONCE(sig->cputimer.checking_timer)) {
1139 		struct task_cputime group_sample;
1140 
1141 		sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic);
1142 
1143 		if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1144 			return 1;
1145 	}
1146 
1147 	return 0;
1148 }
1149 
1150 /*
1151  * This is called from the timer interrupt handler.  The irq handler has
1152  * already updated our counts.  We need to check if any timers fire now.
1153  * Interrupts are disabled.
1154  */
1155 void run_posix_cpu_timers(struct task_struct *tsk)
1156 {
1157 	LIST_HEAD(firing);
1158 	struct k_itimer *timer, *next;
1159 	unsigned long flags;
1160 
1161 	WARN_ON_ONCE(!irqs_disabled());
1162 
1163 	/*
1164 	 * The fast path checks that there are no expired thread or thread
1165 	 * group timers.  If that's so, just return.
1166 	 */
1167 	if (!fastpath_timer_check(tsk))
1168 		return;
1169 
1170 	if (!lock_task_sighand(tsk, &flags))
1171 		return;
1172 	/*
1173 	 * Here we take off tsk->signal->cpu_timers[N] and
1174 	 * tsk->cpu_timers[N] all the timers that are firing, and
1175 	 * put them on the firing list.
1176 	 */
1177 	check_thread_timers(tsk, &firing);
1178 
1179 	check_process_timers(tsk, &firing);
1180 
1181 	/*
1182 	 * We must release these locks before taking any timer's lock.
1183 	 * There is a potential race with timer deletion here, as the
1184 	 * siglock now protects our private firing list.  We have set
1185 	 * the firing flag in each timer, so that a deletion attempt
1186 	 * that gets the timer lock before we do will give it up and
1187 	 * spin until we've taken care of that timer below.
1188 	 */
1189 	unlock_task_sighand(tsk, &flags);
1190 
1191 	/*
1192 	 * Now that all the timers on our list have the firing flag,
1193 	 * no one will touch their list entries but us.  We'll take
1194 	 * each timer's lock before clearing its firing flag, so no
1195 	 * timer call will interfere.
1196 	 */
1197 	list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1198 		int cpu_firing;
1199 
1200 		spin_lock(&timer->it_lock);
1201 		list_del_init(&timer->it.cpu.entry);
1202 		cpu_firing = timer->it.cpu.firing;
1203 		timer->it.cpu.firing = 0;
1204 		/*
1205 		 * The firing flag is -1 if we collided with a reset
1206 		 * of the timer, which already reported this
1207 		 * almost-firing as an overrun.  So don't generate an event.
1208 		 */
1209 		if (likely(cpu_firing >= 0))
1210 			cpu_timer_fire(timer);
1211 		spin_unlock(&timer->it_lock);
1212 	}
1213 }
1214 
1215 /*
1216  * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1217  * The tsk->sighand->siglock must be held by the caller.
1218  */
1219 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1220 			   cputime_t *newval, cputime_t *oldval)
1221 {
1222 	unsigned long long now;
1223 
1224 	WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
1225 	cpu_timer_sample_group(clock_idx, tsk, &now);
1226 
1227 	if (oldval) {
1228 		/*
1229 		 * We are setting itimer. The *oldval is absolute and we update
1230 		 * it to be relative, *newval argument is relative and we update
1231 		 * it to be absolute.
1232 		 */
1233 		if (*oldval) {
1234 			if (*oldval <= now) {
1235 				/* Just about to fire. */
1236 				*oldval = cputime_one_jiffy;
1237 			} else {
1238 				*oldval -= now;
1239 			}
1240 		}
1241 
1242 		if (!*newval)
1243 			return;
1244 		*newval += now;
1245 	}
1246 
1247 	/*
1248 	 * Update expiration cache if we are the earliest timer, or eventually
1249 	 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1250 	 */
1251 	switch (clock_idx) {
1252 	case CPUCLOCK_PROF:
1253 		if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1254 			tsk->signal->cputime_expires.prof_exp = *newval;
1255 		break;
1256 	case CPUCLOCK_VIRT:
1257 		if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1258 			tsk->signal->cputime_expires.virt_exp = *newval;
1259 		break;
1260 	}
1261 
1262 	tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER);
1263 }
1264 
1265 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1266 			    struct timespec *rqtp, struct itimerspec *it)
1267 {
1268 	struct k_itimer timer;
1269 	int error;
1270 
1271 	/*
1272 	 * Set up a temporary timer and then wait for it to go off.
1273 	 */
1274 	memset(&timer, 0, sizeof timer);
1275 	spin_lock_init(&timer.it_lock);
1276 	timer.it_clock = which_clock;
1277 	timer.it_overrun = -1;
1278 	error = posix_cpu_timer_create(&timer);
1279 	timer.it_process = current;
1280 	if (!error) {
1281 		static struct itimerspec zero_it;
1282 
1283 		memset(it, 0, sizeof *it);
1284 		it->it_value = *rqtp;
1285 
1286 		spin_lock_irq(&timer.it_lock);
1287 		error = posix_cpu_timer_set(&timer, flags, it, NULL);
1288 		if (error) {
1289 			spin_unlock_irq(&timer.it_lock);
1290 			return error;
1291 		}
1292 
1293 		while (!signal_pending(current)) {
1294 			if (timer.it.cpu.expires == 0) {
1295 				/*
1296 				 * Our timer fired and was reset, below
1297 				 * deletion can not fail.
1298 				 */
1299 				posix_cpu_timer_del(&timer);
1300 				spin_unlock_irq(&timer.it_lock);
1301 				return 0;
1302 			}
1303 
1304 			/*
1305 			 * Block until cpu_timer_fire (or a signal) wakes us.
1306 			 */
1307 			__set_current_state(TASK_INTERRUPTIBLE);
1308 			spin_unlock_irq(&timer.it_lock);
1309 			schedule();
1310 			spin_lock_irq(&timer.it_lock);
1311 		}
1312 
1313 		/*
1314 		 * We were interrupted by a signal.
1315 		 */
1316 		sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1317 		error = posix_cpu_timer_set(&timer, 0, &zero_it, it);
1318 		if (!error) {
1319 			/*
1320 			 * Timer is now unarmed, deletion can not fail.
1321 			 */
1322 			posix_cpu_timer_del(&timer);
1323 		}
1324 		spin_unlock_irq(&timer.it_lock);
1325 
1326 		while (error == TIMER_RETRY) {
1327 			/*
1328 			 * We need to handle case when timer was or is in the
1329 			 * middle of firing. In other cases we already freed
1330 			 * resources.
1331 			 */
1332 			spin_lock_irq(&timer.it_lock);
1333 			error = posix_cpu_timer_del(&timer);
1334 			spin_unlock_irq(&timer.it_lock);
1335 		}
1336 
1337 		if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1338 			/*
1339 			 * It actually did fire already.
1340 			 */
1341 			return 0;
1342 		}
1343 
1344 		error = -ERESTART_RESTARTBLOCK;
1345 	}
1346 
1347 	return error;
1348 }
1349 
1350 static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1351 
1352 static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1353 			    struct timespec *rqtp, struct timespec __user *rmtp)
1354 {
1355 	struct restart_block *restart_block = &current->restart_block;
1356 	struct itimerspec it;
1357 	int error;
1358 
1359 	/*
1360 	 * Diagnose required errors first.
1361 	 */
1362 	if (CPUCLOCK_PERTHREAD(which_clock) &&
1363 	    (CPUCLOCK_PID(which_clock) == 0 ||
1364 	     CPUCLOCK_PID(which_clock) == current->pid))
1365 		return -EINVAL;
1366 
1367 	error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1368 
1369 	if (error == -ERESTART_RESTARTBLOCK) {
1370 
1371 		if (flags & TIMER_ABSTIME)
1372 			return -ERESTARTNOHAND;
1373 		/*
1374 		 * Report back to the user the time still remaining.
1375 		 */
1376 		if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1377 			return -EFAULT;
1378 
1379 		restart_block->fn = posix_cpu_nsleep_restart;
1380 		restart_block->nanosleep.clockid = which_clock;
1381 		restart_block->nanosleep.rmtp = rmtp;
1382 		restart_block->nanosleep.expires = timespec_to_ns(rqtp);
1383 	}
1384 	return error;
1385 }
1386 
1387 static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1388 {
1389 	clockid_t which_clock = restart_block->nanosleep.clockid;
1390 	struct timespec t;
1391 	struct itimerspec it;
1392 	int error;
1393 
1394 	t = ns_to_timespec(restart_block->nanosleep.expires);
1395 
1396 	error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1397 
1398 	if (error == -ERESTART_RESTARTBLOCK) {
1399 		struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
1400 		/*
1401 		 * Report back to the user the time still remaining.
1402 		 */
1403 		if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1404 			return -EFAULT;
1405 
1406 		restart_block->nanosleep.expires = timespec_to_ns(&t);
1407 	}
1408 	return error;
1409 
1410 }
1411 
1412 #define PROCESS_CLOCK	MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1413 #define THREAD_CLOCK	MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1414 
1415 static int process_cpu_clock_getres(const clockid_t which_clock,
1416 				    struct timespec *tp)
1417 {
1418 	return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1419 }
1420 static int process_cpu_clock_get(const clockid_t which_clock,
1421 				 struct timespec *tp)
1422 {
1423 	return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1424 }
1425 static int process_cpu_timer_create(struct k_itimer *timer)
1426 {
1427 	timer->it_clock = PROCESS_CLOCK;
1428 	return posix_cpu_timer_create(timer);
1429 }
1430 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1431 			      struct timespec *rqtp,
1432 			      struct timespec __user *rmtp)
1433 {
1434 	return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1435 }
1436 static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1437 {
1438 	return -EINVAL;
1439 }
1440 static int thread_cpu_clock_getres(const clockid_t which_clock,
1441 				   struct timespec *tp)
1442 {
1443 	return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1444 }
1445 static int thread_cpu_clock_get(const clockid_t which_clock,
1446 				struct timespec *tp)
1447 {
1448 	return posix_cpu_clock_get(THREAD_CLOCK, tp);
1449 }
1450 static int thread_cpu_timer_create(struct k_itimer *timer)
1451 {
1452 	timer->it_clock = THREAD_CLOCK;
1453 	return posix_cpu_timer_create(timer);
1454 }
1455 
1456 struct k_clock clock_posix_cpu = {
1457 	.clock_getres	= posix_cpu_clock_getres,
1458 	.clock_set	= posix_cpu_clock_set,
1459 	.clock_get	= posix_cpu_clock_get,
1460 	.timer_create	= posix_cpu_timer_create,
1461 	.nsleep		= posix_cpu_nsleep,
1462 	.nsleep_restart	= posix_cpu_nsleep_restart,
1463 	.timer_set	= posix_cpu_timer_set,
1464 	.timer_del	= posix_cpu_timer_del,
1465 	.timer_get	= posix_cpu_timer_get,
1466 };
1467 
1468 static __init int init_posix_cpu_timers(void)
1469 {
1470 	struct k_clock process = {
1471 		.clock_getres	= process_cpu_clock_getres,
1472 		.clock_get	= process_cpu_clock_get,
1473 		.timer_create	= process_cpu_timer_create,
1474 		.nsleep		= process_cpu_nsleep,
1475 		.nsleep_restart	= process_cpu_nsleep_restart,
1476 	};
1477 	struct k_clock thread = {
1478 		.clock_getres	= thread_cpu_clock_getres,
1479 		.clock_get	= thread_cpu_clock_get,
1480 		.timer_create	= thread_cpu_timer_create,
1481 	};
1482 	struct timespec ts;
1483 
1484 	posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1485 	posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1486 
1487 	cputime_to_timespec(cputime_one_jiffy, &ts);
1488 	onecputick = ts.tv_nsec;
1489 	WARN_ON(ts.tv_sec != 0);
1490 
1491 	return 0;
1492 }
1493 __initcall(init_posix_cpu_timers);
1494