1 /*
2  * Implement CPU time clocks for the POSIX clock interface.
3  */
4 
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <linux/uaccess.h>
10 #include <linux/kernel_stat.h>
11 #include <trace/events/timer.h>
12 #include <linux/tick.h>
13 #include <linux/workqueue.h>
14 
15 /*
16  * Called after updating RLIMIT_CPU to run cpu timer and update
17  * tsk->signal->cputime_expires expiration cache if necessary. Needs
18  * siglock protection since other code may update expiration cache as
19  * well.
20  */
21 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
22 {
23 	u64 nsecs = rlim_new * NSEC_PER_SEC;
24 
25 	spin_lock_irq(&task->sighand->siglock);
26 	set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
27 	spin_unlock_irq(&task->sighand->siglock);
28 }
29 
30 static int check_clock(const clockid_t which_clock)
31 {
32 	int error = 0;
33 	struct task_struct *p;
34 	const pid_t pid = CPUCLOCK_PID(which_clock);
35 
36 	if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
37 		return -EINVAL;
38 
39 	if (pid == 0)
40 		return 0;
41 
42 	rcu_read_lock();
43 	p = find_task_by_vpid(pid);
44 	if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
45 		   same_thread_group(p, current) : has_group_leader_pid(p))) {
46 		error = -EINVAL;
47 	}
48 	rcu_read_unlock();
49 
50 	return error;
51 }
52 
53 /*
54  * Update expiry time from increment, and increase overrun count,
55  * given the current clock sample.
56  */
57 static void bump_cpu_timer(struct k_itimer *timer, u64 now)
58 {
59 	int i;
60 	u64 delta, incr;
61 
62 	if (timer->it.cpu.incr == 0)
63 		return;
64 
65 	if (now < timer->it.cpu.expires)
66 		return;
67 
68 	incr = timer->it.cpu.incr;
69 	delta = now + incr - timer->it.cpu.expires;
70 
71 	/* Don't use (incr*2 < delta), incr*2 might overflow. */
72 	for (i = 0; incr < delta - incr; i++)
73 		incr = incr << 1;
74 
75 	for (; i >= 0; incr >>= 1, i--) {
76 		if (delta < incr)
77 			continue;
78 
79 		timer->it.cpu.expires += incr;
80 		timer->it_overrun += 1 << i;
81 		delta -= incr;
82 	}
83 }
84 
85 /**
86  * task_cputime_zero - Check a task_cputime struct for all zero fields.
87  *
88  * @cputime:	The struct to compare.
89  *
90  * Checks @cputime to see if all fields are zero.  Returns true if all fields
91  * are zero, false if any field is nonzero.
92  */
93 static inline int task_cputime_zero(const struct task_cputime *cputime)
94 {
95 	if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
96 		return 1;
97 	return 0;
98 }
99 
100 static inline u64 prof_ticks(struct task_struct *p)
101 {
102 	u64 utime, stime;
103 
104 	task_cputime(p, &utime, &stime);
105 
106 	return utime + stime;
107 }
108 static inline u64 virt_ticks(struct task_struct *p)
109 {
110 	u64 utime, stime;
111 
112 	task_cputime(p, &utime, &stime);
113 
114 	return utime;
115 }
116 
117 static int
118 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
119 {
120 	int error = check_clock(which_clock);
121 	if (!error) {
122 		tp->tv_sec = 0;
123 		tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
124 		if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
125 			/*
126 			 * If sched_clock is using a cycle counter, we
127 			 * don't have any idea of its true resolution
128 			 * exported, but it is much more than 1s/HZ.
129 			 */
130 			tp->tv_nsec = 1;
131 		}
132 	}
133 	return error;
134 }
135 
136 static int
137 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
138 {
139 	/*
140 	 * You can never reset a CPU clock, but we check for other errors
141 	 * in the call before failing with EPERM.
142 	 */
143 	int error = check_clock(which_clock);
144 	if (error == 0) {
145 		error = -EPERM;
146 	}
147 	return error;
148 }
149 
150 
151 /*
152  * Sample a per-thread clock for the given task.
153  */
154 static int cpu_clock_sample(const clockid_t which_clock,
155 			    struct task_struct *p, u64 *sample)
156 {
157 	switch (CPUCLOCK_WHICH(which_clock)) {
158 	default:
159 		return -EINVAL;
160 	case CPUCLOCK_PROF:
161 		*sample = prof_ticks(p);
162 		break;
163 	case CPUCLOCK_VIRT:
164 		*sample = virt_ticks(p);
165 		break;
166 	case CPUCLOCK_SCHED:
167 		*sample = task_sched_runtime(p);
168 		break;
169 	}
170 	return 0;
171 }
172 
173 /*
174  * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
175  * to avoid race conditions with concurrent updates to cputime.
176  */
177 static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
178 {
179 	u64 curr_cputime;
180 retry:
181 	curr_cputime = atomic64_read(cputime);
182 	if (sum_cputime > curr_cputime) {
183 		if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
184 			goto retry;
185 	}
186 }
187 
188 static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum)
189 {
190 	__update_gt_cputime(&cputime_atomic->utime, sum->utime);
191 	__update_gt_cputime(&cputime_atomic->stime, sum->stime);
192 	__update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
193 }
194 
195 /* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
196 static inline void sample_cputime_atomic(struct task_cputime *times,
197 					 struct task_cputime_atomic *atomic_times)
198 {
199 	times->utime = atomic64_read(&atomic_times->utime);
200 	times->stime = atomic64_read(&atomic_times->stime);
201 	times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime);
202 }
203 
204 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
205 {
206 	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
207 	struct task_cputime sum;
208 
209 	/* Check if cputimer isn't running. This is accessed without locking. */
210 	if (!READ_ONCE(cputimer->running)) {
211 		/*
212 		 * The POSIX timer interface allows for absolute time expiry
213 		 * values through the TIMER_ABSTIME flag, therefore we have
214 		 * to synchronize the timer to the clock every time we start it.
215 		 */
216 		thread_group_cputime(tsk, &sum);
217 		update_gt_cputime(&cputimer->cputime_atomic, &sum);
218 
219 		/*
220 		 * We're setting cputimer->running without a lock. Ensure
221 		 * this only gets written to in one operation. We set
222 		 * running after update_gt_cputime() as a small optimization,
223 		 * but barriers are not required because update_gt_cputime()
224 		 * can handle concurrent updates.
225 		 */
226 		WRITE_ONCE(cputimer->running, true);
227 	}
228 	sample_cputime_atomic(times, &cputimer->cputime_atomic);
229 }
230 
231 /*
232  * Sample a process (thread group) clock for the given group_leader task.
233  * Must be called with task sighand lock held for safe while_each_thread()
234  * traversal.
235  */
236 static int cpu_clock_sample_group(const clockid_t which_clock,
237 				  struct task_struct *p,
238 				  u64 *sample)
239 {
240 	struct task_cputime cputime;
241 
242 	switch (CPUCLOCK_WHICH(which_clock)) {
243 	default:
244 		return -EINVAL;
245 	case CPUCLOCK_PROF:
246 		thread_group_cputime(p, &cputime);
247 		*sample = cputime.utime + cputime.stime;
248 		break;
249 	case CPUCLOCK_VIRT:
250 		thread_group_cputime(p, &cputime);
251 		*sample = cputime.utime;
252 		break;
253 	case CPUCLOCK_SCHED:
254 		thread_group_cputime(p, &cputime);
255 		*sample = cputime.sum_exec_runtime;
256 		break;
257 	}
258 	return 0;
259 }
260 
261 static int posix_cpu_clock_get_task(struct task_struct *tsk,
262 				    const clockid_t which_clock,
263 				    struct timespec *tp)
264 {
265 	int err = -EINVAL;
266 	u64 rtn;
267 
268 	if (CPUCLOCK_PERTHREAD(which_clock)) {
269 		if (same_thread_group(tsk, current))
270 			err = cpu_clock_sample(which_clock, tsk, &rtn);
271 	} else {
272 		if (tsk == current || thread_group_leader(tsk))
273 			err = cpu_clock_sample_group(which_clock, tsk, &rtn);
274 	}
275 
276 	if (!err)
277 		*tp = ns_to_timespec(rtn);
278 
279 	return err;
280 }
281 
282 
283 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
284 {
285 	const pid_t pid = CPUCLOCK_PID(which_clock);
286 	int err = -EINVAL;
287 
288 	if (pid == 0) {
289 		/*
290 		 * Special case constant value for our own clocks.
291 		 * We don't have to do any lookup to find ourselves.
292 		 */
293 		err = posix_cpu_clock_get_task(current, which_clock, tp);
294 	} else {
295 		/*
296 		 * Find the given PID, and validate that the caller
297 		 * should be able to see it.
298 		 */
299 		struct task_struct *p;
300 		rcu_read_lock();
301 		p = find_task_by_vpid(pid);
302 		if (p)
303 			err = posix_cpu_clock_get_task(p, which_clock, tp);
304 		rcu_read_unlock();
305 	}
306 
307 	return err;
308 }
309 
310 /*
311  * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
312  * This is called from sys_timer_create() and do_cpu_nanosleep() with the
313  * new timer already all-zeros initialized.
314  */
315 static int posix_cpu_timer_create(struct k_itimer *new_timer)
316 {
317 	int ret = 0;
318 	const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
319 	struct task_struct *p;
320 
321 	if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
322 		return -EINVAL;
323 
324 	INIT_LIST_HEAD(&new_timer->it.cpu.entry);
325 
326 	rcu_read_lock();
327 	if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
328 		if (pid == 0) {
329 			p = current;
330 		} else {
331 			p = find_task_by_vpid(pid);
332 			if (p && !same_thread_group(p, current))
333 				p = NULL;
334 		}
335 	} else {
336 		if (pid == 0) {
337 			p = current->group_leader;
338 		} else {
339 			p = find_task_by_vpid(pid);
340 			if (p && !has_group_leader_pid(p))
341 				p = NULL;
342 		}
343 	}
344 	new_timer->it.cpu.task = p;
345 	if (p) {
346 		get_task_struct(p);
347 	} else {
348 		ret = -EINVAL;
349 	}
350 	rcu_read_unlock();
351 
352 	return ret;
353 }
354 
355 /*
356  * Clean up a CPU-clock timer that is about to be destroyed.
357  * This is called from timer deletion with the timer already locked.
358  * If we return TIMER_RETRY, it's necessary to release the timer's lock
359  * and try again.  (This happens when the timer is in the middle of firing.)
360  */
361 static int posix_cpu_timer_del(struct k_itimer *timer)
362 {
363 	int ret = 0;
364 	unsigned long flags;
365 	struct sighand_struct *sighand;
366 	struct task_struct *p = timer->it.cpu.task;
367 
368 	WARN_ON_ONCE(p == NULL);
369 
370 	/*
371 	 * Protect against sighand release/switch in exit/exec and process/
372 	 * thread timer list entry concurrent read/writes.
373 	 */
374 	sighand = lock_task_sighand(p, &flags);
375 	if (unlikely(sighand == NULL)) {
376 		/*
377 		 * We raced with the reaping of the task.
378 		 * The deletion should have cleared us off the list.
379 		 */
380 		WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
381 	} else {
382 		if (timer->it.cpu.firing)
383 			ret = TIMER_RETRY;
384 		else
385 			list_del(&timer->it.cpu.entry);
386 
387 		unlock_task_sighand(p, &flags);
388 	}
389 
390 	if (!ret)
391 		put_task_struct(p);
392 
393 	return ret;
394 }
395 
396 static void cleanup_timers_list(struct list_head *head)
397 {
398 	struct cpu_timer_list *timer, *next;
399 
400 	list_for_each_entry_safe(timer, next, head, entry)
401 		list_del_init(&timer->entry);
402 }
403 
404 /*
405  * Clean out CPU timers still ticking when a thread exited.  The task
406  * pointer is cleared, and the expiry time is replaced with the residual
407  * time for later timer_gettime calls to return.
408  * This must be called with the siglock held.
409  */
410 static void cleanup_timers(struct list_head *head)
411 {
412 	cleanup_timers_list(head);
413 	cleanup_timers_list(++head);
414 	cleanup_timers_list(++head);
415 }
416 
417 /*
418  * These are both called with the siglock held, when the current thread
419  * is being reaped.  When the final (leader) thread in the group is reaped,
420  * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
421  */
422 void posix_cpu_timers_exit(struct task_struct *tsk)
423 {
424 	cleanup_timers(tsk->cpu_timers);
425 }
426 void posix_cpu_timers_exit_group(struct task_struct *tsk)
427 {
428 	cleanup_timers(tsk->signal->cpu_timers);
429 }
430 
431 static inline int expires_gt(u64 expires, u64 new_exp)
432 {
433 	return expires == 0 || expires > new_exp;
434 }
435 
436 /*
437  * Insert the timer on the appropriate list before any timers that
438  * expire later.  This must be called with the sighand lock held.
439  */
440 static void arm_timer(struct k_itimer *timer)
441 {
442 	struct task_struct *p = timer->it.cpu.task;
443 	struct list_head *head, *listpos;
444 	struct task_cputime *cputime_expires;
445 	struct cpu_timer_list *const nt = &timer->it.cpu;
446 	struct cpu_timer_list *next;
447 
448 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
449 		head = p->cpu_timers;
450 		cputime_expires = &p->cputime_expires;
451 	} else {
452 		head = p->signal->cpu_timers;
453 		cputime_expires = &p->signal->cputime_expires;
454 	}
455 	head += CPUCLOCK_WHICH(timer->it_clock);
456 
457 	listpos = head;
458 	list_for_each_entry(next, head, entry) {
459 		if (nt->expires < next->expires)
460 			break;
461 		listpos = &next->entry;
462 	}
463 	list_add(&nt->entry, listpos);
464 
465 	if (listpos == head) {
466 		u64 exp = nt->expires;
467 
468 		/*
469 		 * We are the new earliest-expiring POSIX 1.b timer, hence
470 		 * need to update expiration cache. Take into account that
471 		 * for process timers we share expiration cache with itimers
472 		 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
473 		 */
474 
475 		switch (CPUCLOCK_WHICH(timer->it_clock)) {
476 		case CPUCLOCK_PROF:
477 			if (expires_gt(cputime_expires->prof_exp, exp))
478 				cputime_expires->prof_exp = exp;
479 			break;
480 		case CPUCLOCK_VIRT:
481 			if (expires_gt(cputime_expires->virt_exp, exp))
482 				cputime_expires->virt_exp = exp;
483 			break;
484 		case CPUCLOCK_SCHED:
485 			if (expires_gt(cputime_expires->sched_exp, exp))
486 				cputime_expires->sched_exp = exp;
487 			break;
488 		}
489 		if (CPUCLOCK_PERTHREAD(timer->it_clock))
490 			tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
491 		else
492 			tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
493 	}
494 }
495 
496 /*
497  * The timer is locked, fire it and arrange for its reload.
498  */
499 static void cpu_timer_fire(struct k_itimer *timer)
500 {
501 	if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
502 		/*
503 		 * User don't want any signal.
504 		 */
505 		timer->it.cpu.expires = 0;
506 	} else if (unlikely(timer->sigq == NULL)) {
507 		/*
508 		 * This a special case for clock_nanosleep,
509 		 * not a normal timer from sys_timer_create.
510 		 */
511 		wake_up_process(timer->it_process);
512 		timer->it.cpu.expires = 0;
513 	} else if (timer->it.cpu.incr == 0) {
514 		/*
515 		 * One-shot timer.  Clear it as soon as it's fired.
516 		 */
517 		posix_timer_event(timer, 0);
518 		timer->it.cpu.expires = 0;
519 	} else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
520 		/*
521 		 * The signal did not get queued because the signal
522 		 * was ignored, so we won't get any callback to
523 		 * reload the timer.  But we need to keep it
524 		 * ticking in case the signal is deliverable next time.
525 		 */
526 		posix_cpu_timer_schedule(timer);
527 	}
528 }
529 
530 /*
531  * Sample a process (thread group) timer for the given group_leader task.
532  * Must be called with task sighand lock held for safe while_each_thread()
533  * traversal.
534  */
535 static int cpu_timer_sample_group(const clockid_t which_clock,
536 				  struct task_struct *p, u64 *sample)
537 {
538 	struct task_cputime cputime;
539 
540 	thread_group_cputimer(p, &cputime);
541 	switch (CPUCLOCK_WHICH(which_clock)) {
542 	default:
543 		return -EINVAL;
544 	case CPUCLOCK_PROF:
545 		*sample = cputime.utime + cputime.stime;
546 		break;
547 	case CPUCLOCK_VIRT:
548 		*sample = cputime.utime;
549 		break;
550 	case CPUCLOCK_SCHED:
551 		*sample = cputime.sum_exec_runtime;
552 		break;
553 	}
554 	return 0;
555 }
556 
557 /*
558  * Guts of sys_timer_settime for CPU timers.
559  * This is called with the timer locked and interrupts disabled.
560  * If we return TIMER_RETRY, it's necessary to release the timer's lock
561  * and try again.  (This happens when the timer is in the middle of firing.)
562  */
563 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
564 			       struct itimerspec *new, struct itimerspec *old)
565 {
566 	unsigned long flags;
567 	struct sighand_struct *sighand;
568 	struct task_struct *p = timer->it.cpu.task;
569 	u64 old_expires, new_expires, old_incr, val;
570 	int ret;
571 
572 	WARN_ON_ONCE(p == NULL);
573 
574 	new_expires = timespec_to_ns(&new->it_value);
575 
576 	/*
577 	 * Protect against sighand release/switch in exit/exec and p->cpu_timers
578 	 * and p->signal->cpu_timers read/write in arm_timer()
579 	 */
580 	sighand = lock_task_sighand(p, &flags);
581 	/*
582 	 * If p has just been reaped, we can no
583 	 * longer get any information about it at all.
584 	 */
585 	if (unlikely(sighand == NULL)) {
586 		return -ESRCH;
587 	}
588 
589 	/*
590 	 * Disarm any old timer after extracting its expiry time.
591 	 */
592 	WARN_ON_ONCE(!irqs_disabled());
593 
594 	ret = 0;
595 	old_incr = timer->it.cpu.incr;
596 	old_expires = timer->it.cpu.expires;
597 	if (unlikely(timer->it.cpu.firing)) {
598 		timer->it.cpu.firing = -1;
599 		ret = TIMER_RETRY;
600 	} else
601 		list_del_init(&timer->it.cpu.entry);
602 
603 	/*
604 	 * We need to sample the current value to convert the new
605 	 * value from to relative and absolute, and to convert the
606 	 * old value from absolute to relative.  To set a process
607 	 * timer, we need a sample to balance the thread expiry
608 	 * times (in arm_timer).  With an absolute time, we must
609 	 * check if it's already passed.  In short, we need a sample.
610 	 */
611 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
612 		cpu_clock_sample(timer->it_clock, p, &val);
613 	} else {
614 		cpu_timer_sample_group(timer->it_clock, p, &val);
615 	}
616 
617 	if (old) {
618 		if (old_expires == 0) {
619 			old->it_value.tv_sec = 0;
620 			old->it_value.tv_nsec = 0;
621 		} else {
622 			/*
623 			 * Update the timer in case it has
624 			 * overrun already.  If it has,
625 			 * we'll report it as having overrun
626 			 * and with the next reloaded timer
627 			 * already ticking, though we are
628 			 * swallowing that pending
629 			 * notification here to install the
630 			 * new setting.
631 			 */
632 			bump_cpu_timer(timer, val);
633 			if (val < timer->it.cpu.expires) {
634 				old_expires = timer->it.cpu.expires - val;
635 				old->it_value = ns_to_timespec(old_expires);
636 			} else {
637 				old->it_value.tv_nsec = 1;
638 				old->it_value.tv_sec = 0;
639 			}
640 		}
641 	}
642 
643 	if (unlikely(ret)) {
644 		/*
645 		 * We are colliding with the timer actually firing.
646 		 * Punt after filling in the timer's old value, and
647 		 * disable this firing since we are already reporting
648 		 * it as an overrun (thanks to bump_cpu_timer above).
649 		 */
650 		unlock_task_sighand(p, &flags);
651 		goto out;
652 	}
653 
654 	if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
655 		new_expires += val;
656 	}
657 
658 	/*
659 	 * Install the new expiry time (or zero).
660 	 * For a timer with no notification action, we don't actually
661 	 * arm the timer (we'll just fake it for timer_gettime).
662 	 */
663 	timer->it.cpu.expires = new_expires;
664 	if (new_expires != 0 && val < new_expires) {
665 		arm_timer(timer);
666 	}
667 
668 	unlock_task_sighand(p, &flags);
669 	/*
670 	 * Install the new reload setting, and
671 	 * set up the signal and overrun bookkeeping.
672 	 */
673 	timer->it.cpu.incr = timespec_to_ns(&new->it_interval);
674 
675 	/*
676 	 * This acts as a modification timestamp for the timer,
677 	 * so any automatic reload attempt will punt on seeing
678 	 * that we have reset the timer manually.
679 	 */
680 	timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
681 		~REQUEUE_PENDING;
682 	timer->it_overrun_last = 0;
683 	timer->it_overrun = -1;
684 
685 	if (new_expires != 0 && !(val < new_expires)) {
686 		/*
687 		 * The designated time already passed, so we notify
688 		 * immediately, even if the thread never runs to
689 		 * accumulate more time on this clock.
690 		 */
691 		cpu_timer_fire(timer);
692 	}
693 
694 	ret = 0;
695  out:
696 	if (old)
697 		old->it_interval = ns_to_timespec(old_incr);
698 
699 	return ret;
700 }
701 
702 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
703 {
704 	u64 now;
705 	struct task_struct *p = timer->it.cpu.task;
706 
707 	WARN_ON_ONCE(p == NULL);
708 
709 	/*
710 	 * Easy part: convert the reload time.
711 	 */
712 	itp->it_interval = ns_to_timespec(timer->it.cpu.incr);
713 
714 	if (timer->it.cpu.expires == 0) {	/* Timer not armed at all.  */
715 		itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
716 		return;
717 	}
718 
719 	/*
720 	 * Sample the clock to take the difference with the expiry time.
721 	 */
722 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
723 		cpu_clock_sample(timer->it_clock, p, &now);
724 	} else {
725 		struct sighand_struct *sighand;
726 		unsigned long flags;
727 
728 		/*
729 		 * Protect against sighand release/switch in exit/exec and
730 		 * also make timer sampling safe if it ends up calling
731 		 * thread_group_cputime().
732 		 */
733 		sighand = lock_task_sighand(p, &flags);
734 		if (unlikely(sighand == NULL)) {
735 			/*
736 			 * The process has been reaped.
737 			 * We can't even collect a sample any more.
738 			 * Call the timer disarmed, nothing else to do.
739 			 */
740 			timer->it.cpu.expires = 0;
741 			itp->it_value = ns_to_timespec(timer->it.cpu.expires);
742 			return;
743 		} else {
744 			cpu_timer_sample_group(timer->it_clock, p, &now);
745 			unlock_task_sighand(p, &flags);
746 		}
747 	}
748 
749 	if (now < timer->it.cpu.expires) {
750 		itp->it_value = ns_to_timespec(timer->it.cpu.expires - now);
751 	} else {
752 		/*
753 		 * The timer should have expired already, but the firing
754 		 * hasn't taken place yet.  Say it's just about to expire.
755 		 */
756 		itp->it_value.tv_nsec = 1;
757 		itp->it_value.tv_sec = 0;
758 	}
759 }
760 
761 static unsigned long long
762 check_timers_list(struct list_head *timers,
763 		  struct list_head *firing,
764 		  unsigned long long curr)
765 {
766 	int maxfire = 20;
767 
768 	while (!list_empty(timers)) {
769 		struct cpu_timer_list *t;
770 
771 		t = list_first_entry(timers, struct cpu_timer_list, entry);
772 
773 		if (!--maxfire || curr < t->expires)
774 			return t->expires;
775 
776 		t->firing = 1;
777 		list_move_tail(&t->entry, firing);
778 	}
779 
780 	return 0;
781 }
782 
783 /*
784  * Check for any per-thread CPU timers that have fired and move them off
785  * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
786  * tsk->it_*_expires values to reflect the remaining thread CPU timers.
787  */
788 static void check_thread_timers(struct task_struct *tsk,
789 				struct list_head *firing)
790 {
791 	struct list_head *timers = tsk->cpu_timers;
792 	struct signal_struct *const sig = tsk->signal;
793 	struct task_cputime *tsk_expires = &tsk->cputime_expires;
794 	u64 expires;
795 	unsigned long soft;
796 
797 	/*
798 	 * If cputime_expires is zero, then there are no active
799 	 * per thread CPU timers.
800 	 */
801 	if (task_cputime_zero(&tsk->cputime_expires))
802 		return;
803 
804 	expires = check_timers_list(timers, firing, prof_ticks(tsk));
805 	tsk_expires->prof_exp = expires;
806 
807 	expires = check_timers_list(++timers, firing, virt_ticks(tsk));
808 	tsk_expires->virt_exp = expires;
809 
810 	tsk_expires->sched_exp = check_timers_list(++timers, firing,
811 						   tsk->se.sum_exec_runtime);
812 
813 	/*
814 	 * Check for the special case thread timers.
815 	 */
816 	soft = READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
817 	if (soft != RLIM_INFINITY) {
818 		unsigned long hard =
819 			READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
820 
821 		if (hard != RLIM_INFINITY &&
822 		    tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
823 			/*
824 			 * At the hard limit, we just die.
825 			 * No need to calculate anything else now.
826 			 */
827 			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
828 			return;
829 		}
830 		if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
831 			/*
832 			 * At the soft limit, send a SIGXCPU every second.
833 			 */
834 			if (soft < hard) {
835 				soft += USEC_PER_SEC;
836 				sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
837 			}
838 			printk(KERN_INFO
839 				"RT Watchdog Timeout: %s[%d]\n",
840 				tsk->comm, task_pid_nr(tsk));
841 			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
842 		}
843 	}
844 	if (task_cputime_zero(tsk_expires))
845 		tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
846 }
847 
848 static inline void stop_process_timers(struct signal_struct *sig)
849 {
850 	struct thread_group_cputimer *cputimer = &sig->cputimer;
851 
852 	/* Turn off cputimer->running. This is done without locking. */
853 	WRITE_ONCE(cputimer->running, false);
854 	tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
855 }
856 
857 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
858 			     u64 *expires, u64 cur_time, int signo)
859 {
860 	if (!it->expires)
861 		return;
862 
863 	if (cur_time >= it->expires) {
864 		if (it->incr)
865 			it->expires += it->incr;
866 		else
867 			it->expires = 0;
868 
869 		trace_itimer_expire(signo == SIGPROF ?
870 				    ITIMER_PROF : ITIMER_VIRTUAL,
871 				    tsk->signal->leader_pid, cur_time);
872 		__group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
873 	}
874 
875 	if (it->expires && (!*expires || it->expires < *expires))
876 		*expires = it->expires;
877 }
878 
879 /*
880  * Check for any per-thread CPU timers that have fired and move them
881  * off the tsk->*_timers list onto the firing list.  Per-thread timers
882  * have already been taken off.
883  */
884 static void check_process_timers(struct task_struct *tsk,
885 				 struct list_head *firing)
886 {
887 	struct signal_struct *const sig = tsk->signal;
888 	u64 utime, ptime, virt_expires, prof_expires;
889 	u64 sum_sched_runtime, sched_expires;
890 	struct list_head *timers = sig->cpu_timers;
891 	struct task_cputime cputime;
892 	unsigned long soft;
893 
894 	/*
895 	 * If cputimer is not running, then there are no active
896 	 * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU).
897 	 */
898 	if (!READ_ONCE(tsk->signal->cputimer.running))
899 		return;
900 
901         /*
902 	 * Signify that a thread is checking for process timers.
903 	 * Write access to this field is protected by the sighand lock.
904 	 */
905 	sig->cputimer.checking_timer = true;
906 
907 	/*
908 	 * Collect the current process totals.
909 	 */
910 	thread_group_cputimer(tsk, &cputime);
911 	utime = cputime.utime;
912 	ptime = utime + cputime.stime;
913 	sum_sched_runtime = cputime.sum_exec_runtime;
914 
915 	prof_expires = check_timers_list(timers, firing, ptime);
916 	virt_expires = check_timers_list(++timers, firing, utime);
917 	sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
918 
919 	/*
920 	 * Check for the special case process timers.
921 	 */
922 	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
923 			 SIGPROF);
924 	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
925 			 SIGVTALRM);
926 	soft = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
927 	if (soft != RLIM_INFINITY) {
928 		unsigned long psecs = div_u64(ptime, NSEC_PER_SEC);
929 		unsigned long hard =
930 			READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
931 		u64 x;
932 		if (psecs >= hard) {
933 			/*
934 			 * At the hard limit, we just die.
935 			 * No need to calculate anything else now.
936 			 */
937 			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
938 			return;
939 		}
940 		if (psecs >= soft) {
941 			/*
942 			 * At the soft limit, send a SIGXCPU every second.
943 			 */
944 			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
945 			if (soft < hard) {
946 				soft++;
947 				sig->rlim[RLIMIT_CPU].rlim_cur = soft;
948 			}
949 		}
950 		x = soft * NSEC_PER_SEC;
951 		if (!prof_expires || x < prof_expires)
952 			prof_expires = x;
953 	}
954 
955 	sig->cputime_expires.prof_exp = prof_expires;
956 	sig->cputime_expires.virt_exp = virt_expires;
957 	sig->cputime_expires.sched_exp = sched_expires;
958 	if (task_cputime_zero(&sig->cputime_expires))
959 		stop_process_timers(sig);
960 
961 	sig->cputimer.checking_timer = false;
962 }
963 
964 /*
965  * This is called from the signal code (via do_schedule_next_timer)
966  * when the last timer signal was delivered and we have to reload the timer.
967  */
968 void posix_cpu_timer_schedule(struct k_itimer *timer)
969 {
970 	struct sighand_struct *sighand;
971 	unsigned long flags;
972 	struct task_struct *p = timer->it.cpu.task;
973 	u64 now;
974 
975 	WARN_ON_ONCE(p == NULL);
976 
977 	/*
978 	 * Fetch the current sample and update the timer's expiry time.
979 	 */
980 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
981 		cpu_clock_sample(timer->it_clock, p, &now);
982 		bump_cpu_timer(timer, now);
983 		if (unlikely(p->exit_state))
984 			goto out;
985 
986 		/* Protect timer list r/w in arm_timer() */
987 		sighand = lock_task_sighand(p, &flags);
988 		if (!sighand)
989 			goto out;
990 	} else {
991 		/*
992 		 * Protect arm_timer() and timer sampling in case of call to
993 		 * thread_group_cputime().
994 		 */
995 		sighand = lock_task_sighand(p, &flags);
996 		if (unlikely(sighand == NULL)) {
997 			/*
998 			 * The process has been reaped.
999 			 * We can't even collect a sample any more.
1000 			 */
1001 			timer->it.cpu.expires = 0;
1002 			goto out;
1003 		} else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1004 			unlock_task_sighand(p, &flags);
1005 			/* Optimizations: if the process is dying, no need to rearm */
1006 			goto out;
1007 		}
1008 		cpu_timer_sample_group(timer->it_clock, p, &now);
1009 		bump_cpu_timer(timer, now);
1010 		/* Leave the sighand locked for the call below.  */
1011 	}
1012 
1013 	/*
1014 	 * Now re-arm for the new expiry time.
1015 	 */
1016 	WARN_ON_ONCE(!irqs_disabled());
1017 	arm_timer(timer);
1018 	unlock_task_sighand(p, &flags);
1019 
1020 out:
1021 	timer->it_overrun_last = timer->it_overrun;
1022 	timer->it_overrun = -1;
1023 	++timer->it_requeue_pending;
1024 }
1025 
1026 /**
1027  * task_cputime_expired - Compare two task_cputime entities.
1028  *
1029  * @sample:	The task_cputime structure to be checked for expiration.
1030  * @expires:	Expiration times, against which @sample will be checked.
1031  *
1032  * Checks @sample against @expires to see if any field of @sample has expired.
1033  * Returns true if any field of the former is greater than the corresponding
1034  * field of the latter if the latter field is set.  Otherwise returns false.
1035  */
1036 static inline int task_cputime_expired(const struct task_cputime *sample,
1037 					const struct task_cputime *expires)
1038 {
1039 	if (expires->utime && sample->utime >= expires->utime)
1040 		return 1;
1041 	if (expires->stime && sample->utime + sample->stime >= expires->stime)
1042 		return 1;
1043 	if (expires->sum_exec_runtime != 0 &&
1044 	    sample->sum_exec_runtime >= expires->sum_exec_runtime)
1045 		return 1;
1046 	return 0;
1047 }
1048 
1049 /**
1050  * fastpath_timer_check - POSIX CPU timers fast path.
1051  *
1052  * @tsk:	The task (thread) being checked.
1053  *
1054  * Check the task and thread group timers.  If both are zero (there are no
1055  * timers set) return false.  Otherwise snapshot the task and thread group
1056  * timers and compare them with the corresponding expiration times.  Return
1057  * true if a timer has expired, else return false.
1058  */
1059 static inline int fastpath_timer_check(struct task_struct *tsk)
1060 {
1061 	struct signal_struct *sig;
1062 
1063 	if (!task_cputime_zero(&tsk->cputime_expires)) {
1064 		struct task_cputime task_sample;
1065 
1066 		task_cputime(tsk, &task_sample.utime, &task_sample.stime);
1067 		task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime;
1068 		if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1069 			return 1;
1070 	}
1071 
1072 	sig = tsk->signal;
1073 	/*
1074 	 * Check if thread group timers expired when the cputimer is
1075 	 * running and no other thread in the group is already checking
1076 	 * for thread group cputimers. These fields are read without the
1077 	 * sighand lock. However, this is fine because this is meant to
1078 	 * be a fastpath heuristic to determine whether we should try to
1079 	 * acquire the sighand lock to check/handle timers.
1080 	 *
1081 	 * In the worst case scenario, if 'running' or 'checking_timer' gets
1082 	 * set but the current thread doesn't see the change yet, we'll wait
1083 	 * until the next thread in the group gets a scheduler interrupt to
1084 	 * handle the timer. This isn't an issue in practice because these
1085 	 * types of delays with signals actually getting sent are expected.
1086 	 */
1087 	if (READ_ONCE(sig->cputimer.running) &&
1088 	    !READ_ONCE(sig->cputimer.checking_timer)) {
1089 		struct task_cputime group_sample;
1090 
1091 		sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic);
1092 
1093 		if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1094 			return 1;
1095 	}
1096 
1097 	return 0;
1098 }
1099 
1100 /*
1101  * This is called from the timer interrupt handler.  The irq handler has
1102  * already updated our counts.  We need to check if any timers fire now.
1103  * Interrupts are disabled.
1104  */
1105 void run_posix_cpu_timers(struct task_struct *tsk)
1106 {
1107 	LIST_HEAD(firing);
1108 	struct k_itimer *timer, *next;
1109 	unsigned long flags;
1110 
1111 	WARN_ON_ONCE(!irqs_disabled());
1112 
1113 	/*
1114 	 * The fast path checks that there are no expired thread or thread
1115 	 * group timers.  If that's so, just return.
1116 	 */
1117 	if (!fastpath_timer_check(tsk))
1118 		return;
1119 
1120 	if (!lock_task_sighand(tsk, &flags))
1121 		return;
1122 	/*
1123 	 * Here we take off tsk->signal->cpu_timers[N] and
1124 	 * tsk->cpu_timers[N] all the timers that are firing, and
1125 	 * put them on the firing list.
1126 	 */
1127 	check_thread_timers(tsk, &firing);
1128 
1129 	check_process_timers(tsk, &firing);
1130 
1131 	/*
1132 	 * We must release these locks before taking any timer's lock.
1133 	 * There is a potential race with timer deletion here, as the
1134 	 * siglock now protects our private firing list.  We have set
1135 	 * the firing flag in each timer, so that a deletion attempt
1136 	 * that gets the timer lock before we do will give it up and
1137 	 * spin until we've taken care of that timer below.
1138 	 */
1139 	unlock_task_sighand(tsk, &flags);
1140 
1141 	/*
1142 	 * Now that all the timers on our list have the firing flag,
1143 	 * no one will touch their list entries but us.  We'll take
1144 	 * each timer's lock before clearing its firing flag, so no
1145 	 * timer call will interfere.
1146 	 */
1147 	list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1148 		int cpu_firing;
1149 
1150 		spin_lock(&timer->it_lock);
1151 		list_del_init(&timer->it.cpu.entry);
1152 		cpu_firing = timer->it.cpu.firing;
1153 		timer->it.cpu.firing = 0;
1154 		/*
1155 		 * The firing flag is -1 if we collided with a reset
1156 		 * of the timer, which already reported this
1157 		 * almost-firing as an overrun.  So don't generate an event.
1158 		 */
1159 		if (likely(cpu_firing >= 0))
1160 			cpu_timer_fire(timer);
1161 		spin_unlock(&timer->it_lock);
1162 	}
1163 }
1164 
1165 /*
1166  * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1167  * The tsk->sighand->siglock must be held by the caller.
1168  */
1169 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1170 			   u64 *newval, u64 *oldval)
1171 {
1172 	u64 now;
1173 
1174 	WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
1175 	cpu_timer_sample_group(clock_idx, tsk, &now);
1176 
1177 	if (oldval) {
1178 		/*
1179 		 * We are setting itimer. The *oldval is absolute and we update
1180 		 * it to be relative, *newval argument is relative and we update
1181 		 * it to be absolute.
1182 		 */
1183 		if (*oldval) {
1184 			if (*oldval <= now) {
1185 				/* Just about to fire. */
1186 				*oldval = TICK_NSEC;
1187 			} else {
1188 				*oldval -= now;
1189 			}
1190 		}
1191 
1192 		if (!*newval)
1193 			return;
1194 		*newval += now;
1195 	}
1196 
1197 	/*
1198 	 * Update expiration cache if we are the earliest timer, or eventually
1199 	 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1200 	 */
1201 	switch (clock_idx) {
1202 	case CPUCLOCK_PROF:
1203 		if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1204 			tsk->signal->cputime_expires.prof_exp = *newval;
1205 		break;
1206 	case CPUCLOCK_VIRT:
1207 		if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1208 			tsk->signal->cputime_expires.virt_exp = *newval;
1209 		break;
1210 	}
1211 
1212 	tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER);
1213 }
1214 
1215 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1216 			    struct timespec *rqtp, struct itimerspec *it)
1217 {
1218 	struct k_itimer timer;
1219 	int error;
1220 
1221 	/*
1222 	 * Set up a temporary timer and then wait for it to go off.
1223 	 */
1224 	memset(&timer, 0, sizeof timer);
1225 	spin_lock_init(&timer.it_lock);
1226 	timer.it_clock = which_clock;
1227 	timer.it_overrun = -1;
1228 	error = posix_cpu_timer_create(&timer);
1229 	timer.it_process = current;
1230 	if (!error) {
1231 		static struct itimerspec zero_it;
1232 
1233 		memset(it, 0, sizeof *it);
1234 		it->it_value = *rqtp;
1235 
1236 		spin_lock_irq(&timer.it_lock);
1237 		error = posix_cpu_timer_set(&timer, flags, it, NULL);
1238 		if (error) {
1239 			spin_unlock_irq(&timer.it_lock);
1240 			return error;
1241 		}
1242 
1243 		while (!signal_pending(current)) {
1244 			if (timer.it.cpu.expires == 0) {
1245 				/*
1246 				 * Our timer fired and was reset, below
1247 				 * deletion can not fail.
1248 				 */
1249 				posix_cpu_timer_del(&timer);
1250 				spin_unlock_irq(&timer.it_lock);
1251 				return 0;
1252 			}
1253 
1254 			/*
1255 			 * Block until cpu_timer_fire (or a signal) wakes us.
1256 			 */
1257 			__set_current_state(TASK_INTERRUPTIBLE);
1258 			spin_unlock_irq(&timer.it_lock);
1259 			schedule();
1260 			spin_lock_irq(&timer.it_lock);
1261 		}
1262 
1263 		/*
1264 		 * We were interrupted by a signal.
1265 		 */
1266 		*rqtp = ns_to_timespec(timer.it.cpu.expires);
1267 		error = posix_cpu_timer_set(&timer, 0, &zero_it, it);
1268 		if (!error) {
1269 			/*
1270 			 * Timer is now unarmed, deletion can not fail.
1271 			 */
1272 			posix_cpu_timer_del(&timer);
1273 		}
1274 		spin_unlock_irq(&timer.it_lock);
1275 
1276 		while (error == TIMER_RETRY) {
1277 			/*
1278 			 * We need to handle case when timer was or is in the
1279 			 * middle of firing. In other cases we already freed
1280 			 * resources.
1281 			 */
1282 			spin_lock_irq(&timer.it_lock);
1283 			error = posix_cpu_timer_del(&timer);
1284 			spin_unlock_irq(&timer.it_lock);
1285 		}
1286 
1287 		if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1288 			/*
1289 			 * It actually did fire already.
1290 			 */
1291 			return 0;
1292 		}
1293 
1294 		error = -ERESTART_RESTARTBLOCK;
1295 	}
1296 
1297 	return error;
1298 }
1299 
1300 static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1301 
1302 static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1303 			    struct timespec *rqtp, struct timespec __user *rmtp)
1304 {
1305 	struct restart_block *restart_block = &current->restart_block;
1306 	struct itimerspec it;
1307 	int error;
1308 
1309 	/*
1310 	 * Diagnose required errors first.
1311 	 */
1312 	if (CPUCLOCK_PERTHREAD(which_clock) &&
1313 	    (CPUCLOCK_PID(which_clock) == 0 ||
1314 	     CPUCLOCK_PID(which_clock) == current->pid))
1315 		return -EINVAL;
1316 
1317 	error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1318 
1319 	if (error == -ERESTART_RESTARTBLOCK) {
1320 
1321 		if (flags & TIMER_ABSTIME)
1322 			return -ERESTARTNOHAND;
1323 		/*
1324 		 * Report back to the user the time still remaining.
1325 		 */
1326 		if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1327 			return -EFAULT;
1328 
1329 		restart_block->fn = posix_cpu_nsleep_restart;
1330 		restart_block->nanosleep.clockid = which_clock;
1331 		restart_block->nanosleep.rmtp = rmtp;
1332 		restart_block->nanosleep.expires = timespec_to_ns(rqtp);
1333 	}
1334 	return error;
1335 }
1336 
1337 static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1338 {
1339 	clockid_t which_clock = restart_block->nanosleep.clockid;
1340 	struct timespec t;
1341 	struct itimerspec it;
1342 	int error;
1343 
1344 	t = ns_to_timespec(restart_block->nanosleep.expires);
1345 
1346 	error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1347 
1348 	if (error == -ERESTART_RESTARTBLOCK) {
1349 		struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
1350 		/*
1351 		 * Report back to the user the time still remaining.
1352 		 */
1353 		if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1354 			return -EFAULT;
1355 
1356 		restart_block->nanosleep.expires = timespec_to_ns(&t);
1357 	}
1358 	return error;
1359 
1360 }
1361 
1362 #define PROCESS_CLOCK	MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1363 #define THREAD_CLOCK	MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1364 
1365 static int process_cpu_clock_getres(const clockid_t which_clock,
1366 				    struct timespec *tp)
1367 {
1368 	return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1369 }
1370 static int process_cpu_clock_get(const clockid_t which_clock,
1371 				 struct timespec *tp)
1372 {
1373 	return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1374 }
1375 static int process_cpu_timer_create(struct k_itimer *timer)
1376 {
1377 	timer->it_clock = PROCESS_CLOCK;
1378 	return posix_cpu_timer_create(timer);
1379 }
1380 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1381 			      struct timespec *rqtp,
1382 			      struct timespec __user *rmtp)
1383 {
1384 	return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1385 }
1386 static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1387 {
1388 	return -EINVAL;
1389 }
1390 static int thread_cpu_clock_getres(const clockid_t which_clock,
1391 				   struct timespec *tp)
1392 {
1393 	return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1394 }
1395 static int thread_cpu_clock_get(const clockid_t which_clock,
1396 				struct timespec *tp)
1397 {
1398 	return posix_cpu_clock_get(THREAD_CLOCK, tp);
1399 }
1400 static int thread_cpu_timer_create(struct k_itimer *timer)
1401 {
1402 	timer->it_clock = THREAD_CLOCK;
1403 	return posix_cpu_timer_create(timer);
1404 }
1405 
1406 struct k_clock clock_posix_cpu = {
1407 	.clock_getres	= posix_cpu_clock_getres,
1408 	.clock_set	= posix_cpu_clock_set,
1409 	.clock_get	= posix_cpu_clock_get,
1410 	.timer_create	= posix_cpu_timer_create,
1411 	.nsleep		= posix_cpu_nsleep,
1412 	.nsleep_restart	= posix_cpu_nsleep_restart,
1413 	.timer_set	= posix_cpu_timer_set,
1414 	.timer_del	= posix_cpu_timer_del,
1415 	.timer_get	= posix_cpu_timer_get,
1416 };
1417 
1418 static __init int init_posix_cpu_timers(void)
1419 {
1420 	struct k_clock process = {
1421 		.clock_getres	= process_cpu_clock_getres,
1422 		.clock_get	= process_cpu_clock_get,
1423 		.timer_create	= process_cpu_timer_create,
1424 		.nsleep		= process_cpu_nsleep,
1425 		.nsleep_restart	= process_cpu_nsleep_restart,
1426 	};
1427 	struct k_clock thread = {
1428 		.clock_getres	= thread_cpu_clock_getres,
1429 		.clock_get	= thread_cpu_clock_get,
1430 		.timer_create	= thread_cpu_timer_create,
1431 	};
1432 
1433 	posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1434 	posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1435 
1436 	return 0;
1437 }
1438 __initcall(init_posix_cpu_timers);
1439