1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Implement CPU time clocks for the POSIX clock interface.
4  */
5 
6 #include <linux/sched/signal.h>
7 #include <linux/sched/cputime.h>
8 #include <linux/posix-timers.h>
9 #include <linux/errno.h>
10 #include <linux/math64.h>
11 #include <linux/uaccess.h>
12 #include <linux/kernel_stat.h>
13 #include <trace/events/timer.h>
14 #include <linux/tick.h>
15 #include <linux/workqueue.h>
16 #include <linux/compat.h>
17 #include <linux/sched/deadline.h>
18 
19 #include "posix-timers.h"
20 
21 static void posix_cpu_timer_rearm(struct k_itimer *timer);
22 
23 void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit)
24 {
25 	posix_cputimers_init(pct);
26 	if (cpu_limit != RLIM_INFINITY) {
27 		pct->bases[CPUCLOCK_PROF].nextevt = cpu_limit * NSEC_PER_SEC;
28 		pct->timers_active = true;
29 	}
30 }
31 
32 /*
33  * Called after updating RLIMIT_CPU to run cpu timer and update
34  * tsk->signal->posix_cputimers.bases[clock].nextevt expiration cache if
35  * necessary. Needs siglock protection since other code may update the
36  * expiration cache as well.
37  */
38 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
39 {
40 	u64 nsecs = rlim_new * NSEC_PER_SEC;
41 
42 	spin_lock_irq(&task->sighand->siglock);
43 	set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
44 	spin_unlock_irq(&task->sighand->siglock);
45 }
46 
47 /*
48  * Functions for validating access to tasks.
49  */
50 static struct task_struct *lookup_task(const pid_t pid, bool thread,
51 				       bool gettime)
52 {
53 	struct task_struct *p;
54 
55 	/*
56 	 * If the encoded PID is 0, then the timer is targeted at current
57 	 * or the process to which current belongs.
58 	 */
59 	if (!pid)
60 		return thread ? current : current->group_leader;
61 
62 	p = find_task_by_vpid(pid);
63 	if (!p)
64 		return p;
65 
66 	if (thread)
67 		return same_thread_group(p, current) ? p : NULL;
68 
69 	if (gettime) {
70 		/*
71 		 * For clock_gettime(PROCESS) the task does not need to be
72 		 * the actual group leader. tsk->sighand gives
73 		 * access to the group's clock.
74 		 *
75 		 * Timers need the group leader because they take a
76 		 * reference on it and store the task pointer until the
77 		 * timer is destroyed.
78 		 */
79 		return (p == current || thread_group_leader(p)) ? p : NULL;
80 	}
81 
82 	/*
83 	 * For processes require that p is group leader.
84 	 */
85 	return has_group_leader_pid(p) ? p : NULL;
86 }
87 
88 static struct task_struct *__get_task_for_clock(const clockid_t clock,
89 						bool getref, bool gettime)
90 {
91 	const bool thread = !!CPUCLOCK_PERTHREAD(clock);
92 	const pid_t pid = CPUCLOCK_PID(clock);
93 	struct task_struct *p;
94 
95 	if (CPUCLOCK_WHICH(clock) >= CPUCLOCK_MAX)
96 		return NULL;
97 
98 	rcu_read_lock();
99 	p = lookup_task(pid, thread, gettime);
100 	if (p && getref)
101 		get_task_struct(p);
102 	rcu_read_unlock();
103 	return p;
104 }
105 
106 static inline struct task_struct *get_task_for_clock(const clockid_t clock)
107 {
108 	return __get_task_for_clock(clock, true, false);
109 }
110 
111 static inline struct task_struct *get_task_for_clock_get(const clockid_t clock)
112 {
113 	return __get_task_for_clock(clock, true, true);
114 }
115 
116 static inline int validate_clock_permissions(const clockid_t clock)
117 {
118 	return __get_task_for_clock(clock, false, false) ? 0 : -EINVAL;
119 }
120 
121 /*
122  * Update expiry time from increment, and increase overrun count,
123  * given the current clock sample.
124  */
125 static u64 bump_cpu_timer(struct k_itimer *timer, u64 now)
126 {
127 	u64 delta, incr, expires = timer->it.cpu.node.expires;
128 	int i;
129 
130 	if (!timer->it_interval)
131 		return expires;
132 
133 	if (now < expires)
134 		return expires;
135 
136 	incr = timer->it_interval;
137 	delta = now + incr - expires;
138 
139 	/* Don't use (incr*2 < delta), incr*2 might overflow. */
140 	for (i = 0; incr < delta - incr; i++)
141 		incr = incr << 1;
142 
143 	for (; i >= 0; incr >>= 1, i--) {
144 		if (delta < incr)
145 			continue;
146 
147 		timer->it.cpu.node.expires += incr;
148 		timer->it_overrun += 1LL << i;
149 		delta -= incr;
150 	}
151 	return timer->it.cpu.node.expires;
152 }
153 
154 /* Check whether all cache entries contain U64_MAX, i.e. eternal expiry time */
155 static inline bool expiry_cache_is_inactive(const struct posix_cputimers *pct)
156 {
157 	return !(~pct->bases[CPUCLOCK_PROF].nextevt |
158 		 ~pct->bases[CPUCLOCK_VIRT].nextevt |
159 		 ~pct->bases[CPUCLOCK_SCHED].nextevt);
160 }
161 
162 static int
163 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
164 {
165 	int error = validate_clock_permissions(which_clock);
166 
167 	if (!error) {
168 		tp->tv_sec = 0;
169 		tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
170 		if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
171 			/*
172 			 * If sched_clock is using a cycle counter, we
173 			 * don't have any idea of its true resolution
174 			 * exported, but it is much more than 1s/HZ.
175 			 */
176 			tp->tv_nsec = 1;
177 		}
178 	}
179 	return error;
180 }
181 
182 static int
183 posix_cpu_clock_set(const clockid_t clock, const struct timespec64 *tp)
184 {
185 	int error = validate_clock_permissions(clock);
186 
187 	/*
188 	 * You can never reset a CPU clock, but we check for other errors
189 	 * in the call before failing with EPERM.
190 	 */
191 	return error ? : -EPERM;
192 }
193 
194 /*
195  * Sample a per-thread clock for the given task. clkid is validated.
196  */
197 static u64 cpu_clock_sample(const clockid_t clkid, struct task_struct *p)
198 {
199 	u64 utime, stime;
200 
201 	if (clkid == CPUCLOCK_SCHED)
202 		return task_sched_runtime(p);
203 
204 	task_cputime(p, &utime, &stime);
205 
206 	switch (clkid) {
207 	case CPUCLOCK_PROF:
208 		return utime + stime;
209 	case CPUCLOCK_VIRT:
210 		return utime;
211 	default:
212 		WARN_ON_ONCE(1);
213 	}
214 	return 0;
215 }
216 
217 static inline void store_samples(u64 *samples, u64 stime, u64 utime, u64 rtime)
218 {
219 	samples[CPUCLOCK_PROF] = stime + utime;
220 	samples[CPUCLOCK_VIRT] = utime;
221 	samples[CPUCLOCK_SCHED] = rtime;
222 }
223 
224 static void task_sample_cputime(struct task_struct *p, u64 *samples)
225 {
226 	u64 stime, utime;
227 
228 	task_cputime(p, &utime, &stime);
229 	store_samples(samples, stime, utime, p->se.sum_exec_runtime);
230 }
231 
232 static void proc_sample_cputime_atomic(struct task_cputime_atomic *at,
233 				       u64 *samples)
234 {
235 	u64 stime, utime, rtime;
236 
237 	utime = atomic64_read(&at->utime);
238 	stime = atomic64_read(&at->stime);
239 	rtime = atomic64_read(&at->sum_exec_runtime);
240 	store_samples(samples, stime, utime, rtime);
241 }
242 
243 /*
244  * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
245  * to avoid race conditions with concurrent updates to cputime.
246  */
247 static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
248 {
249 	u64 curr_cputime;
250 retry:
251 	curr_cputime = atomic64_read(cputime);
252 	if (sum_cputime > curr_cputime) {
253 		if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
254 			goto retry;
255 	}
256 }
257 
258 static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic,
259 			      struct task_cputime *sum)
260 {
261 	__update_gt_cputime(&cputime_atomic->utime, sum->utime);
262 	__update_gt_cputime(&cputime_atomic->stime, sum->stime);
263 	__update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
264 }
265 
266 /**
267  * thread_group_sample_cputime - Sample cputime for a given task
268  * @tsk:	Task for which cputime needs to be started
269  * @samples:	Storage for time samples
270  *
271  * Called from sys_getitimer() to calculate the expiry time of an active
272  * timer. That means group cputime accounting is already active. Called
273  * with task sighand lock held.
274  *
275  * Updates @times with an uptodate sample of the thread group cputimes.
276  */
277 void thread_group_sample_cputime(struct task_struct *tsk, u64 *samples)
278 {
279 	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
280 	struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
281 
282 	WARN_ON_ONCE(!pct->timers_active);
283 
284 	proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
285 }
286 
287 /**
288  * thread_group_start_cputime - Start cputime and return a sample
289  * @tsk:	Task for which cputime needs to be started
290  * @samples:	Storage for time samples
291  *
292  * The thread group cputime accouting is avoided when there are no posix
293  * CPU timers armed. Before starting a timer it's required to check whether
294  * the time accounting is active. If not, a full update of the atomic
295  * accounting store needs to be done and the accounting enabled.
296  *
297  * Updates @times with an uptodate sample of the thread group cputimes.
298  */
299 static void thread_group_start_cputime(struct task_struct *tsk, u64 *samples)
300 {
301 	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
302 	struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
303 
304 	/* Check if cputimer isn't running. This is accessed without locking. */
305 	if (!READ_ONCE(pct->timers_active)) {
306 		struct task_cputime sum;
307 
308 		/*
309 		 * The POSIX timer interface allows for absolute time expiry
310 		 * values through the TIMER_ABSTIME flag, therefore we have
311 		 * to synchronize the timer to the clock every time we start it.
312 		 */
313 		thread_group_cputime(tsk, &sum);
314 		update_gt_cputime(&cputimer->cputime_atomic, &sum);
315 
316 		/*
317 		 * We're setting timers_active without a lock. Ensure this
318 		 * only gets written to in one operation. We set it after
319 		 * update_gt_cputime() as a small optimization, but
320 		 * barriers are not required because update_gt_cputime()
321 		 * can handle concurrent updates.
322 		 */
323 		WRITE_ONCE(pct->timers_active, true);
324 	}
325 	proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
326 }
327 
328 static void __thread_group_cputime(struct task_struct *tsk, u64 *samples)
329 {
330 	struct task_cputime ct;
331 
332 	thread_group_cputime(tsk, &ct);
333 	store_samples(samples, ct.stime, ct.utime, ct.sum_exec_runtime);
334 }
335 
336 /*
337  * Sample a process (thread group) clock for the given task clkid. If the
338  * group's cputime accounting is already enabled, read the atomic
339  * store. Otherwise a full update is required.  Task's sighand lock must be
340  * held to protect the task traversal on a full update. clkid is already
341  * validated.
342  */
343 static u64 cpu_clock_sample_group(const clockid_t clkid, struct task_struct *p,
344 				  bool start)
345 {
346 	struct thread_group_cputimer *cputimer = &p->signal->cputimer;
347 	struct posix_cputimers *pct = &p->signal->posix_cputimers;
348 	u64 samples[CPUCLOCK_MAX];
349 
350 	if (!READ_ONCE(pct->timers_active)) {
351 		if (start)
352 			thread_group_start_cputime(p, samples);
353 		else
354 			__thread_group_cputime(p, samples);
355 	} else {
356 		proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
357 	}
358 
359 	return samples[clkid];
360 }
361 
362 static int posix_cpu_clock_get(const clockid_t clock, struct timespec64 *tp)
363 {
364 	const clockid_t clkid = CPUCLOCK_WHICH(clock);
365 	struct task_struct *tsk;
366 	u64 t;
367 
368 	tsk = get_task_for_clock_get(clock);
369 	if (!tsk)
370 		return -EINVAL;
371 
372 	if (CPUCLOCK_PERTHREAD(clock))
373 		t = cpu_clock_sample(clkid, tsk);
374 	else
375 		t = cpu_clock_sample_group(clkid, tsk, false);
376 	put_task_struct(tsk);
377 
378 	*tp = ns_to_timespec64(t);
379 	return 0;
380 }
381 
382 /*
383  * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
384  * This is called from sys_timer_create() and do_cpu_nanosleep() with the
385  * new timer already all-zeros initialized.
386  */
387 static int posix_cpu_timer_create(struct k_itimer *new_timer)
388 {
389 	struct task_struct *p = get_task_for_clock(new_timer->it_clock);
390 
391 	if (!p)
392 		return -EINVAL;
393 
394 	new_timer->kclock = &clock_posix_cpu;
395 	timerqueue_init(&new_timer->it.cpu.node);
396 	new_timer->it.cpu.task = p;
397 	return 0;
398 }
399 
400 /*
401  * Clean up a CPU-clock timer that is about to be destroyed.
402  * This is called from timer deletion with the timer already locked.
403  * If we return TIMER_RETRY, it's necessary to release the timer's lock
404  * and try again.  (This happens when the timer is in the middle of firing.)
405  */
406 static int posix_cpu_timer_del(struct k_itimer *timer)
407 {
408 	struct cpu_timer *ctmr = &timer->it.cpu;
409 	struct task_struct *p = ctmr->task;
410 	struct sighand_struct *sighand;
411 	unsigned long flags;
412 	int ret = 0;
413 
414 	if (WARN_ON_ONCE(!p))
415 		return -EINVAL;
416 
417 	/*
418 	 * Protect against sighand release/switch in exit/exec and process/
419 	 * thread timer list entry concurrent read/writes.
420 	 */
421 	sighand = lock_task_sighand(p, &flags);
422 	if (unlikely(sighand == NULL)) {
423 		/*
424 		 * This raced with the reaping of the task. The exit cleanup
425 		 * should have removed this timer from the timer queue.
426 		 */
427 		WARN_ON_ONCE(ctmr->head || timerqueue_node_queued(&ctmr->node));
428 	} else {
429 		if (timer->it.cpu.firing)
430 			ret = TIMER_RETRY;
431 		else
432 			cpu_timer_dequeue(ctmr);
433 
434 		unlock_task_sighand(p, &flags);
435 	}
436 
437 	if (!ret)
438 		put_task_struct(p);
439 
440 	return ret;
441 }
442 
443 static void cleanup_timerqueue(struct timerqueue_head *head)
444 {
445 	struct timerqueue_node *node;
446 	struct cpu_timer *ctmr;
447 
448 	while ((node = timerqueue_getnext(head))) {
449 		timerqueue_del(head, node);
450 		ctmr = container_of(node, struct cpu_timer, node);
451 		ctmr->head = NULL;
452 	}
453 }
454 
455 /*
456  * Clean out CPU timers which are still armed when a thread exits. The
457  * timers are only removed from the list. No other updates are done. The
458  * corresponding posix timers are still accessible, but cannot be rearmed.
459  *
460  * This must be called with the siglock held.
461  */
462 static void cleanup_timers(struct posix_cputimers *pct)
463 {
464 	cleanup_timerqueue(&pct->bases[CPUCLOCK_PROF].tqhead);
465 	cleanup_timerqueue(&pct->bases[CPUCLOCK_VIRT].tqhead);
466 	cleanup_timerqueue(&pct->bases[CPUCLOCK_SCHED].tqhead);
467 }
468 
469 /*
470  * These are both called with the siglock held, when the current thread
471  * is being reaped.  When the final (leader) thread in the group is reaped,
472  * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
473  */
474 void posix_cpu_timers_exit(struct task_struct *tsk)
475 {
476 	cleanup_timers(&tsk->posix_cputimers);
477 }
478 void posix_cpu_timers_exit_group(struct task_struct *tsk)
479 {
480 	cleanup_timers(&tsk->signal->posix_cputimers);
481 }
482 
483 /*
484  * Insert the timer on the appropriate list before any timers that
485  * expire later.  This must be called with the sighand lock held.
486  */
487 static void arm_timer(struct k_itimer *timer)
488 {
489 	int clkidx = CPUCLOCK_WHICH(timer->it_clock);
490 	struct cpu_timer *ctmr = &timer->it.cpu;
491 	u64 newexp = cpu_timer_getexpires(ctmr);
492 	struct task_struct *p = ctmr->task;
493 	struct posix_cputimer_base *base;
494 
495 	if (CPUCLOCK_PERTHREAD(timer->it_clock))
496 		base = p->posix_cputimers.bases + clkidx;
497 	else
498 		base = p->signal->posix_cputimers.bases + clkidx;
499 
500 	if (!cpu_timer_enqueue(&base->tqhead, ctmr))
501 		return;
502 
503 	/*
504 	 * We are the new earliest-expiring POSIX 1.b timer, hence
505 	 * need to update expiration cache. Take into account that
506 	 * for process timers we share expiration cache with itimers
507 	 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
508 	 */
509 	if (newexp < base->nextevt)
510 		base->nextevt = newexp;
511 
512 	if (CPUCLOCK_PERTHREAD(timer->it_clock))
513 		tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
514 	else
515 		tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
516 }
517 
518 /*
519  * The timer is locked, fire it and arrange for its reload.
520  */
521 static void cpu_timer_fire(struct k_itimer *timer)
522 {
523 	struct cpu_timer *ctmr = &timer->it.cpu;
524 
525 	if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
526 		/*
527 		 * User don't want any signal.
528 		 */
529 		cpu_timer_setexpires(ctmr, 0);
530 	} else if (unlikely(timer->sigq == NULL)) {
531 		/*
532 		 * This a special case for clock_nanosleep,
533 		 * not a normal timer from sys_timer_create.
534 		 */
535 		wake_up_process(timer->it_process);
536 		cpu_timer_setexpires(ctmr, 0);
537 	} else if (!timer->it_interval) {
538 		/*
539 		 * One-shot timer.  Clear it as soon as it's fired.
540 		 */
541 		posix_timer_event(timer, 0);
542 		cpu_timer_setexpires(ctmr, 0);
543 	} else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
544 		/*
545 		 * The signal did not get queued because the signal
546 		 * was ignored, so we won't get any callback to
547 		 * reload the timer.  But we need to keep it
548 		 * ticking in case the signal is deliverable next time.
549 		 */
550 		posix_cpu_timer_rearm(timer);
551 		++timer->it_requeue_pending;
552 	}
553 }
554 
555 /*
556  * Guts of sys_timer_settime for CPU timers.
557  * This is called with the timer locked and interrupts disabled.
558  * If we return TIMER_RETRY, it's necessary to release the timer's lock
559  * and try again.  (This happens when the timer is in the middle of firing.)
560  */
561 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
562 			       struct itimerspec64 *new, struct itimerspec64 *old)
563 {
564 	clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
565 	u64 old_expires, new_expires, old_incr, val;
566 	struct cpu_timer *ctmr = &timer->it.cpu;
567 	struct task_struct *p = ctmr->task;
568 	struct sighand_struct *sighand;
569 	unsigned long flags;
570 	int ret = 0;
571 
572 	if (WARN_ON_ONCE(!p))
573 		return -EINVAL;
574 
575 	/*
576 	 * Use the to_ktime conversion because that clamps the maximum
577 	 * value to KTIME_MAX and avoid multiplication overflows.
578 	 */
579 	new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value));
580 
581 	/*
582 	 * Protect against sighand release/switch in exit/exec and p->cpu_timers
583 	 * and p->signal->cpu_timers read/write in arm_timer()
584 	 */
585 	sighand = lock_task_sighand(p, &flags);
586 	/*
587 	 * If p has just been reaped, we can no
588 	 * longer get any information about it at all.
589 	 */
590 	if (unlikely(sighand == NULL))
591 		return -ESRCH;
592 
593 	/*
594 	 * Disarm any old timer after extracting its expiry time.
595 	 */
596 	old_incr = timer->it_interval;
597 	old_expires = cpu_timer_getexpires(ctmr);
598 
599 	if (unlikely(timer->it.cpu.firing)) {
600 		timer->it.cpu.firing = -1;
601 		ret = TIMER_RETRY;
602 	} else {
603 		cpu_timer_dequeue(ctmr);
604 	}
605 
606 	/*
607 	 * We need to sample the current value to convert the new
608 	 * value from to relative and absolute, and to convert the
609 	 * old value from absolute to relative.  To set a process
610 	 * timer, we need a sample to balance the thread expiry
611 	 * times (in arm_timer).  With an absolute time, we must
612 	 * check if it's already passed.  In short, we need a sample.
613 	 */
614 	if (CPUCLOCK_PERTHREAD(timer->it_clock))
615 		val = cpu_clock_sample(clkid, p);
616 	else
617 		val = cpu_clock_sample_group(clkid, p, true);
618 
619 	if (old) {
620 		if (old_expires == 0) {
621 			old->it_value.tv_sec = 0;
622 			old->it_value.tv_nsec = 0;
623 		} else {
624 			/*
625 			 * Update the timer in case it has overrun already.
626 			 * If it has, we'll report it as having overrun and
627 			 * with the next reloaded timer already ticking,
628 			 * though we are swallowing that pending
629 			 * notification here to install the new setting.
630 			 */
631 			u64 exp = bump_cpu_timer(timer, val);
632 
633 			if (val < exp) {
634 				old_expires = exp - val;
635 				old->it_value = ns_to_timespec64(old_expires);
636 			} else {
637 				old->it_value.tv_nsec = 1;
638 				old->it_value.tv_sec = 0;
639 			}
640 		}
641 	}
642 
643 	if (unlikely(ret)) {
644 		/*
645 		 * We are colliding with the timer actually firing.
646 		 * Punt after filling in the timer's old value, and
647 		 * disable this firing since we are already reporting
648 		 * it as an overrun (thanks to bump_cpu_timer above).
649 		 */
650 		unlock_task_sighand(p, &flags);
651 		goto out;
652 	}
653 
654 	if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
655 		new_expires += val;
656 	}
657 
658 	/*
659 	 * Install the new expiry time (or zero).
660 	 * For a timer with no notification action, we don't actually
661 	 * arm the timer (we'll just fake it for timer_gettime).
662 	 */
663 	cpu_timer_setexpires(ctmr, new_expires);
664 	if (new_expires != 0 && val < new_expires) {
665 		arm_timer(timer);
666 	}
667 
668 	unlock_task_sighand(p, &flags);
669 	/*
670 	 * Install the new reload setting, and
671 	 * set up the signal and overrun bookkeeping.
672 	 */
673 	timer->it_interval = timespec64_to_ktime(new->it_interval);
674 
675 	/*
676 	 * This acts as a modification timestamp for the timer,
677 	 * so any automatic reload attempt will punt on seeing
678 	 * that we have reset the timer manually.
679 	 */
680 	timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
681 		~REQUEUE_PENDING;
682 	timer->it_overrun_last = 0;
683 	timer->it_overrun = -1;
684 
685 	if (new_expires != 0 && !(val < new_expires)) {
686 		/*
687 		 * The designated time already passed, so we notify
688 		 * immediately, even if the thread never runs to
689 		 * accumulate more time on this clock.
690 		 */
691 		cpu_timer_fire(timer);
692 	}
693 
694 	ret = 0;
695  out:
696 	if (old)
697 		old->it_interval = ns_to_timespec64(old_incr);
698 
699 	return ret;
700 }
701 
702 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
703 {
704 	clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
705 	struct cpu_timer *ctmr = &timer->it.cpu;
706 	u64 now, expires = cpu_timer_getexpires(ctmr);
707 	struct task_struct *p = ctmr->task;
708 
709 	if (WARN_ON_ONCE(!p))
710 		return;
711 
712 	/*
713 	 * Easy part: convert the reload time.
714 	 */
715 	itp->it_interval = ktime_to_timespec64(timer->it_interval);
716 
717 	if (!expires)
718 		return;
719 
720 	/*
721 	 * Sample the clock to take the difference with the expiry time.
722 	 */
723 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
724 		now = cpu_clock_sample(clkid, p);
725 	} else {
726 		struct sighand_struct *sighand;
727 		unsigned long flags;
728 
729 		/*
730 		 * Protect against sighand release/switch in exit/exec and
731 		 * also make timer sampling safe if it ends up calling
732 		 * thread_group_cputime().
733 		 */
734 		sighand = lock_task_sighand(p, &flags);
735 		if (unlikely(sighand == NULL)) {
736 			/*
737 			 * The process has been reaped.
738 			 * We can't even collect a sample any more.
739 			 * Disarm the timer, nothing else to do.
740 			 */
741 			cpu_timer_setexpires(ctmr, 0);
742 			return;
743 		} else {
744 			now = cpu_clock_sample_group(clkid, p, false);
745 			unlock_task_sighand(p, &flags);
746 		}
747 	}
748 
749 	if (now < expires) {
750 		itp->it_value = ns_to_timespec64(expires - now);
751 	} else {
752 		/*
753 		 * The timer should have expired already, but the firing
754 		 * hasn't taken place yet.  Say it's just about to expire.
755 		 */
756 		itp->it_value.tv_nsec = 1;
757 		itp->it_value.tv_sec = 0;
758 	}
759 }
760 
761 #define MAX_COLLECTED	20
762 
763 static u64 collect_timerqueue(struct timerqueue_head *head,
764 			      struct list_head *firing, u64 now)
765 {
766 	struct timerqueue_node *next;
767 	int i = 0;
768 
769 	while ((next = timerqueue_getnext(head))) {
770 		struct cpu_timer *ctmr;
771 		u64 expires;
772 
773 		ctmr = container_of(next, struct cpu_timer, node);
774 		expires = cpu_timer_getexpires(ctmr);
775 		/* Limit the number of timers to expire at once */
776 		if (++i == MAX_COLLECTED || now < expires)
777 			return expires;
778 
779 		ctmr->firing = 1;
780 		cpu_timer_dequeue(ctmr);
781 		list_add_tail(&ctmr->elist, firing);
782 	}
783 
784 	return U64_MAX;
785 }
786 
787 static void collect_posix_cputimers(struct posix_cputimers *pct, u64 *samples,
788 				    struct list_head *firing)
789 {
790 	struct posix_cputimer_base *base = pct->bases;
791 	int i;
792 
793 	for (i = 0; i < CPUCLOCK_MAX; i++, base++) {
794 		base->nextevt = collect_timerqueue(&base->tqhead, firing,
795 						    samples[i]);
796 	}
797 }
798 
799 static inline void check_dl_overrun(struct task_struct *tsk)
800 {
801 	if (tsk->dl.dl_overrun) {
802 		tsk->dl.dl_overrun = 0;
803 		__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
804 	}
805 }
806 
807 static bool check_rlimit(u64 time, u64 limit, int signo, bool rt, bool hard)
808 {
809 	if (time < limit)
810 		return false;
811 
812 	if (print_fatal_signals) {
813 		pr_info("%s Watchdog Timeout (%s): %s[%d]\n",
814 			rt ? "RT" : "CPU", hard ? "hard" : "soft",
815 			current->comm, task_pid_nr(current));
816 	}
817 	__group_send_sig_info(signo, SEND_SIG_PRIV, current);
818 	return true;
819 }
820 
821 /*
822  * Check for any per-thread CPU timers that have fired and move them off
823  * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
824  * tsk->it_*_expires values to reflect the remaining thread CPU timers.
825  */
826 static void check_thread_timers(struct task_struct *tsk,
827 				struct list_head *firing)
828 {
829 	struct posix_cputimers *pct = &tsk->posix_cputimers;
830 	u64 samples[CPUCLOCK_MAX];
831 	unsigned long soft;
832 
833 	if (dl_task(tsk))
834 		check_dl_overrun(tsk);
835 
836 	if (expiry_cache_is_inactive(pct))
837 		return;
838 
839 	task_sample_cputime(tsk, samples);
840 	collect_posix_cputimers(pct, samples, firing);
841 
842 	/*
843 	 * Check for the special case thread timers.
844 	 */
845 	soft = task_rlimit(tsk, RLIMIT_RTTIME);
846 	if (soft != RLIM_INFINITY) {
847 		/* Task RT timeout is accounted in jiffies. RTTIME is usec */
848 		unsigned long rttime = tsk->rt.timeout * (USEC_PER_SEC / HZ);
849 		unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
850 
851 		/* At the hard limit, send SIGKILL. No further action. */
852 		if (hard != RLIM_INFINITY &&
853 		    check_rlimit(rttime, hard, SIGKILL, true, true))
854 			return;
855 
856 		/* At the soft limit, send a SIGXCPU every second */
857 		if (check_rlimit(rttime, soft, SIGXCPU, true, false)) {
858 			soft += USEC_PER_SEC;
859 			tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur = soft;
860 		}
861 	}
862 
863 	if (expiry_cache_is_inactive(pct))
864 		tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
865 }
866 
867 static inline void stop_process_timers(struct signal_struct *sig)
868 {
869 	struct posix_cputimers *pct = &sig->posix_cputimers;
870 
871 	/* Turn off the active flag. This is done without locking. */
872 	WRITE_ONCE(pct->timers_active, false);
873 	tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
874 }
875 
876 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
877 			     u64 *expires, u64 cur_time, int signo)
878 {
879 	if (!it->expires)
880 		return;
881 
882 	if (cur_time >= it->expires) {
883 		if (it->incr)
884 			it->expires += it->incr;
885 		else
886 			it->expires = 0;
887 
888 		trace_itimer_expire(signo == SIGPROF ?
889 				    ITIMER_PROF : ITIMER_VIRTUAL,
890 				    task_tgid(tsk), cur_time);
891 		__group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
892 	}
893 
894 	if (it->expires && it->expires < *expires)
895 		*expires = it->expires;
896 }
897 
898 /*
899  * Check for any per-thread CPU timers that have fired and move them
900  * off the tsk->*_timers list onto the firing list.  Per-thread timers
901  * have already been taken off.
902  */
903 static void check_process_timers(struct task_struct *tsk,
904 				 struct list_head *firing)
905 {
906 	struct signal_struct *const sig = tsk->signal;
907 	struct posix_cputimers *pct = &sig->posix_cputimers;
908 	u64 samples[CPUCLOCK_MAX];
909 	unsigned long soft;
910 
911 	/*
912 	 * If there are no active process wide timers (POSIX 1.b, itimers,
913 	 * RLIMIT_CPU) nothing to check. Also skip the process wide timer
914 	 * processing when there is already another task handling them.
915 	 */
916 	if (!READ_ONCE(pct->timers_active) || pct->expiry_active)
917 		return;
918 
919 	/*
920 	 * Signify that a thread is checking for process timers.
921 	 * Write access to this field is protected by the sighand lock.
922 	 */
923 	pct->expiry_active = true;
924 
925 	/*
926 	 * Collect the current process totals. Group accounting is active
927 	 * so the sample can be taken directly.
928 	 */
929 	proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic, samples);
930 	collect_posix_cputimers(pct, samples, firing);
931 
932 	/*
933 	 * Check for the special case process timers.
934 	 */
935 	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF],
936 			 &pct->bases[CPUCLOCK_PROF].nextevt,
937 			 samples[CPUCLOCK_PROF], SIGPROF);
938 	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT],
939 			 &pct->bases[CPUCLOCK_VIRT].nextevt,
940 			 samples[CPUCLOCK_VIRT], SIGVTALRM);
941 
942 	soft = task_rlimit(tsk, RLIMIT_CPU);
943 	if (soft != RLIM_INFINITY) {
944 		/* RLIMIT_CPU is in seconds. Samples are nanoseconds */
945 		unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU);
946 		u64 ptime = samples[CPUCLOCK_PROF];
947 		u64 softns = (u64)soft * NSEC_PER_SEC;
948 		u64 hardns = (u64)hard * NSEC_PER_SEC;
949 
950 		/* At the hard limit, send SIGKILL. No further action. */
951 		if (hard != RLIM_INFINITY &&
952 		    check_rlimit(ptime, hardns, SIGKILL, false, true))
953 			return;
954 
955 		/* At the soft limit, send a SIGXCPU every second */
956 		if (check_rlimit(ptime, softns, SIGXCPU, false, false)) {
957 			sig->rlim[RLIMIT_CPU].rlim_cur = soft + 1;
958 			softns += NSEC_PER_SEC;
959 		}
960 
961 		/* Update the expiry cache */
962 		if (softns < pct->bases[CPUCLOCK_PROF].nextevt)
963 			pct->bases[CPUCLOCK_PROF].nextevt = softns;
964 	}
965 
966 	if (expiry_cache_is_inactive(pct))
967 		stop_process_timers(sig);
968 
969 	pct->expiry_active = false;
970 }
971 
972 /*
973  * This is called from the signal code (via posixtimer_rearm)
974  * when the last timer signal was delivered and we have to reload the timer.
975  */
976 static void posix_cpu_timer_rearm(struct k_itimer *timer)
977 {
978 	clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
979 	struct cpu_timer *ctmr = &timer->it.cpu;
980 	struct task_struct *p = ctmr->task;
981 	struct sighand_struct *sighand;
982 	unsigned long flags;
983 	u64 now;
984 
985 	if (WARN_ON_ONCE(!p))
986 		return;
987 
988 	/*
989 	 * Fetch the current sample and update the timer's expiry time.
990 	 */
991 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
992 		now = cpu_clock_sample(clkid, p);
993 		bump_cpu_timer(timer, now);
994 		if (unlikely(p->exit_state))
995 			return;
996 
997 		/* Protect timer list r/w in arm_timer() */
998 		sighand = lock_task_sighand(p, &flags);
999 		if (!sighand)
1000 			return;
1001 	} else {
1002 		/*
1003 		 * Protect arm_timer() and timer sampling in case of call to
1004 		 * thread_group_cputime().
1005 		 */
1006 		sighand = lock_task_sighand(p, &flags);
1007 		if (unlikely(sighand == NULL)) {
1008 			/*
1009 			 * The process has been reaped.
1010 			 * We can't even collect a sample any more.
1011 			 */
1012 			cpu_timer_setexpires(ctmr, 0);
1013 			return;
1014 		} else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1015 			/* If the process is dying, no need to rearm */
1016 			goto unlock;
1017 		}
1018 		now = cpu_clock_sample_group(clkid, p, true);
1019 		bump_cpu_timer(timer, now);
1020 		/* Leave the sighand locked for the call below.  */
1021 	}
1022 
1023 	/*
1024 	 * Now re-arm for the new expiry time.
1025 	 */
1026 	arm_timer(timer);
1027 unlock:
1028 	unlock_task_sighand(p, &flags);
1029 }
1030 
1031 /**
1032  * task_cputimers_expired - Check whether posix CPU timers are expired
1033  *
1034  * @samples:	Array of current samples for the CPUCLOCK clocks
1035  * @pct:	Pointer to a posix_cputimers container
1036  *
1037  * Returns true if any member of @samples is greater than the corresponding
1038  * member of @pct->bases[CLK].nextevt. False otherwise
1039  */
1040 static inline bool
1041 task_cputimers_expired(const u64 *samples, struct posix_cputimers *pct)
1042 {
1043 	int i;
1044 
1045 	for (i = 0; i < CPUCLOCK_MAX; i++) {
1046 		if (samples[i] >= pct->bases[i].nextevt)
1047 			return true;
1048 	}
1049 	return false;
1050 }
1051 
1052 /**
1053  * fastpath_timer_check - POSIX CPU timers fast path.
1054  *
1055  * @tsk:	The task (thread) being checked.
1056  *
1057  * Check the task and thread group timers.  If both are zero (there are no
1058  * timers set) return false.  Otherwise snapshot the task and thread group
1059  * timers and compare them with the corresponding expiration times.  Return
1060  * true if a timer has expired, else return false.
1061  */
1062 static inline bool fastpath_timer_check(struct task_struct *tsk)
1063 {
1064 	struct posix_cputimers *pct = &tsk->posix_cputimers;
1065 	struct signal_struct *sig;
1066 
1067 	if (!expiry_cache_is_inactive(pct)) {
1068 		u64 samples[CPUCLOCK_MAX];
1069 
1070 		task_sample_cputime(tsk, samples);
1071 		if (task_cputimers_expired(samples, pct))
1072 			return true;
1073 	}
1074 
1075 	sig = tsk->signal;
1076 	pct = &sig->posix_cputimers;
1077 	/*
1078 	 * Check if thread group timers expired when timers are active and
1079 	 * no other thread in the group is already handling expiry for
1080 	 * thread group cputimers. These fields are read without the
1081 	 * sighand lock. However, this is fine because this is meant to be
1082 	 * a fastpath heuristic to determine whether we should try to
1083 	 * acquire the sighand lock to handle timer expiry.
1084 	 *
1085 	 * In the worst case scenario, if concurrently timers_active is set
1086 	 * or expiry_active is cleared, but the current thread doesn't see
1087 	 * the change yet, the timer checks are delayed until the next
1088 	 * thread in the group gets a scheduler interrupt to handle the
1089 	 * timer. This isn't an issue in practice because these types of
1090 	 * delays with signals actually getting sent are expected.
1091 	 */
1092 	if (READ_ONCE(pct->timers_active) && !READ_ONCE(pct->expiry_active)) {
1093 		u64 samples[CPUCLOCK_MAX];
1094 
1095 		proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic,
1096 					   samples);
1097 
1098 		if (task_cputimers_expired(samples, pct))
1099 			return true;
1100 	}
1101 
1102 	if (dl_task(tsk) && tsk->dl.dl_overrun)
1103 		return true;
1104 
1105 	return false;
1106 }
1107 
1108 /*
1109  * This is called from the timer interrupt handler.  The irq handler has
1110  * already updated our counts.  We need to check if any timers fire now.
1111  * Interrupts are disabled.
1112  */
1113 void run_posix_cpu_timers(void)
1114 {
1115 	struct task_struct *tsk = current;
1116 	struct k_itimer *timer, *next;
1117 	unsigned long flags;
1118 	LIST_HEAD(firing);
1119 
1120 	lockdep_assert_irqs_disabled();
1121 
1122 	/*
1123 	 * The fast path checks that there are no expired thread or thread
1124 	 * group timers.  If that's so, just return.
1125 	 */
1126 	if (!fastpath_timer_check(tsk))
1127 		return;
1128 
1129 	if (!lock_task_sighand(tsk, &flags))
1130 		return;
1131 	/*
1132 	 * Here we take off tsk->signal->cpu_timers[N] and
1133 	 * tsk->cpu_timers[N] all the timers that are firing, and
1134 	 * put them on the firing list.
1135 	 */
1136 	check_thread_timers(tsk, &firing);
1137 
1138 	check_process_timers(tsk, &firing);
1139 
1140 	/*
1141 	 * We must release these locks before taking any timer's lock.
1142 	 * There is a potential race with timer deletion here, as the
1143 	 * siglock now protects our private firing list.  We have set
1144 	 * the firing flag in each timer, so that a deletion attempt
1145 	 * that gets the timer lock before we do will give it up and
1146 	 * spin until we've taken care of that timer below.
1147 	 */
1148 	unlock_task_sighand(tsk, &flags);
1149 
1150 	/*
1151 	 * Now that all the timers on our list have the firing flag,
1152 	 * no one will touch their list entries but us.  We'll take
1153 	 * each timer's lock before clearing its firing flag, so no
1154 	 * timer call will interfere.
1155 	 */
1156 	list_for_each_entry_safe(timer, next, &firing, it.cpu.elist) {
1157 		int cpu_firing;
1158 
1159 		spin_lock(&timer->it_lock);
1160 		list_del_init(&timer->it.cpu.elist);
1161 		cpu_firing = timer->it.cpu.firing;
1162 		timer->it.cpu.firing = 0;
1163 		/*
1164 		 * The firing flag is -1 if we collided with a reset
1165 		 * of the timer, which already reported this
1166 		 * almost-firing as an overrun.  So don't generate an event.
1167 		 */
1168 		if (likely(cpu_firing >= 0))
1169 			cpu_timer_fire(timer);
1170 		spin_unlock(&timer->it_lock);
1171 	}
1172 }
1173 
1174 /*
1175  * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1176  * The tsk->sighand->siglock must be held by the caller.
1177  */
1178 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clkid,
1179 			   u64 *newval, u64 *oldval)
1180 {
1181 	u64 now, *nextevt;
1182 
1183 	if (WARN_ON_ONCE(clkid >= CPUCLOCK_SCHED))
1184 		return;
1185 
1186 	nextevt = &tsk->signal->posix_cputimers.bases[clkid].nextevt;
1187 	now = cpu_clock_sample_group(clkid, tsk, true);
1188 
1189 	if (oldval) {
1190 		/*
1191 		 * We are setting itimer. The *oldval is absolute and we update
1192 		 * it to be relative, *newval argument is relative and we update
1193 		 * it to be absolute.
1194 		 */
1195 		if (*oldval) {
1196 			if (*oldval <= now) {
1197 				/* Just about to fire. */
1198 				*oldval = TICK_NSEC;
1199 			} else {
1200 				*oldval -= now;
1201 			}
1202 		}
1203 
1204 		if (!*newval)
1205 			return;
1206 		*newval += now;
1207 	}
1208 
1209 	/*
1210 	 * Update expiration cache if this is the earliest timer. CPUCLOCK_PROF
1211 	 * expiry cache is also used by RLIMIT_CPU!.
1212 	 */
1213 	if (*newval < *nextevt)
1214 		*nextevt = *newval;
1215 
1216 	tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER);
1217 }
1218 
1219 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1220 			    const struct timespec64 *rqtp)
1221 {
1222 	struct itimerspec64 it;
1223 	struct k_itimer timer;
1224 	u64 expires;
1225 	int error;
1226 
1227 	/*
1228 	 * Set up a temporary timer and then wait for it to go off.
1229 	 */
1230 	memset(&timer, 0, sizeof timer);
1231 	spin_lock_init(&timer.it_lock);
1232 	timer.it_clock = which_clock;
1233 	timer.it_overrun = -1;
1234 	error = posix_cpu_timer_create(&timer);
1235 	timer.it_process = current;
1236 
1237 	if (!error) {
1238 		static struct itimerspec64 zero_it;
1239 		struct restart_block *restart;
1240 
1241 		memset(&it, 0, sizeof(it));
1242 		it.it_value = *rqtp;
1243 
1244 		spin_lock_irq(&timer.it_lock);
1245 		error = posix_cpu_timer_set(&timer, flags, &it, NULL);
1246 		if (error) {
1247 			spin_unlock_irq(&timer.it_lock);
1248 			return error;
1249 		}
1250 
1251 		while (!signal_pending(current)) {
1252 			if (!cpu_timer_getexpires(&timer.it.cpu)) {
1253 				/*
1254 				 * Our timer fired and was reset, below
1255 				 * deletion can not fail.
1256 				 */
1257 				posix_cpu_timer_del(&timer);
1258 				spin_unlock_irq(&timer.it_lock);
1259 				return 0;
1260 			}
1261 
1262 			/*
1263 			 * Block until cpu_timer_fire (or a signal) wakes us.
1264 			 */
1265 			__set_current_state(TASK_INTERRUPTIBLE);
1266 			spin_unlock_irq(&timer.it_lock);
1267 			schedule();
1268 			spin_lock_irq(&timer.it_lock);
1269 		}
1270 
1271 		/*
1272 		 * We were interrupted by a signal.
1273 		 */
1274 		expires = cpu_timer_getexpires(&timer.it.cpu);
1275 		error = posix_cpu_timer_set(&timer, 0, &zero_it, &it);
1276 		if (!error) {
1277 			/*
1278 			 * Timer is now unarmed, deletion can not fail.
1279 			 */
1280 			posix_cpu_timer_del(&timer);
1281 		}
1282 		spin_unlock_irq(&timer.it_lock);
1283 
1284 		while (error == TIMER_RETRY) {
1285 			/*
1286 			 * We need to handle case when timer was or is in the
1287 			 * middle of firing. In other cases we already freed
1288 			 * resources.
1289 			 */
1290 			spin_lock_irq(&timer.it_lock);
1291 			error = posix_cpu_timer_del(&timer);
1292 			spin_unlock_irq(&timer.it_lock);
1293 		}
1294 
1295 		if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
1296 			/*
1297 			 * It actually did fire already.
1298 			 */
1299 			return 0;
1300 		}
1301 
1302 		error = -ERESTART_RESTARTBLOCK;
1303 		/*
1304 		 * Report back to the user the time still remaining.
1305 		 */
1306 		restart = &current->restart_block;
1307 		restart->nanosleep.expires = expires;
1308 		if (restart->nanosleep.type != TT_NONE)
1309 			error = nanosleep_copyout(restart, &it.it_value);
1310 	}
1311 
1312 	return error;
1313 }
1314 
1315 static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1316 
1317 static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1318 			    const struct timespec64 *rqtp)
1319 {
1320 	struct restart_block *restart_block = &current->restart_block;
1321 	int error;
1322 
1323 	/*
1324 	 * Diagnose required errors first.
1325 	 */
1326 	if (CPUCLOCK_PERTHREAD(which_clock) &&
1327 	    (CPUCLOCK_PID(which_clock) == 0 ||
1328 	     CPUCLOCK_PID(which_clock) == task_pid_vnr(current)))
1329 		return -EINVAL;
1330 
1331 	error = do_cpu_nanosleep(which_clock, flags, rqtp);
1332 
1333 	if (error == -ERESTART_RESTARTBLOCK) {
1334 
1335 		if (flags & TIMER_ABSTIME)
1336 			return -ERESTARTNOHAND;
1337 
1338 		restart_block->fn = posix_cpu_nsleep_restart;
1339 		restart_block->nanosleep.clockid = which_clock;
1340 	}
1341 	return error;
1342 }
1343 
1344 static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1345 {
1346 	clockid_t which_clock = restart_block->nanosleep.clockid;
1347 	struct timespec64 t;
1348 
1349 	t = ns_to_timespec64(restart_block->nanosleep.expires);
1350 
1351 	return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t);
1352 }
1353 
1354 #define PROCESS_CLOCK	make_process_cpuclock(0, CPUCLOCK_SCHED)
1355 #define THREAD_CLOCK	make_thread_cpuclock(0, CPUCLOCK_SCHED)
1356 
1357 static int process_cpu_clock_getres(const clockid_t which_clock,
1358 				    struct timespec64 *tp)
1359 {
1360 	return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1361 }
1362 static int process_cpu_clock_get(const clockid_t which_clock,
1363 				 struct timespec64 *tp)
1364 {
1365 	return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1366 }
1367 static int process_cpu_timer_create(struct k_itimer *timer)
1368 {
1369 	timer->it_clock = PROCESS_CLOCK;
1370 	return posix_cpu_timer_create(timer);
1371 }
1372 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1373 			      const struct timespec64 *rqtp)
1374 {
1375 	return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
1376 }
1377 static int thread_cpu_clock_getres(const clockid_t which_clock,
1378 				   struct timespec64 *tp)
1379 {
1380 	return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1381 }
1382 static int thread_cpu_clock_get(const clockid_t which_clock,
1383 				struct timespec64 *tp)
1384 {
1385 	return posix_cpu_clock_get(THREAD_CLOCK, tp);
1386 }
1387 static int thread_cpu_timer_create(struct k_itimer *timer)
1388 {
1389 	timer->it_clock = THREAD_CLOCK;
1390 	return posix_cpu_timer_create(timer);
1391 }
1392 
1393 const struct k_clock clock_posix_cpu = {
1394 	.clock_getres		= posix_cpu_clock_getres,
1395 	.clock_set		= posix_cpu_clock_set,
1396 	.clock_get_timespec	= posix_cpu_clock_get,
1397 	.timer_create		= posix_cpu_timer_create,
1398 	.nsleep			= posix_cpu_nsleep,
1399 	.timer_set		= posix_cpu_timer_set,
1400 	.timer_del		= posix_cpu_timer_del,
1401 	.timer_get		= posix_cpu_timer_get,
1402 	.timer_rearm		= posix_cpu_timer_rearm,
1403 };
1404 
1405 const struct k_clock clock_process = {
1406 	.clock_getres		= process_cpu_clock_getres,
1407 	.clock_get_timespec	= process_cpu_clock_get,
1408 	.timer_create		= process_cpu_timer_create,
1409 	.nsleep			= process_cpu_nsleep,
1410 };
1411 
1412 const struct k_clock clock_thread = {
1413 	.clock_getres		= thread_cpu_clock_getres,
1414 	.clock_get_timespec	= thread_cpu_clock_get,
1415 	.timer_create		= thread_cpu_timer_create,
1416 };
1417