1 /* 2 * Implement CPU time clocks for the POSIX clock interface. 3 */ 4 5 #include <linux/sched.h> 6 #include <linux/posix-timers.h> 7 #include <linux/errno.h> 8 #include <linux/math64.h> 9 #include <linux/uaccess.h> 10 #include <linux/kernel_stat.h> 11 #include <trace/events/timer.h> 12 #include <linux/tick.h> 13 #include <linux/workqueue.h> 14 15 /* 16 * Called after updating RLIMIT_CPU to run cpu timer and update 17 * tsk->signal->cputime_expires expiration cache if necessary. Needs 18 * siglock protection since other code may update expiration cache as 19 * well. 20 */ 21 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new) 22 { 23 u64 nsecs = rlim_new * NSEC_PER_SEC; 24 25 spin_lock_irq(&task->sighand->siglock); 26 set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL); 27 spin_unlock_irq(&task->sighand->siglock); 28 } 29 30 static int check_clock(const clockid_t which_clock) 31 { 32 int error = 0; 33 struct task_struct *p; 34 const pid_t pid = CPUCLOCK_PID(which_clock); 35 36 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX) 37 return -EINVAL; 38 39 if (pid == 0) 40 return 0; 41 42 rcu_read_lock(); 43 p = find_task_by_vpid(pid); 44 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ? 45 same_thread_group(p, current) : has_group_leader_pid(p))) { 46 error = -EINVAL; 47 } 48 rcu_read_unlock(); 49 50 return error; 51 } 52 53 /* 54 * Update expiry time from increment, and increase overrun count, 55 * given the current clock sample. 56 */ 57 static void bump_cpu_timer(struct k_itimer *timer, u64 now) 58 { 59 int i; 60 u64 delta, incr; 61 62 if (timer->it.cpu.incr == 0) 63 return; 64 65 if (now < timer->it.cpu.expires) 66 return; 67 68 incr = timer->it.cpu.incr; 69 delta = now + incr - timer->it.cpu.expires; 70 71 /* Don't use (incr*2 < delta), incr*2 might overflow. */ 72 for (i = 0; incr < delta - incr; i++) 73 incr = incr << 1; 74 75 for (; i >= 0; incr >>= 1, i--) { 76 if (delta < incr) 77 continue; 78 79 timer->it.cpu.expires += incr; 80 timer->it_overrun += 1 << i; 81 delta -= incr; 82 } 83 } 84 85 /** 86 * task_cputime_zero - Check a task_cputime struct for all zero fields. 87 * 88 * @cputime: The struct to compare. 89 * 90 * Checks @cputime to see if all fields are zero. Returns true if all fields 91 * are zero, false if any field is nonzero. 92 */ 93 static inline int task_cputime_zero(const struct task_cputime *cputime) 94 { 95 if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime) 96 return 1; 97 return 0; 98 } 99 100 static inline u64 prof_ticks(struct task_struct *p) 101 { 102 u64 utime, stime; 103 104 task_cputime(p, &utime, &stime); 105 106 return utime + stime; 107 } 108 static inline u64 virt_ticks(struct task_struct *p) 109 { 110 u64 utime, stime; 111 112 task_cputime(p, &utime, &stime); 113 114 return utime; 115 } 116 117 static int 118 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp) 119 { 120 int error = check_clock(which_clock); 121 if (!error) { 122 tp->tv_sec = 0; 123 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ); 124 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { 125 /* 126 * If sched_clock is using a cycle counter, we 127 * don't have any idea of its true resolution 128 * exported, but it is much more than 1s/HZ. 129 */ 130 tp->tv_nsec = 1; 131 } 132 } 133 return error; 134 } 135 136 static int 137 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp) 138 { 139 /* 140 * You can never reset a CPU clock, but we check for other errors 141 * in the call before failing with EPERM. 142 */ 143 int error = check_clock(which_clock); 144 if (error == 0) { 145 error = -EPERM; 146 } 147 return error; 148 } 149 150 151 /* 152 * Sample a per-thread clock for the given task. 153 */ 154 static int cpu_clock_sample(const clockid_t which_clock, 155 struct task_struct *p, u64 *sample) 156 { 157 switch (CPUCLOCK_WHICH(which_clock)) { 158 default: 159 return -EINVAL; 160 case CPUCLOCK_PROF: 161 *sample = prof_ticks(p); 162 break; 163 case CPUCLOCK_VIRT: 164 *sample = virt_ticks(p); 165 break; 166 case CPUCLOCK_SCHED: 167 *sample = task_sched_runtime(p); 168 break; 169 } 170 return 0; 171 } 172 173 /* 174 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg 175 * to avoid race conditions with concurrent updates to cputime. 176 */ 177 static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime) 178 { 179 u64 curr_cputime; 180 retry: 181 curr_cputime = atomic64_read(cputime); 182 if (sum_cputime > curr_cputime) { 183 if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime) 184 goto retry; 185 } 186 } 187 188 static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum) 189 { 190 __update_gt_cputime(&cputime_atomic->utime, sum->utime); 191 __update_gt_cputime(&cputime_atomic->stime, sum->stime); 192 __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime); 193 } 194 195 /* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */ 196 static inline void sample_cputime_atomic(struct task_cputime *times, 197 struct task_cputime_atomic *atomic_times) 198 { 199 times->utime = atomic64_read(&atomic_times->utime); 200 times->stime = atomic64_read(&atomic_times->stime); 201 times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime); 202 } 203 204 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times) 205 { 206 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; 207 struct task_cputime sum; 208 209 /* Check if cputimer isn't running. This is accessed without locking. */ 210 if (!READ_ONCE(cputimer->running)) { 211 /* 212 * The POSIX timer interface allows for absolute time expiry 213 * values through the TIMER_ABSTIME flag, therefore we have 214 * to synchronize the timer to the clock every time we start it. 215 */ 216 thread_group_cputime(tsk, &sum); 217 update_gt_cputime(&cputimer->cputime_atomic, &sum); 218 219 /* 220 * We're setting cputimer->running without a lock. Ensure 221 * this only gets written to in one operation. We set 222 * running after update_gt_cputime() as a small optimization, 223 * but barriers are not required because update_gt_cputime() 224 * can handle concurrent updates. 225 */ 226 WRITE_ONCE(cputimer->running, true); 227 } 228 sample_cputime_atomic(times, &cputimer->cputime_atomic); 229 } 230 231 /* 232 * Sample a process (thread group) clock for the given group_leader task. 233 * Must be called with task sighand lock held for safe while_each_thread() 234 * traversal. 235 */ 236 static int cpu_clock_sample_group(const clockid_t which_clock, 237 struct task_struct *p, 238 u64 *sample) 239 { 240 struct task_cputime cputime; 241 242 switch (CPUCLOCK_WHICH(which_clock)) { 243 default: 244 return -EINVAL; 245 case CPUCLOCK_PROF: 246 thread_group_cputime(p, &cputime); 247 *sample = cputime.utime + cputime.stime; 248 break; 249 case CPUCLOCK_VIRT: 250 thread_group_cputime(p, &cputime); 251 *sample = cputime.utime; 252 break; 253 case CPUCLOCK_SCHED: 254 thread_group_cputime(p, &cputime); 255 *sample = cputime.sum_exec_runtime; 256 break; 257 } 258 return 0; 259 } 260 261 static int posix_cpu_clock_get_task(struct task_struct *tsk, 262 const clockid_t which_clock, 263 struct timespec *tp) 264 { 265 int err = -EINVAL; 266 u64 rtn; 267 268 if (CPUCLOCK_PERTHREAD(which_clock)) { 269 if (same_thread_group(tsk, current)) 270 err = cpu_clock_sample(which_clock, tsk, &rtn); 271 } else { 272 if (tsk == current || thread_group_leader(tsk)) 273 err = cpu_clock_sample_group(which_clock, tsk, &rtn); 274 } 275 276 if (!err) 277 *tp = ns_to_timespec(rtn); 278 279 return err; 280 } 281 282 283 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp) 284 { 285 const pid_t pid = CPUCLOCK_PID(which_clock); 286 int err = -EINVAL; 287 288 if (pid == 0) { 289 /* 290 * Special case constant value for our own clocks. 291 * We don't have to do any lookup to find ourselves. 292 */ 293 err = posix_cpu_clock_get_task(current, which_clock, tp); 294 } else { 295 /* 296 * Find the given PID, and validate that the caller 297 * should be able to see it. 298 */ 299 struct task_struct *p; 300 rcu_read_lock(); 301 p = find_task_by_vpid(pid); 302 if (p) 303 err = posix_cpu_clock_get_task(p, which_clock, tp); 304 rcu_read_unlock(); 305 } 306 307 return err; 308 } 309 310 /* 311 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer. 312 * This is called from sys_timer_create() and do_cpu_nanosleep() with the 313 * new timer already all-zeros initialized. 314 */ 315 static int posix_cpu_timer_create(struct k_itimer *new_timer) 316 { 317 int ret = 0; 318 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock); 319 struct task_struct *p; 320 321 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX) 322 return -EINVAL; 323 324 INIT_LIST_HEAD(&new_timer->it.cpu.entry); 325 326 rcu_read_lock(); 327 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) { 328 if (pid == 0) { 329 p = current; 330 } else { 331 p = find_task_by_vpid(pid); 332 if (p && !same_thread_group(p, current)) 333 p = NULL; 334 } 335 } else { 336 if (pid == 0) { 337 p = current->group_leader; 338 } else { 339 p = find_task_by_vpid(pid); 340 if (p && !has_group_leader_pid(p)) 341 p = NULL; 342 } 343 } 344 new_timer->it.cpu.task = p; 345 if (p) { 346 get_task_struct(p); 347 } else { 348 ret = -EINVAL; 349 } 350 rcu_read_unlock(); 351 352 return ret; 353 } 354 355 /* 356 * Clean up a CPU-clock timer that is about to be destroyed. 357 * This is called from timer deletion with the timer already locked. 358 * If we return TIMER_RETRY, it's necessary to release the timer's lock 359 * and try again. (This happens when the timer is in the middle of firing.) 360 */ 361 static int posix_cpu_timer_del(struct k_itimer *timer) 362 { 363 int ret = 0; 364 unsigned long flags; 365 struct sighand_struct *sighand; 366 struct task_struct *p = timer->it.cpu.task; 367 368 WARN_ON_ONCE(p == NULL); 369 370 /* 371 * Protect against sighand release/switch in exit/exec and process/ 372 * thread timer list entry concurrent read/writes. 373 */ 374 sighand = lock_task_sighand(p, &flags); 375 if (unlikely(sighand == NULL)) { 376 /* 377 * We raced with the reaping of the task. 378 * The deletion should have cleared us off the list. 379 */ 380 WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry)); 381 } else { 382 if (timer->it.cpu.firing) 383 ret = TIMER_RETRY; 384 else 385 list_del(&timer->it.cpu.entry); 386 387 unlock_task_sighand(p, &flags); 388 } 389 390 if (!ret) 391 put_task_struct(p); 392 393 return ret; 394 } 395 396 static void cleanup_timers_list(struct list_head *head) 397 { 398 struct cpu_timer_list *timer, *next; 399 400 list_for_each_entry_safe(timer, next, head, entry) 401 list_del_init(&timer->entry); 402 } 403 404 /* 405 * Clean out CPU timers still ticking when a thread exited. The task 406 * pointer is cleared, and the expiry time is replaced with the residual 407 * time for later timer_gettime calls to return. 408 * This must be called with the siglock held. 409 */ 410 static void cleanup_timers(struct list_head *head) 411 { 412 cleanup_timers_list(head); 413 cleanup_timers_list(++head); 414 cleanup_timers_list(++head); 415 } 416 417 /* 418 * These are both called with the siglock held, when the current thread 419 * is being reaped. When the final (leader) thread in the group is reaped, 420 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit. 421 */ 422 void posix_cpu_timers_exit(struct task_struct *tsk) 423 { 424 cleanup_timers(tsk->cpu_timers); 425 } 426 void posix_cpu_timers_exit_group(struct task_struct *tsk) 427 { 428 cleanup_timers(tsk->signal->cpu_timers); 429 } 430 431 static inline int expires_gt(u64 expires, u64 new_exp) 432 { 433 return expires == 0 || expires > new_exp; 434 } 435 436 /* 437 * Insert the timer on the appropriate list before any timers that 438 * expire later. This must be called with the sighand lock held. 439 */ 440 static void arm_timer(struct k_itimer *timer) 441 { 442 struct task_struct *p = timer->it.cpu.task; 443 struct list_head *head, *listpos; 444 struct task_cputime *cputime_expires; 445 struct cpu_timer_list *const nt = &timer->it.cpu; 446 struct cpu_timer_list *next; 447 448 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 449 head = p->cpu_timers; 450 cputime_expires = &p->cputime_expires; 451 } else { 452 head = p->signal->cpu_timers; 453 cputime_expires = &p->signal->cputime_expires; 454 } 455 head += CPUCLOCK_WHICH(timer->it_clock); 456 457 listpos = head; 458 list_for_each_entry(next, head, entry) { 459 if (nt->expires < next->expires) 460 break; 461 listpos = &next->entry; 462 } 463 list_add(&nt->entry, listpos); 464 465 if (listpos == head) { 466 u64 exp = nt->expires; 467 468 /* 469 * We are the new earliest-expiring POSIX 1.b timer, hence 470 * need to update expiration cache. Take into account that 471 * for process timers we share expiration cache with itimers 472 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME. 473 */ 474 475 switch (CPUCLOCK_WHICH(timer->it_clock)) { 476 case CPUCLOCK_PROF: 477 if (expires_gt(cputime_expires->prof_exp, exp)) 478 cputime_expires->prof_exp = exp; 479 break; 480 case CPUCLOCK_VIRT: 481 if (expires_gt(cputime_expires->virt_exp, exp)) 482 cputime_expires->virt_exp = exp; 483 break; 484 case CPUCLOCK_SCHED: 485 if (expires_gt(cputime_expires->sched_exp, exp)) 486 cputime_expires->sched_exp = exp; 487 break; 488 } 489 if (CPUCLOCK_PERTHREAD(timer->it_clock)) 490 tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER); 491 else 492 tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER); 493 } 494 } 495 496 /* 497 * The timer is locked, fire it and arrange for its reload. 498 */ 499 static void cpu_timer_fire(struct k_itimer *timer) 500 { 501 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { 502 /* 503 * User don't want any signal. 504 */ 505 timer->it.cpu.expires = 0; 506 } else if (unlikely(timer->sigq == NULL)) { 507 /* 508 * This a special case for clock_nanosleep, 509 * not a normal timer from sys_timer_create. 510 */ 511 wake_up_process(timer->it_process); 512 timer->it.cpu.expires = 0; 513 } else if (timer->it.cpu.incr == 0) { 514 /* 515 * One-shot timer. Clear it as soon as it's fired. 516 */ 517 posix_timer_event(timer, 0); 518 timer->it.cpu.expires = 0; 519 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) { 520 /* 521 * The signal did not get queued because the signal 522 * was ignored, so we won't get any callback to 523 * reload the timer. But we need to keep it 524 * ticking in case the signal is deliverable next time. 525 */ 526 posix_cpu_timer_schedule(timer); 527 } 528 } 529 530 /* 531 * Sample a process (thread group) timer for the given group_leader task. 532 * Must be called with task sighand lock held for safe while_each_thread() 533 * traversal. 534 */ 535 static int cpu_timer_sample_group(const clockid_t which_clock, 536 struct task_struct *p, u64 *sample) 537 { 538 struct task_cputime cputime; 539 540 thread_group_cputimer(p, &cputime); 541 switch (CPUCLOCK_WHICH(which_clock)) { 542 default: 543 return -EINVAL; 544 case CPUCLOCK_PROF: 545 *sample = cputime.utime + cputime.stime; 546 break; 547 case CPUCLOCK_VIRT: 548 *sample = cputime.utime; 549 break; 550 case CPUCLOCK_SCHED: 551 *sample = cputime.sum_exec_runtime; 552 break; 553 } 554 return 0; 555 } 556 557 /* 558 * Guts of sys_timer_settime for CPU timers. 559 * This is called with the timer locked and interrupts disabled. 560 * If we return TIMER_RETRY, it's necessary to release the timer's lock 561 * and try again. (This happens when the timer is in the middle of firing.) 562 */ 563 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags, 564 struct itimerspec *new, struct itimerspec *old) 565 { 566 unsigned long flags; 567 struct sighand_struct *sighand; 568 struct task_struct *p = timer->it.cpu.task; 569 u64 old_expires, new_expires, old_incr, val; 570 int ret; 571 572 WARN_ON_ONCE(p == NULL); 573 574 new_expires = timespec_to_ns(&new->it_value); 575 576 /* 577 * Protect against sighand release/switch in exit/exec and p->cpu_timers 578 * and p->signal->cpu_timers read/write in arm_timer() 579 */ 580 sighand = lock_task_sighand(p, &flags); 581 /* 582 * If p has just been reaped, we can no 583 * longer get any information about it at all. 584 */ 585 if (unlikely(sighand == NULL)) { 586 return -ESRCH; 587 } 588 589 /* 590 * Disarm any old timer after extracting its expiry time. 591 */ 592 WARN_ON_ONCE(!irqs_disabled()); 593 594 ret = 0; 595 old_incr = timer->it.cpu.incr; 596 old_expires = timer->it.cpu.expires; 597 if (unlikely(timer->it.cpu.firing)) { 598 timer->it.cpu.firing = -1; 599 ret = TIMER_RETRY; 600 } else 601 list_del_init(&timer->it.cpu.entry); 602 603 /* 604 * We need to sample the current value to convert the new 605 * value from to relative and absolute, and to convert the 606 * old value from absolute to relative. To set a process 607 * timer, we need a sample to balance the thread expiry 608 * times (in arm_timer). With an absolute time, we must 609 * check if it's already passed. In short, we need a sample. 610 */ 611 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 612 cpu_clock_sample(timer->it_clock, p, &val); 613 } else { 614 cpu_timer_sample_group(timer->it_clock, p, &val); 615 } 616 617 if (old) { 618 if (old_expires == 0) { 619 old->it_value.tv_sec = 0; 620 old->it_value.tv_nsec = 0; 621 } else { 622 /* 623 * Update the timer in case it has 624 * overrun already. If it has, 625 * we'll report it as having overrun 626 * and with the next reloaded timer 627 * already ticking, though we are 628 * swallowing that pending 629 * notification here to install the 630 * new setting. 631 */ 632 bump_cpu_timer(timer, val); 633 if (val < timer->it.cpu.expires) { 634 old_expires = timer->it.cpu.expires - val; 635 old->it_value = ns_to_timespec(old_expires); 636 } else { 637 old->it_value.tv_nsec = 1; 638 old->it_value.tv_sec = 0; 639 } 640 } 641 } 642 643 if (unlikely(ret)) { 644 /* 645 * We are colliding with the timer actually firing. 646 * Punt after filling in the timer's old value, and 647 * disable this firing since we are already reporting 648 * it as an overrun (thanks to bump_cpu_timer above). 649 */ 650 unlock_task_sighand(p, &flags); 651 goto out; 652 } 653 654 if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) { 655 new_expires += val; 656 } 657 658 /* 659 * Install the new expiry time (or zero). 660 * For a timer with no notification action, we don't actually 661 * arm the timer (we'll just fake it for timer_gettime). 662 */ 663 timer->it.cpu.expires = new_expires; 664 if (new_expires != 0 && val < new_expires) { 665 arm_timer(timer); 666 } 667 668 unlock_task_sighand(p, &flags); 669 /* 670 * Install the new reload setting, and 671 * set up the signal and overrun bookkeeping. 672 */ 673 timer->it.cpu.incr = timespec_to_ns(&new->it_interval); 674 675 /* 676 * This acts as a modification timestamp for the timer, 677 * so any automatic reload attempt will punt on seeing 678 * that we have reset the timer manually. 679 */ 680 timer->it_requeue_pending = (timer->it_requeue_pending + 2) & 681 ~REQUEUE_PENDING; 682 timer->it_overrun_last = 0; 683 timer->it_overrun = -1; 684 685 if (new_expires != 0 && !(val < new_expires)) { 686 /* 687 * The designated time already passed, so we notify 688 * immediately, even if the thread never runs to 689 * accumulate more time on this clock. 690 */ 691 cpu_timer_fire(timer); 692 } 693 694 ret = 0; 695 out: 696 if (old) 697 old->it_interval = ns_to_timespec(old_incr); 698 699 return ret; 700 } 701 702 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp) 703 { 704 u64 now; 705 struct task_struct *p = timer->it.cpu.task; 706 707 WARN_ON_ONCE(p == NULL); 708 709 /* 710 * Easy part: convert the reload time. 711 */ 712 itp->it_interval = ns_to_timespec(timer->it.cpu.incr); 713 714 if (timer->it.cpu.expires == 0) { /* Timer not armed at all. */ 715 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0; 716 return; 717 } 718 719 /* 720 * Sample the clock to take the difference with the expiry time. 721 */ 722 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 723 cpu_clock_sample(timer->it_clock, p, &now); 724 } else { 725 struct sighand_struct *sighand; 726 unsigned long flags; 727 728 /* 729 * Protect against sighand release/switch in exit/exec and 730 * also make timer sampling safe if it ends up calling 731 * thread_group_cputime(). 732 */ 733 sighand = lock_task_sighand(p, &flags); 734 if (unlikely(sighand == NULL)) { 735 /* 736 * The process has been reaped. 737 * We can't even collect a sample any more. 738 * Call the timer disarmed, nothing else to do. 739 */ 740 timer->it.cpu.expires = 0; 741 itp->it_value = ns_to_timespec(timer->it.cpu.expires); 742 return; 743 } else { 744 cpu_timer_sample_group(timer->it_clock, p, &now); 745 unlock_task_sighand(p, &flags); 746 } 747 } 748 749 if (now < timer->it.cpu.expires) { 750 itp->it_value = ns_to_timespec(timer->it.cpu.expires - now); 751 } else { 752 /* 753 * The timer should have expired already, but the firing 754 * hasn't taken place yet. Say it's just about to expire. 755 */ 756 itp->it_value.tv_nsec = 1; 757 itp->it_value.tv_sec = 0; 758 } 759 } 760 761 static unsigned long long 762 check_timers_list(struct list_head *timers, 763 struct list_head *firing, 764 unsigned long long curr) 765 { 766 int maxfire = 20; 767 768 while (!list_empty(timers)) { 769 struct cpu_timer_list *t; 770 771 t = list_first_entry(timers, struct cpu_timer_list, entry); 772 773 if (!--maxfire || curr < t->expires) 774 return t->expires; 775 776 t->firing = 1; 777 list_move_tail(&t->entry, firing); 778 } 779 780 return 0; 781 } 782 783 /* 784 * Check for any per-thread CPU timers that have fired and move them off 785 * the tsk->cpu_timers[N] list onto the firing list. Here we update the 786 * tsk->it_*_expires values to reflect the remaining thread CPU timers. 787 */ 788 static void check_thread_timers(struct task_struct *tsk, 789 struct list_head *firing) 790 { 791 struct list_head *timers = tsk->cpu_timers; 792 struct signal_struct *const sig = tsk->signal; 793 struct task_cputime *tsk_expires = &tsk->cputime_expires; 794 u64 expires; 795 unsigned long soft; 796 797 /* 798 * If cputime_expires is zero, then there are no active 799 * per thread CPU timers. 800 */ 801 if (task_cputime_zero(&tsk->cputime_expires)) 802 return; 803 804 expires = check_timers_list(timers, firing, prof_ticks(tsk)); 805 tsk_expires->prof_exp = expires; 806 807 expires = check_timers_list(++timers, firing, virt_ticks(tsk)); 808 tsk_expires->virt_exp = expires; 809 810 tsk_expires->sched_exp = check_timers_list(++timers, firing, 811 tsk->se.sum_exec_runtime); 812 813 /* 814 * Check for the special case thread timers. 815 */ 816 soft = READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur); 817 if (soft != RLIM_INFINITY) { 818 unsigned long hard = 819 READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max); 820 821 if (hard != RLIM_INFINITY && 822 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) { 823 /* 824 * At the hard limit, we just die. 825 * No need to calculate anything else now. 826 */ 827 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); 828 return; 829 } 830 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) { 831 /* 832 * At the soft limit, send a SIGXCPU every second. 833 */ 834 if (soft < hard) { 835 soft += USEC_PER_SEC; 836 sig->rlim[RLIMIT_RTTIME].rlim_cur = soft; 837 } 838 printk(KERN_INFO 839 "RT Watchdog Timeout: %s[%d]\n", 840 tsk->comm, task_pid_nr(tsk)); 841 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); 842 } 843 } 844 if (task_cputime_zero(tsk_expires)) 845 tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER); 846 } 847 848 static inline void stop_process_timers(struct signal_struct *sig) 849 { 850 struct thread_group_cputimer *cputimer = &sig->cputimer; 851 852 /* Turn off cputimer->running. This is done without locking. */ 853 WRITE_ONCE(cputimer->running, false); 854 tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER); 855 } 856 857 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it, 858 u64 *expires, u64 cur_time, int signo) 859 { 860 if (!it->expires) 861 return; 862 863 if (cur_time >= it->expires) { 864 if (it->incr) 865 it->expires += it->incr; 866 else 867 it->expires = 0; 868 869 trace_itimer_expire(signo == SIGPROF ? 870 ITIMER_PROF : ITIMER_VIRTUAL, 871 tsk->signal->leader_pid, cur_time); 872 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk); 873 } 874 875 if (it->expires && (!*expires || it->expires < *expires)) 876 *expires = it->expires; 877 } 878 879 /* 880 * Check for any per-thread CPU timers that have fired and move them 881 * off the tsk->*_timers list onto the firing list. Per-thread timers 882 * have already been taken off. 883 */ 884 static void check_process_timers(struct task_struct *tsk, 885 struct list_head *firing) 886 { 887 struct signal_struct *const sig = tsk->signal; 888 u64 utime, ptime, virt_expires, prof_expires; 889 u64 sum_sched_runtime, sched_expires; 890 struct list_head *timers = sig->cpu_timers; 891 struct task_cputime cputime; 892 unsigned long soft; 893 894 /* 895 * If cputimer is not running, then there are no active 896 * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU). 897 */ 898 if (!READ_ONCE(tsk->signal->cputimer.running)) 899 return; 900 901 /* 902 * Signify that a thread is checking for process timers. 903 * Write access to this field is protected by the sighand lock. 904 */ 905 sig->cputimer.checking_timer = true; 906 907 /* 908 * Collect the current process totals. 909 */ 910 thread_group_cputimer(tsk, &cputime); 911 utime = cputime.utime; 912 ptime = utime + cputime.stime; 913 sum_sched_runtime = cputime.sum_exec_runtime; 914 915 prof_expires = check_timers_list(timers, firing, ptime); 916 virt_expires = check_timers_list(++timers, firing, utime); 917 sched_expires = check_timers_list(++timers, firing, sum_sched_runtime); 918 919 /* 920 * Check for the special case process timers. 921 */ 922 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime, 923 SIGPROF); 924 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime, 925 SIGVTALRM); 926 soft = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 927 if (soft != RLIM_INFINITY) { 928 unsigned long psecs = div_u64(ptime, NSEC_PER_SEC); 929 unsigned long hard = 930 READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_max); 931 u64 x; 932 if (psecs >= hard) { 933 /* 934 * At the hard limit, we just die. 935 * No need to calculate anything else now. 936 */ 937 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); 938 return; 939 } 940 if (psecs >= soft) { 941 /* 942 * At the soft limit, send a SIGXCPU every second. 943 */ 944 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); 945 if (soft < hard) { 946 soft++; 947 sig->rlim[RLIMIT_CPU].rlim_cur = soft; 948 } 949 } 950 x = soft * NSEC_PER_SEC; 951 if (!prof_expires || x < prof_expires) 952 prof_expires = x; 953 } 954 955 sig->cputime_expires.prof_exp = prof_expires; 956 sig->cputime_expires.virt_exp = virt_expires; 957 sig->cputime_expires.sched_exp = sched_expires; 958 if (task_cputime_zero(&sig->cputime_expires)) 959 stop_process_timers(sig); 960 961 sig->cputimer.checking_timer = false; 962 } 963 964 /* 965 * This is called from the signal code (via do_schedule_next_timer) 966 * when the last timer signal was delivered and we have to reload the timer. 967 */ 968 void posix_cpu_timer_schedule(struct k_itimer *timer) 969 { 970 struct sighand_struct *sighand; 971 unsigned long flags; 972 struct task_struct *p = timer->it.cpu.task; 973 u64 now; 974 975 WARN_ON_ONCE(p == NULL); 976 977 /* 978 * Fetch the current sample and update the timer's expiry time. 979 */ 980 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 981 cpu_clock_sample(timer->it_clock, p, &now); 982 bump_cpu_timer(timer, now); 983 if (unlikely(p->exit_state)) 984 goto out; 985 986 /* Protect timer list r/w in arm_timer() */ 987 sighand = lock_task_sighand(p, &flags); 988 if (!sighand) 989 goto out; 990 } else { 991 /* 992 * Protect arm_timer() and timer sampling in case of call to 993 * thread_group_cputime(). 994 */ 995 sighand = lock_task_sighand(p, &flags); 996 if (unlikely(sighand == NULL)) { 997 /* 998 * The process has been reaped. 999 * We can't even collect a sample any more. 1000 */ 1001 timer->it.cpu.expires = 0; 1002 goto out; 1003 } else if (unlikely(p->exit_state) && thread_group_empty(p)) { 1004 unlock_task_sighand(p, &flags); 1005 /* Optimizations: if the process is dying, no need to rearm */ 1006 goto out; 1007 } 1008 cpu_timer_sample_group(timer->it_clock, p, &now); 1009 bump_cpu_timer(timer, now); 1010 /* Leave the sighand locked for the call below. */ 1011 } 1012 1013 /* 1014 * Now re-arm for the new expiry time. 1015 */ 1016 WARN_ON_ONCE(!irqs_disabled()); 1017 arm_timer(timer); 1018 unlock_task_sighand(p, &flags); 1019 1020 out: 1021 timer->it_overrun_last = timer->it_overrun; 1022 timer->it_overrun = -1; 1023 ++timer->it_requeue_pending; 1024 } 1025 1026 /** 1027 * task_cputime_expired - Compare two task_cputime entities. 1028 * 1029 * @sample: The task_cputime structure to be checked for expiration. 1030 * @expires: Expiration times, against which @sample will be checked. 1031 * 1032 * Checks @sample against @expires to see if any field of @sample has expired. 1033 * Returns true if any field of the former is greater than the corresponding 1034 * field of the latter if the latter field is set. Otherwise returns false. 1035 */ 1036 static inline int task_cputime_expired(const struct task_cputime *sample, 1037 const struct task_cputime *expires) 1038 { 1039 if (expires->utime && sample->utime >= expires->utime) 1040 return 1; 1041 if (expires->stime && sample->utime + sample->stime >= expires->stime) 1042 return 1; 1043 if (expires->sum_exec_runtime != 0 && 1044 sample->sum_exec_runtime >= expires->sum_exec_runtime) 1045 return 1; 1046 return 0; 1047 } 1048 1049 /** 1050 * fastpath_timer_check - POSIX CPU timers fast path. 1051 * 1052 * @tsk: The task (thread) being checked. 1053 * 1054 * Check the task and thread group timers. If both are zero (there are no 1055 * timers set) return false. Otherwise snapshot the task and thread group 1056 * timers and compare them with the corresponding expiration times. Return 1057 * true if a timer has expired, else return false. 1058 */ 1059 static inline int fastpath_timer_check(struct task_struct *tsk) 1060 { 1061 struct signal_struct *sig; 1062 1063 if (!task_cputime_zero(&tsk->cputime_expires)) { 1064 struct task_cputime task_sample; 1065 1066 task_cputime(tsk, &task_sample.utime, &task_sample.stime); 1067 task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime; 1068 if (task_cputime_expired(&task_sample, &tsk->cputime_expires)) 1069 return 1; 1070 } 1071 1072 sig = tsk->signal; 1073 /* 1074 * Check if thread group timers expired when the cputimer is 1075 * running and no other thread in the group is already checking 1076 * for thread group cputimers. These fields are read without the 1077 * sighand lock. However, this is fine because this is meant to 1078 * be a fastpath heuristic to determine whether we should try to 1079 * acquire the sighand lock to check/handle timers. 1080 * 1081 * In the worst case scenario, if 'running' or 'checking_timer' gets 1082 * set but the current thread doesn't see the change yet, we'll wait 1083 * until the next thread in the group gets a scheduler interrupt to 1084 * handle the timer. This isn't an issue in practice because these 1085 * types of delays with signals actually getting sent are expected. 1086 */ 1087 if (READ_ONCE(sig->cputimer.running) && 1088 !READ_ONCE(sig->cputimer.checking_timer)) { 1089 struct task_cputime group_sample; 1090 1091 sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic); 1092 1093 if (task_cputime_expired(&group_sample, &sig->cputime_expires)) 1094 return 1; 1095 } 1096 1097 return 0; 1098 } 1099 1100 /* 1101 * This is called from the timer interrupt handler. The irq handler has 1102 * already updated our counts. We need to check if any timers fire now. 1103 * Interrupts are disabled. 1104 */ 1105 void run_posix_cpu_timers(struct task_struct *tsk) 1106 { 1107 LIST_HEAD(firing); 1108 struct k_itimer *timer, *next; 1109 unsigned long flags; 1110 1111 WARN_ON_ONCE(!irqs_disabled()); 1112 1113 /* 1114 * The fast path checks that there are no expired thread or thread 1115 * group timers. If that's so, just return. 1116 */ 1117 if (!fastpath_timer_check(tsk)) 1118 return; 1119 1120 if (!lock_task_sighand(tsk, &flags)) 1121 return; 1122 /* 1123 * Here we take off tsk->signal->cpu_timers[N] and 1124 * tsk->cpu_timers[N] all the timers that are firing, and 1125 * put them on the firing list. 1126 */ 1127 check_thread_timers(tsk, &firing); 1128 1129 check_process_timers(tsk, &firing); 1130 1131 /* 1132 * We must release these locks before taking any timer's lock. 1133 * There is a potential race with timer deletion here, as the 1134 * siglock now protects our private firing list. We have set 1135 * the firing flag in each timer, so that a deletion attempt 1136 * that gets the timer lock before we do will give it up and 1137 * spin until we've taken care of that timer below. 1138 */ 1139 unlock_task_sighand(tsk, &flags); 1140 1141 /* 1142 * Now that all the timers on our list have the firing flag, 1143 * no one will touch their list entries but us. We'll take 1144 * each timer's lock before clearing its firing flag, so no 1145 * timer call will interfere. 1146 */ 1147 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) { 1148 int cpu_firing; 1149 1150 spin_lock(&timer->it_lock); 1151 list_del_init(&timer->it.cpu.entry); 1152 cpu_firing = timer->it.cpu.firing; 1153 timer->it.cpu.firing = 0; 1154 /* 1155 * The firing flag is -1 if we collided with a reset 1156 * of the timer, which already reported this 1157 * almost-firing as an overrun. So don't generate an event. 1158 */ 1159 if (likely(cpu_firing >= 0)) 1160 cpu_timer_fire(timer); 1161 spin_unlock(&timer->it_lock); 1162 } 1163 } 1164 1165 /* 1166 * Set one of the process-wide special case CPU timers or RLIMIT_CPU. 1167 * The tsk->sighand->siglock must be held by the caller. 1168 */ 1169 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx, 1170 u64 *newval, u64 *oldval) 1171 { 1172 u64 now; 1173 1174 WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED); 1175 cpu_timer_sample_group(clock_idx, tsk, &now); 1176 1177 if (oldval) { 1178 /* 1179 * We are setting itimer. The *oldval is absolute and we update 1180 * it to be relative, *newval argument is relative and we update 1181 * it to be absolute. 1182 */ 1183 if (*oldval) { 1184 if (*oldval <= now) { 1185 /* Just about to fire. */ 1186 *oldval = TICK_NSEC; 1187 } else { 1188 *oldval -= now; 1189 } 1190 } 1191 1192 if (!*newval) 1193 return; 1194 *newval += now; 1195 } 1196 1197 /* 1198 * Update expiration cache if we are the earliest timer, or eventually 1199 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire. 1200 */ 1201 switch (clock_idx) { 1202 case CPUCLOCK_PROF: 1203 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval)) 1204 tsk->signal->cputime_expires.prof_exp = *newval; 1205 break; 1206 case CPUCLOCK_VIRT: 1207 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval)) 1208 tsk->signal->cputime_expires.virt_exp = *newval; 1209 break; 1210 } 1211 1212 tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER); 1213 } 1214 1215 static int do_cpu_nanosleep(const clockid_t which_clock, int flags, 1216 struct timespec *rqtp, struct itimerspec *it) 1217 { 1218 struct k_itimer timer; 1219 int error; 1220 1221 /* 1222 * Set up a temporary timer and then wait for it to go off. 1223 */ 1224 memset(&timer, 0, sizeof timer); 1225 spin_lock_init(&timer.it_lock); 1226 timer.it_clock = which_clock; 1227 timer.it_overrun = -1; 1228 error = posix_cpu_timer_create(&timer); 1229 timer.it_process = current; 1230 if (!error) { 1231 static struct itimerspec zero_it; 1232 1233 memset(it, 0, sizeof *it); 1234 it->it_value = *rqtp; 1235 1236 spin_lock_irq(&timer.it_lock); 1237 error = posix_cpu_timer_set(&timer, flags, it, NULL); 1238 if (error) { 1239 spin_unlock_irq(&timer.it_lock); 1240 return error; 1241 } 1242 1243 while (!signal_pending(current)) { 1244 if (timer.it.cpu.expires == 0) { 1245 /* 1246 * Our timer fired and was reset, below 1247 * deletion can not fail. 1248 */ 1249 posix_cpu_timer_del(&timer); 1250 spin_unlock_irq(&timer.it_lock); 1251 return 0; 1252 } 1253 1254 /* 1255 * Block until cpu_timer_fire (or a signal) wakes us. 1256 */ 1257 __set_current_state(TASK_INTERRUPTIBLE); 1258 spin_unlock_irq(&timer.it_lock); 1259 schedule(); 1260 spin_lock_irq(&timer.it_lock); 1261 } 1262 1263 /* 1264 * We were interrupted by a signal. 1265 */ 1266 *rqtp = ns_to_timespec(timer.it.cpu.expires); 1267 error = posix_cpu_timer_set(&timer, 0, &zero_it, it); 1268 if (!error) { 1269 /* 1270 * Timer is now unarmed, deletion can not fail. 1271 */ 1272 posix_cpu_timer_del(&timer); 1273 } 1274 spin_unlock_irq(&timer.it_lock); 1275 1276 while (error == TIMER_RETRY) { 1277 /* 1278 * We need to handle case when timer was or is in the 1279 * middle of firing. In other cases we already freed 1280 * resources. 1281 */ 1282 spin_lock_irq(&timer.it_lock); 1283 error = posix_cpu_timer_del(&timer); 1284 spin_unlock_irq(&timer.it_lock); 1285 } 1286 1287 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) { 1288 /* 1289 * It actually did fire already. 1290 */ 1291 return 0; 1292 } 1293 1294 error = -ERESTART_RESTARTBLOCK; 1295 } 1296 1297 return error; 1298 } 1299 1300 static long posix_cpu_nsleep_restart(struct restart_block *restart_block); 1301 1302 static int posix_cpu_nsleep(const clockid_t which_clock, int flags, 1303 struct timespec *rqtp, struct timespec __user *rmtp) 1304 { 1305 struct restart_block *restart_block = ¤t->restart_block; 1306 struct itimerspec it; 1307 int error; 1308 1309 /* 1310 * Diagnose required errors first. 1311 */ 1312 if (CPUCLOCK_PERTHREAD(which_clock) && 1313 (CPUCLOCK_PID(which_clock) == 0 || 1314 CPUCLOCK_PID(which_clock) == current->pid)) 1315 return -EINVAL; 1316 1317 error = do_cpu_nanosleep(which_clock, flags, rqtp, &it); 1318 1319 if (error == -ERESTART_RESTARTBLOCK) { 1320 1321 if (flags & TIMER_ABSTIME) 1322 return -ERESTARTNOHAND; 1323 /* 1324 * Report back to the user the time still remaining. 1325 */ 1326 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp)) 1327 return -EFAULT; 1328 1329 restart_block->fn = posix_cpu_nsleep_restart; 1330 restart_block->nanosleep.clockid = which_clock; 1331 restart_block->nanosleep.rmtp = rmtp; 1332 restart_block->nanosleep.expires = timespec_to_ns(rqtp); 1333 } 1334 return error; 1335 } 1336 1337 static long posix_cpu_nsleep_restart(struct restart_block *restart_block) 1338 { 1339 clockid_t which_clock = restart_block->nanosleep.clockid; 1340 struct timespec t; 1341 struct itimerspec it; 1342 int error; 1343 1344 t = ns_to_timespec(restart_block->nanosleep.expires); 1345 1346 error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it); 1347 1348 if (error == -ERESTART_RESTARTBLOCK) { 1349 struct timespec __user *rmtp = restart_block->nanosleep.rmtp; 1350 /* 1351 * Report back to the user the time still remaining. 1352 */ 1353 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp)) 1354 return -EFAULT; 1355 1356 restart_block->nanosleep.expires = timespec_to_ns(&t); 1357 } 1358 return error; 1359 1360 } 1361 1362 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED) 1363 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED) 1364 1365 static int process_cpu_clock_getres(const clockid_t which_clock, 1366 struct timespec *tp) 1367 { 1368 return posix_cpu_clock_getres(PROCESS_CLOCK, tp); 1369 } 1370 static int process_cpu_clock_get(const clockid_t which_clock, 1371 struct timespec *tp) 1372 { 1373 return posix_cpu_clock_get(PROCESS_CLOCK, tp); 1374 } 1375 static int process_cpu_timer_create(struct k_itimer *timer) 1376 { 1377 timer->it_clock = PROCESS_CLOCK; 1378 return posix_cpu_timer_create(timer); 1379 } 1380 static int process_cpu_nsleep(const clockid_t which_clock, int flags, 1381 struct timespec *rqtp, 1382 struct timespec __user *rmtp) 1383 { 1384 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp); 1385 } 1386 static long process_cpu_nsleep_restart(struct restart_block *restart_block) 1387 { 1388 return -EINVAL; 1389 } 1390 static int thread_cpu_clock_getres(const clockid_t which_clock, 1391 struct timespec *tp) 1392 { 1393 return posix_cpu_clock_getres(THREAD_CLOCK, tp); 1394 } 1395 static int thread_cpu_clock_get(const clockid_t which_clock, 1396 struct timespec *tp) 1397 { 1398 return posix_cpu_clock_get(THREAD_CLOCK, tp); 1399 } 1400 static int thread_cpu_timer_create(struct k_itimer *timer) 1401 { 1402 timer->it_clock = THREAD_CLOCK; 1403 return posix_cpu_timer_create(timer); 1404 } 1405 1406 struct k_clock clock_posix_cpu = { 1407 .clock_getres = posix_cpu_clock_getres, 1408 .clock_set = posix_cpu_clock_set, 1409 .clock_get = posix_cpu_clock_get, 1410 .timer_create = posix_cpu_timer_create, 1411 .nsleep = posix_cpu_nsleep, 1412 .nsleep_restart = posix_cpu_nsleep_restart, 1413 .timer_set = posix_cpu_timer_set, 1414 .timer_del = posix_cpu_timer_del, 1415 .timer_get = posix_cpu_timer_get, 1416 }; 1417 1418 static __init int init_posix_cpu_timers(void) 1419 { 1420 struct k_clock process = { 1421 .clock_getres = process_cpu_clock_getres, 1422 .clock_get = process_cpu_clock_get, 1423 .timer_create = process_cpu_timer_create, 1424 .nsleep = process_cpu_nsleep, 1425 .nsleep_restart = process_cpu_nsleep_restart, 1426 }; 1427 struct k_clock thread = { 1428 .clock_getres = thread_cpu_clock_getres, 1429 .clock_get = thread_cpu_clock_get, 1430 .timer_create = thread_cpu_timer_create, 1431 }; 1432 1433 posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process); 1434 posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread); 1435 1436 return 0; 1437 } 1438 __initcall(init_posix_cpu_timers); 1439