1 /*
2  * Implement CPU time clocks for the POSIX clock interface.
3  */
4 
5 #include <linux/sched/signal.h>
6 #include <linux/sched/cputime.h>
7 #include <linux/posix-timers.h>
8 #include <linux/errno.h>
9 #include <linux/math64.h>
10 #include <linux/uaccess.h>
11 #include <linux/kernel_stat.h>
12 #include <trace/events/timer.h>
13 #include <linux/tick.h>
14 #include <linux/workqueue.h>
15 #include <linux/compat.h>
16 
17 #include "posix-timers.h"
18 
19 static void posix_cpu_timer_rearm(struct k_itimer *timer);
20 
21 /*
22  * Called after updating RLIMIT_CPU to run cpu timer and update
23  * tsk->signal->cputime_expires expiration cache if necessary. Needs
24  * siglock protection since other code may update expiration cache as
25  * well.
26  */
27 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
28 {
29 	u64 nsecs = rlim_new * NSEC_PER_SEC;
30 
31 	spin_lock_irq(&task->sighand->siglock);
32 	set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
33 	spin_unlock_irq(&task->sighand->siglock);
34 }
35 
36 static int check_clock(const clockid_t which_clock)
37 {
38 	int error = 0;
39 	struct task_struct *p;
40 	const pid_t pid = CPUCLOCK_PID(which_clock);
41 
42 	if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
43 		return -EINVAL;
44 
45 	if (pid == 0)
46 		return 0;
47 
48 	rcu_read_lock();
49 	p = find_task_by_vpid(pid);
50 	if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
51 		   same_thread_group(p, current) : has_group_leader_pid(p))) {
52 		error = -EINVAL;
53 	}
54 	rcu_read_unlock();
55 
56 	return error;
57 }
58 
59 /*
60  * Update expiry time from increment, and increase overrun count,
61  * given the current clock sample.
62  */
63 static void bump_cpu_timer(struct k_itimer *timer, u64 now)
64 {
65 	int i;
66 	u64 delta, incr;
67 
68 	if (timer->it.cpu.incr == 0)
69 		return;
70 
71 	if (now < timer->it.cpu.expires)
72 		return;
73 
74 	incr = timer->it.cpu.incr;
75 	delta = now + incr - timer->it.cpu.expires;
76 
77 	/* Don't use (incr*2 < delta), incr*2 might overflow. */
78 	for (i = 0; incr < delta - incr; i++)
79 		incr = incr << 1;
80 
81 	for (; i >= 0; incr >>= 1, i--) {
82 		if (delta < incr)
83 			continue;
84 
85 		timer->it.cpu.expires += incr;
86 		timer->it_overrun += 1 << i;
87 		delta -= incr;
88 	}
89 }
90 
91 /**
92  * task_cputime_zero - Check a task_cputime struct for all zero fields.
93  *
94  * @cputime:	The struct to compare.
95  *
96  * Checks @cputime to see if all fields are zero.  Returns true if all fields
97  * are zero, false if any field is nonzero.
98  */
99 static inline int task_cputime_zero(const struct task_cputime *cputime)
100 {
101 	if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
102 		return 1;
103 	return 0;
104 }
105 
106 static inline u64 prof_ticks(struct task_struct *p)
107 {
108 	u64 utime, stime;
109 
110 	task_cputime(p, &utime, &stime);
111 
112 	return utime + stime;
113 }
114 static inline u64 virt_ticks(struct task_struct *p)
115 {
116 	u64 utime, stime;
117 
118 	task_cputime(p, &utime, &stime);
119 
120 	return utime;
121 }
122 
123 static int
124 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
125 {
126 	int error = check_clock(which_clock);
127 	if (!error) {
128 		tp->tv_sec = 0;
129 		tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
130 		if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
131 			/*
132 			 * If sched_clock is using a cycle counter, we
133 			 * don't have any idea of its true resolution
134 			 * exported, but it is much more than 1s/HZ.
135 			 */
136 			tp->tv_nsec = 1;
137 		}
138 	}
139 	return error;
140 }
141 
142 static int
143 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec64 *tp)
144 {
145 	/*
146 	 * You can never reset a CPU clock, but we check for other errors
147 	 * in the call before failing with EPERM.
148 	 */
149 	int error = check_clock(which_clock);
150 	if (error == 0) {
151 		error = -EPERM;
152 	}
153 	return error;
154 }
155 
156 
157 /*
158  * Sample a per-thread clock for the given task.
159  */
160 static int cpu_clock_sample(const clockid_t which_clock,
161 			    struct task_struct *p, u64 *sample)
162 {
163 	switch (CPUCLOCK_WHICH(which_clock)) {
164 	default:
165 		return -EINVAL;
166 	case CPUCLOCK_PROF:
167 		*sample = prof_ticks(p);
168 		break;
169 	case CPUCLOCK_VIRT:
170 		*sample = virt_ticks(p);
171 		break;
172 	case CPUCLOCK_SCHED:
173 		*sample = task_sched_runtime(p);
174 		break;
175 	}
176 	return 0;
177 }
178 
179 /*
180  * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
181  * to avoid race conditions with concurrent updates to cputime.
182  */
183 static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
184 {
185 	u64 curr_cputime;
186 retry:
187 	curr_cputime = atomic64_read(cputime);
188 	if (sum_cputime > curr_cputime) {
189 		if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
190 			goto retry;
191 	}
192 }
193 
194 static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum)
195 {
196 	__update_gt_cputime(&cputime_atomic->utime, sum->utime);
197 	__update_gt_cputime(&cputime_atomic->stime, sum->stime);
198 	__update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
199 }
200 
201 /* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
202 static inline void sample_cputime_atomic(struct task_cputime *times,
203 					 struct task_cputime_atomic *atomic_times)
204 {
205 	times->utime = atomic64_read(&atomic_times->utime);
206 	times->stime = atomic64_read(&atomic_times->stime);
207 	times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime);
208 }
209 
210 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
211 {
212 	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
213 	struct task_cputime sum;
214 
215 	/* Check if cputimer isn't running. This is accessed without locking. */
216 	if (!READ_ONCE(cputimer->running)) {
217 		/*
218 		 * The POSIX timer interface allows for absolute time expiry
219 		 * values through the TIMER_ABSTIME flag, therefore we have
220 		 * to synchronize the timer to the clock every time we start it.
221 		 */
222 		thread_group_cputime(tsk, &sum);
223 		update_gt_cputime(&cputimer->cputime_atomic, &sum);
224 
225 		/*
226 		 * We're setting cputimer->running without a lock. Ensure
227 		 * this only gets written to in one operation. We set
228 		 * running after update_gt_cputime() as a small optimization,
229 		 * but barriers are not required because update_gt_cputime()
230 		 * can handle concurrent updates.
231 		 */
232 		WRITE_ONCE(cputimer->running, true);
233 	}
234 	sample_cputime_atomic(times, &cputimer->cputime_atomic);
235 }
236 
237 /*
238  * Sample a process (thread group) clock for the given group_leader task.
239  * Must be called with task sighand lock held for safe while_each_thread()
240  * traversal.
241  */
242 static int cpu_clock_sample_group(const clockid_t which_clock,
243 				  struct task_struct *p,
244 				  u64 *sample)
245 {
246 	struct task_cputime cputime;
247 
248 	switch (CPUCLOCK_WHICH(which_clock)) {
249 	default:
250 		return -EINVAL;
251 	case CPUCLOCK_PROF:
252 		thread_group_cputime(p, &cputime);
253 		*sample = cputime.utime + cputime.stime;
254 		break;
255 	case CPUCLOCK_VIRT:
256 		thread_group_cputime(p, &cputime);
257 		*sample = cputime.utime;
258 		break;
259 	case CPUCLOCK_SCHED:
260 		thread_group_cputime(p, &cputime);
261 		*sample = cputime.sum_exec_runtime;
262 		break;
263 	}
264 	return 0;
265 }
266 
267 static int posix_cpu_clock_get_task(struct task_struct *tsk,
268 				    const clockid_t which_clock,
269 				    struct timespec64 *tp)
270 {
271 	int err = -EINVAL;
272 	u64 rtn;
273 
274 	if (CPUCLOCK_PERTHREAD(which_clock)) {
275 		if (same_thread_group(tsk, current))
276 			err = cpu_clock_sample(which_clock, tsk, &rtn);
277 	} else {
278 		if (tsk == current || thread_group_leader(tsk))
279 			err = cpu_clock_sample_group(which_clock, tsk, &rtn);
280 	}
281 
282 	if (!err)
283 		*tp = ns_to_timespec64(rtn);
284 
285 	return err;
286 }
287 
288 
289 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec64 *tp)
290 {
291 	const pid_t pid = CPUCLOCK_PID(which_clock);
292 	int err = -EINVAL;
293 
294 	if (pid == 0) {
295 		/*
296 		 * Special case constant value for our own clocks.
297 		 * We don't have to do any lookup to find ourselves.
298 		 */
299 		err = posix_cpu_clock_get_task(current, which_clock, tp);
300 	} else {
301 		/*
302 		 * Find the given PID, and validate that the caller
303 		 * should be able to see it.
304 		 */
305 		struct task_struct *p;
306 		rcu_read_lock();
307 		p = find_task_by_vpid(pid);
308 		if (p)
309 			err = posix_cpu_clock_get_task(p, which_clock, tp);
310 		rcu_read_unlock();
311 	}
312 
313 	return err;
314 }
315 
316 /*
317  * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
318  * This is called from sys_timer_create() and do_cpu_nanosleep() with the
319  * new timer already all-zeros initialized.
320  */
321 static int posix_cpu_timer_create(struct k_itimer *new_timer)
322 {
323 	int ret = 0;
324 	const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
325 	struct task_struct *p;
326 
327 	if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
328 		return -EINVAL;
329 
330 	new_timer->kclock = &clock_posix_cpu;
331 
332 	INIT_LIST_HEAD(&new_timer->it.cpu.entry);
333 
334 	rcu_read_lock();
335 	if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
336 		if (pid == 0) {
337 			p = current;
338 		} else {
339 			p = find_task_by_vpid(pid);
340 			if (p && !same_thread_group(p, current))
341 				p = NULL;
342 		}
343 	} else {
344 		if (pid == 0) {
345 			p = current->group_leader;
346 		} else {
347 			p = find_task_by_vpid(pid);
348 			if (p && !has_group_leader_pid(p))
349 				p = NULL;
350 		}
351 	}
352 	new_timer->it.cpu.task = p;
353 	if (p) {
354 		get_task_struct(p);
355 	} else {
356 		ret = -EINVAL;
357 	}
358 	rcu_read_unlock();
359 
360 	return ret;
361 }
362 
363 /*
364  * Clean up a CPU-clock timer that is about to be destroyed.
365  * This is called from timer deletion with the timer already locked.
366  * If we return TIMER_RETRY, it's necessary to release the timer's lock
367  * and try again.  (This happens when the timer is in the middle of firing.)
368  */
369 static int posix_cpu_timer_del(struct k_itimer *timer)
370 {
371 	int ret = 0;
372 	unsigned long flags;
373 	struct sighand_struct *sighand;
374 	struct task_struct *p = timer->it.cpu.task;
375 
376 	WARN_ON_ONCE(p == NULL);
377 
378 	/*
379 	 * Protect against sighand release/switch in exit/exec and process/
380 	 * thread timer list entry concurrent read/writes.
381 	 */
382 	sighand = lock_task_sighand(p, &flags);
383 	if (unlikely(sighand == NULL)) {
384 		/*
385 		 * We raced with the reaping of the task.
386 		 * The deletion should have cleared us off the list.
387 		 */
388 		WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
389 	} else {
390 		if (timer->it.cpu.firing)
391 			ret = TIMER_RETRY;
392 		else
393 			list_del(&timer->it.cpu.entry);
394 
395 		unlock_task_sighand(p, &flags);
396 	}
397 
398 	if (!ret)
399 		put_task_struct(p);
400 
401 	return ret;
402 }
403 
404 static void cleanup_timers_list(struct list_head *head)
405 {
406 	struct cpu_timer_list *timer, *next;
407 
408 	list_for_each_entry_safe(timer, next, head, entry)
409 		list_del_init(&timer->entry);
410 }
411 
412 /*
413  * Clean out CPU timers still ticking when a thread exited.  The task
414  * pointer is cleared, and the expiry time is replaced with the residual
415  * time for later timer_gettime calls to return.
416  * This must be called with the siglock held.
417  */
418 static void cleanup_timers(struct list_head *head)
419 {
420 	cleanup_timers_list(head);
421 	cleanup_timers_list(++head);
422 	cleanup_timers_list(++head);
423 }
424 
425 /*
426  * These are both called with the siglock held, when the current thread
427  * is being reaped.  When the final (leader) thread in the group is reaped,
428  * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
429  */
430 void posix_cpu_timers_exit(struct task_struct *tsk)
431 {
432 	cleanup_timers(tsk->cpu_timers);
433 }
434 void posix_cpu_timers_exit_group(struct task_struct *tsk)
435 {
436 	cleanup_timers(tsk->signal->cpu_timers);
437 }
438 
439 static inline int expires_gt(u64 expires, u64 new_exp)
440 {
441 	return expires == 0 || expires > new_exp;
442 }
443 
444 /*
445  * Insert the timer on the appropriate list before any timers that
446  * expire later.  This must be called with the sighand lock held.
447  */
448 static void arm_timer(struct k_itimer *timer)
449 {
450 	struct task_struct *p = timer->it.cpu.task;
451 	struct list_head *head, *listpos;
452 	struct task_cputime *cputime_expires;
453 	struct cpu_timer_list *const nt = &timer->it.cpu;
454 	struct cpu_timer_list *next;
455 
456 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
457 		head = p->cpu_timers;
458 		cputime_expires = &p->cputime_expires;
459 	} else {
460 		head = p->signal->cpu_timers;
461 		cputime_expires = &p->signal->cputime_expires;
462 	}
463 	head += CPUCLOCK_WHICH(timer->it_clock);
464 
465 	listpos = head;
466 	list_for_each_entry(next, head, entry) {
467 		if (nt->expires < next->expires)
468 			break;
469 		listpos = &next->entry;
470 	}
471 	list_add(&nt->entry, listpos);
472 
473 	if (listpos == head) {
474 		u64 exp = nt->expires;
475 
476 		/*
477 		 * We are the new earliest-expiring POSIX 1.b timer, hence
478 		 * need to update expiration cache. Take into account that
479 		 * for process timers we share expiration cache with itimers
480 		 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
481 		 */
482 
483 		switch (CPUCLOCK_WHICH(timer->it_clock)) {
484 		case CPUCLOCK_PROF:
485 			if (expires_gt(cputime_expires->prof_exp, exp))
486 				cputime_expires->prof_exp = exp;
487 			break;
488 		case CPUCLOCK_VIRT:
489 			if (expires_gt(cputime_expires->virt_exp, exp))
490 				cputime_expires->virt_exp = exp;
491 			break;
492 		case CPUCLOCK_SCHED:
493 			if (expires_gt(cputime_expires->sched_exp, exp))
494 				cputime_expires->sched_exp = exp;
495 			break;
496 		}
497 		if (CPUCLOCK_PERTHREAD(timer->it_clock))
498 			tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
499 		else
500 			tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
501 	}
502 }
503 
504 /*
505  * The timer is locked, fire it and arrange for its reload.
506  */
507 static void cpu_timer_fire(struct k_itimer *timer)
508 {
509 	if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
510 		/*
511 		 * User don't want any signal.
512 		 */
513 		timer->it.cpu.expires = 0;
514 	} else if (unlikely(timer->sigq == NULL)) {
515 		/*
516 		 * This a special case for clock_nanosleep,
517 		 * not a normal timer from sys_timer_create.
518 		 */
519 		wake_up_process(timer->it_process);
520 		timer->it.cpu.expires = 0;
521 	} else if (timer->it.cpu.incr == 0) {
522 		/*
523 		 * One-shot timer.  Clear it as soon as it's fired.
524 		 */
525 		posix_timer_event(timer, 0);
526 		timer->it.cpu.expires = 0;
527 	} else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
528 		/*
529 		 * The signal did not get queued because the signal
530 		 * was ignored, so we won't get any callback to
531 		 * reload the timer.  But we need to keep it
532 		 * ticking in case the signal is deliverable next time.
533 		 */
534 		posix_cpu_timer_rearm(timer);
535 		++timer->it_requeue_pending;
536 	}
537 }
538 
539 /*
540  * Sample a process (thread group) timer for the given group_leader task.
541  * Must be called with task sighand lock held for safe while_each_thread()
542  * traversal.
543  */
544 static int cpu_timer_sample_group(const clockid_t which_clock,
545 				  struct task_struct *p, u64 *sample)
546 {
547 	struct task_cputime cputime;
548 
549 	thread_group_cputimer(p, &cputime);
550 	switch (CPUCLOCK_WHICH(which_clock)) {
551 	default:
552 		return -EINVAL;
553 	case CPUCLOCK_PROF:
554 		*sample = cputime.utime + cputime.stime;
555 		break;
556 	case CPUCLOCK_VIRT:
557 		*sample = cputime.utime;
558 		break;
559 	case CPUCLOCK_SCHED:
560 		*sample = cputime.sum_exec_runtime;
561 		break;
562 	}
563 	return 0;
564 }
565 
566 /*
567  * Guts of sys_timer_settime for CPU timers.
568  * This is called with the timer locked and interrupts disabled.
569  * If we return TIMER_RETRY, it's necessary to release the timer's lock
570  * and try again.  (This happens when the timer is in the middle of firing.)
571  */
572 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
573 			       struct itimerspec64 *new, struct itimerspec64 *old)
574 {
575 	unsigned long flags;
576 	struct sighand_struct *sighand;
577 	struct task_struct *p = timer->it.cpu.task;
578 	u64 old_expires, new_expires, old_incr, val;
579 	int ret;
580 
581 	WARN_ON_ONCE(p == NULL);
582 
583 	/*
584 	 * Use the to_ktime conversion because that clamps the maximum
585 	 * value to KTIME_MAX and avoid multiplication overflows.
586 	 */
587 	new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value));
588 
589 	/*
590 	 * Protect against sighand release/switch in exit/exec and p->cpu_timers
591 	 * and p->signal->cpu_timers read/write in arm_timer()
592 	 */
593 	sighand = lock_task_sighand(p, &flags);
594 	/*
595 	 * If p has just been reaped, we can no
596 	 * longer get any information about it at all.
597 	 */
598 	if (unlikely(sighand == NULL)) {
599 		return -ESRCH;
600 	}
601 
602 	/*
603 	 * Disarm any old timer after extracting its expiry time.
604 	 */
605 	WARN_ON_ONCE(!irqs_disabled());
606 
607 	ret = 0;
608 	old_incr = timer->it.cpu.incr;
609 	old_expires = timer->it.cpu.expires;
610 	if (unlikely(timer->it.cpu.firing)) {
611 		timer->it.cpu.firing = -1;
612 		ret = TIMER_RETRY;
613 	} else
614 		list_del_init(&timer->it.cpu.entry);
615 
616 	/*
617 	 * We need to sample the current value to convert the new
618 	 * value from to relative and absolute, and to convert the
619 	 * old value from absolute to relative.  To set a process
620 	 * timer, we need a sample to balance the thread expiry
621 	 * times (in arm_timer).  With an absolute time, we must
622 	 * check if it's already passed.  In short, we need a sample.
623 	 */
624 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
625 		cpu_clock_sample(timer->it_clock, p, &val);
626 	} else {
627 		cpu_timer_sample_group(timer->it_clock, p, &val);
628 	}
629 
630 	if (old) {
631 		if (old_expires == 0) {
632 			old->it_value.tv_sec = 0;
633 			old->it_value.tv_nsec = 0;
634 		} else {
635 			/*
636 			 * Update the timer in case it has
637 			 * overrun already.  If it has,
638 			 * we'll report it as having overrun
639 			 * and with the next reloaded timer
640 			 * already ticking, though we are
641 			 * swallowing that pending
642 			 * notification here to install the
643 			 * new setting.
644 			 */
645 			bump_cpu_timer(timer, val);
646 			if (val < timer->it.cpu.expires) {
647 				old_expires = timer->it.cpu.expires - val;
648 				old->it_value = ns_to_timespec64(old_expires);
649 			} else {
650 				old->it_value.tv_nsec = 1;
651 				old->it_value.tv_sec = 0;
652 			}
653 		}
654 	}
655 
656 	if (unlikely(ret)) {
657 		/*
658 		 * We are colliding with the timer actually firing.
659 		 * Punt after filling in the timer's old value, and
660 		 * disable this firing since we are already reporting
661 		 * it as an overrun (thanks to bump_cpu_timer above).
662 		 */
663 		unlock_task_sighand(p, &flags);
664 		goto out;
665 	}
666 
667 	if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
668 		new_expires += val;
669 	}
670 
671 	/*
672 	 * Install the new expiry time (or zero).
673 	 * For a timer with no notification action, we don't actually
674 	 * arm the timer (we'll just fake it for timer_gettime).
675 	 */
676 	timer->it.cpu.expires = new_expires;
677 	if (new_expires != 0 && val < new_expires) {
678 		arm_timer(timer);
679 	}
680 
681 	unlock_task_sighand(p, &flags);
682 	/*
683 	 * Install the new reload setting, and
684 	 * set up the signal and overrun bookkeeping.
685 	 */
686 	timer->it.cpu.incr = timespec64_to_ns(&new->it_interval);
687 
688 	/*
689 	 * This acts as a modification timestamp for the timer,
690 	 * so any automatic reload attempt will punt on seeing
691 	 * that we have reset the timer manually.
692 	 */
693 	timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
694 		~REQUEUE_PENDING;
695 	timer->it_overrun_last = 0;
696 	timer->it_overrun = -1;
697 
698 	if (new_expires != 0 && !(val < new_expires)) {
699 		/*
700 		 * The designated time already passed, so we notify
701 		 * immediately, even if the thread never runs to
702 		 * accumulate more time on this clock.
703 		 */
704 		cpu_timer_fire(timer);
705 	}
706 
707 	ret = 0;
708  out:
709 	if (old)
710 		old->it_interval = ns_to_timespec64(old_incr);
711 
712 	return ret;
713 }
714 
715 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
716 {
717 	u64 now;
718 	struct task_struct *p = timer->it.cpu.task;
719 
720 	WARN_ON_ONCE(p == NULL);
721 
722 	/*
723 	 * Easy part: convert the reload time.
724 	 */
725 	itp->it_interval = ns_to_timespec64(timer->it.cpu.incr);
726 
727 	if (!timer->it.cpu.expires)
728 		return;
729 
730 	/*
731 	 * Sample the clock to take the difference with the expiry time.
732 	 */
733 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
734 		cpu_clock_sample(timer->it_clock, p, &now);
735 	} else {
736 		struct sighand_struct *sighand;
737 		unsigned long flags;
738 
739 		/*
740 		 * Protect against sighand release/switch in exit/exec and
741 		 * also make timer sampling safe if it ends up calling
742 		 * thread_group_cputime().
743 		 */
744 		sighand = lock_task_sighand(p, &flags);
745 		if (unlikely(sighand == NULL)) {
746 			/*
747 			 * The process has been reaped.
748 			 * We can't even collect a sample any more.
749 			 * Call the timer disarmed, nothing else to do.
750 			 */
751 			timer->it.cpu.expires = 0;
752 			return;
753 		} else {
754 			cpu_timer_sample_group(timer->it_clock, p, &now);
755 			unlock_task_sighand(p, &flags);
756 		}
757 	}
758 
759 	if (now < timer->it.cpu.expires) {
760 		itp->it_value = ns_to_timespec64(timer->it.cpu.expires - now);
761 	} else {
762 		/*
763 		 * The timer should have expired already, but the firing
764 		 * hasn't taken place yet.  Say it's just about to expire.
765 		 */
766 		itp->it_value.tv_nsec = 1;
767 		itp->it_value.tv_sec = 0;
768 	}
769 }
770 
771 static unsigned long long
772 check_timers_list(struct list_head *timers,
773 		  struct list_head *firing,
774 		  unsigned long long curr)
775 {
776 	int maxfire = 20;
777 
778 	while (!list_empty(timers)) {
779 		struct cpu_timer_list *t;
780 
781 		t = list_first_entry(timers, struct cpu_timer_list, entry);
782 
783 		if (!--maxfire || curr < t->expires)
784 			return t->expires;
785 
786 		t->firing = 1;
787 		list_move_tail(&t->entry, firing);
788 	}
789 
790 	return 0;
791 }
792 
793 /*
794  * Check for any per-thread CPU timers that have fired and move them off
795  * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
796  * tsk->it_*_expires values to reflect the remaining thread CPU timers.
797  */
798 static void check_thread_timers(struct task_struct *tsk,
799 				struct list_head *firing)
800 {
801 	struct list_head *timers = tsk->cpu_timers;
802 	struct signal_struct *const sig = tsk->signal;
803 	struct task_cputime *tsk_expires = &tsk->cputime_expires;
804 	u64 expires;
805 	unsigned long soft;
806 
807 	/*
808 	 * If cputime_expires is zero, then there are no active
809 	 * per thread CPU timers.
810 	 */
811 	if (task_cputime_zero(&tsk->cputime_expires))
812 		return;
813 
814 	expires = check_timers_list(timers, firing, prof_ticks(tsk));
815 	tsk_expires->prof_exp = expires;
816 
817 	expires = check_timers_list(++timers, firing, virt_ticks(tsk));
818 	tsk_expires->virt_exp = expires;
819 
820 	tsk_expires->sched_exp = check_timers_list(++timers, firing,
821 						   tsk->se.sum_exec_runtime);
822 
823 	/*
824 	 * Check for the special case thread timers.
825 	 */
826 	soft = READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
827 	if (soft != RLIM_INFINITY) {
828 		unsigned long hard =
829 			READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
830 
831 		if (hard != RLIM_INFINITY &&
832 		    tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
833 			/*
834 			 * At the hard limit, we just die.
835 			 * No need to calculate anything else now.
836 			 */
837 			if (print_fatal_signals) {
838 				pr_info("CPU Watchdog Timeout (hard): %s[%d]\n",
839 					tsk->comm, task_pid_nr(tsk));
840 			}
841 			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
842 			return;
843 		}
844 		if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
845 			/*
846 			 * At the soft limit, send a SIGXCPU every second.
847 			 */
848 			if (soft < hard) {
849 				soft += USEC_PER_SEC;
850 				sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
851 			}
852 			if (print_fatal_signals) {
853 				pr_info("RT Watchdog Timeout (soft): %s[%d]\n",
854 					tsk->comm, task_pid_nr(tsk));
855 			}
856 			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
857 		}
858 	}
859 	if (task_cputime_zero(tsk_expires))
860 		tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
861 }
862 
863 static inline void stop_process_timers(struct signal_struct *sig)
864 {
865 	struct thread_group_cputimer *cputimer = &sig->cputimer;
866 
867 	/* Turn off cputimer->running. This is done without locking. */
868 	WRITE_ONCE(cputimer->running, false);
869 	tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
870 }
871 
872 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
873 			     u64 *expires, u64 cur_time, int signo)
874 {
875 	if (!it->expires)
876 		return;
877 
878 	if (cur_time >= it->expires) {
879 		if (it->incr)
880 			it->expires += it->incr;
881 		else
882 			it->expires = 0;
883 
884 		trace_itimer_expire(signo == SIGPROF ?
885 				    ITIMER_PROF : ITIMER_VIRTUAL,
886 				    tsk->signal->leader_pid, cur_time);
887 		__group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
888 	}
889 
890 	if (it->expires && (!*expires || it->expires < *expires))
891 		*expires = it->expires;
892 }
893 
894 /*
895  * Check for any per-thread CPU timers that have fired and move them
896  * off the tsk->*_timers list onto the firing list.  Per-thread timers
897  * have already been taken off.
898  */
899 static void check_process_timers(struct task_struct *tsk,
900 				 struct list_head *firing)
901 {
902 	struct signal_struct *const sig = tsk->signal;
903 	u64 utime, ptime, virt_expires, prof_expires;
904 	u64 sum_sched_runtime, sched_expires;
905 	struct list_head *timers = sig->cpu_timers;
906 	struct task_cputime cputime;
907 	unsigned long soft;
908 
909 	/*
910 	 * If cputimer is not running, then there are no active
911 	 * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU).
912 	 */
913 	if (!READ_ONCE(tsk->signal->cputimer.running))
914 		return;
915 
916         /*
917 	 * Signify that a thread is checking for process timers.
918 	 * Write access to this field is protected by the sighand lock.
919 	 */
920 	sig->cputimer.checking_timer = true;
921 
922 	/*
923 	 * Collect the current process totals.
924 	 */
925 	thread_group_cputimer(tsk, &cputime);
926 	utime = cputime.utime;
927 	ptime = utime + cputime.stime;
928 	sum_sched_runtime = cputime.sum_exec_runtime;
929 
930 	prof_expires = check_timers_list(timers, firing, ptime);
931 	virt_expires = check_timers_list(++timers, firing, utime);
932 	sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
933 
934 	/*
935 	 * Check for the special case process timers.
936 	 */
937 	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
938 			 SIGPROF);
939 	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
940 			 SIGVTALRM);
941 	soft = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
942 	if (soft != RLIM_INFINITY) {
943 		unsigned long psecs = div_u64(ptime, NSEC_PER_SEC);
944 		unsigned long hard =
945 			READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
946 		u64 x;
947 		if (psecs >= hard) {
948 			/*
949 			 * At the hard limit, we just die.
950 			 * No need to calculate anything else now.
951 			 */
952 			if (print_fatal_signals) {
953 				pr_info("RT Watchdog Timeout (hard): %s[%d]\n",
954 					tsk->comm, task_pid_nr(tsk));
955 			}
956 			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
957 			return;
958 		}
959 		if (psecs >= soft) {
960 			/*
961 			 * At the soft limit, send a SIGXCPU every second.
962 			 */
963 			if (print_fatal_signals) {
964 				pr_info("CPU Watchdog Timeout (soft): %s[%d]\n",
965 					tsk->comm, task_pid_nr(tsk));
966 			}
967 			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
968 			if (soft < hard) {
969 				soft++;
970 				sig->rlim[RLIMIT_CPU].rlim_cur = soft;
971 			}
972 		}
973 		x = soft * NSEC_PER_SEC;
974 		if (!prof_expires || x < prof_expires)
975 			prof_expires = x;
976 	}
977 
978 	sig->cputime_expires.prof_exp = prof_expires;
979 	sig->cputime_expires.virt_exp = virt_expires;
980 	sig->cputime_expires.sched_exp = sched_expires;
981 	if (task_cputime_zero(&sig->cputime_expires))
982 		stop_process_timers(sig);
983 
984 	sig->cputimer.checking_timer = false;
985 }
986 
987 /*
988  * This is called from the signal code (via posixtimer_rearm)
989  * when the last timer signal was delivered and we have to reload the timer.
990  */
991 static void posix_cpu_timer_rearm(struct k_itimer *timer)
992 {
993 	struct sighand_struct *sighand;
994 	unsigned long flags;
995 	struct task_struct *p = timer->it.cpu.task;
996 	u64 now;
997 
998 	WARN_ON_ONCE(p == NULL);
999 
1000 	/*
1001 	 * Fetch the current sample and update the timer's expiry time.
1002 	 */
1003 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1004 		cpu_clock_sample(timer->it_clock, p, &now);
1005 		bump_cpu_timer(timer, now);
1006 		if (unlikely(p->exit_state))
1007 			return;
1008 
1009 		/* Protect timer list r/w in arm_timer() */
1010 		sighand = lock_task_sighand(p, &flags);
1011 		if (!sighand)
1012 			return;
1013 	} else {
1014 		/*
1015 		 * Protect arm_timer() and timer sampling in case of call to
1016 		 * thread_group_cputime().
1017 		 */
1018 		sighand = lock_task_sighand(p, &flags);
1019 		if (unlikely(sighand == NULL)) {
1020 			/*
1021 			 * The process has been reaped.
1022 			 * We can't even collect a sample any more.
1023 			 */
1024 			timer->it.cpu.expires = 0;
1025 			return;
1026 		} else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1027 			/* If the process is dying, no need to rearm */
1028 			goto unlock;
1029 		}
1030 		cpu_timer_sample_group(timer->it_clock, p, &now);
1031 		bump_cpu_timer(timer, now);
1032 		/* Leave the sighand locked for the call below.  */
1033 	}
1034 
1035 	/*
1036 	 * Now re-arm for the new expiry time.
1037 	 */
1038 	WARN_ON_ONCE(!irqs_disabled());
1039 	arm_timer(timer);
1040 unlock:
1041 	unlock_task_sighand(p, &flags);
1042 }
1043 
1044 /**
1045  * task_cputime_expired - Compare two task_cputime entities.
1046  *
1047  * @sample:	The task_cputime structure to be checked for expiration.
1048  * @expires:	Expiration times, against which @sample will be checked.
1049  *
1050  * Checks @sample against @expires to see if any field of @sample has expired.
1051  * Returns true if any field of the former is greater than the corresponding
1052  * field of the latter if the latter field is set.  Otherwise returns false.
1053  */
1054 static inline int task_cputime_expired(const struct task_cputime *sample,
1055 					const struct task_cputime *expires)
1056 {
1057 	if (expires->utime && sample->utime >= expires->utime)
1058 		return 1;
1059 	if (expires->stime && sample->utime + sample->stime >= expires->stime)
1060 		return 1;
1061 	if (expires->sum_exec_runtime != 0 &&
1062 	    sample->sum_exec_runtime >= expires->sum_exec_runtime)
1063 		return 1;
1064 	return 0;
1065 }
1066 
1067 /**
1068  * fastpath_timer_check - POSIX CPU timers fast path.
1069  *
1070  * @tsk:	The task (thread) being checked.
1071  *
1072  * Check the task and thread group timers.  If both are zero (there are no
1073  * timers set) return false.  Otherwise snapshot the task and thread group
1074  * timers and compare them with the corresponding expiration times.  Return
1075  * true if a timer has expired, else return false.
1076  */
1077 static inline int fastpath_timer_check(struct task_struct *tsk)
1078 {
1079 	struct signal_struct *sig;
1080 
1081 	if (!task_cputime_zero(&tsk->cputime_expires)) {
1082 		struct task_cputime task_sample;
1083 
1084 		task_cputime(tsk, &task_sample.utime, &task_sample.stime);
1085 		task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime;
1086 		if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1087 			return 1;
1088 	}
1089 
1090 	sig = tsk->signal;
1091 	/*
1092 	 * Check if thread group timers expired when the cputimer is
1093 	 * running and no other thread in the group is already checking
1094 	 * for thread group cputimers. These fields are read without the
1095 	 * sighand lock. However, this is fine because this is meant to
1096 	 * be a fastpath heuristic to determine whether we should try to
1097 	 * acquire the sighand lock to check/handle timers.
1098 	 *
1099 	 * In the worst case scenario, if 'running' or 'checking_timer' gets
1100 	 * set but the current thread doesn't see the change yet, we'll wait
1101 	 * until the next thread in the group gets a scheduler interrupt to
1102 	 * handle the timer. This isn't an issue in practice because these
1103 	 * types of delays with signals actually getting sent are expected.
1104 	 */
1105 	if (READ_ONCE(sig->cputimer.running) &&
1106 	    !READ_ONCE(sig->cputimer.checking_timer)) {
1107 		struct task_cputime group_sample;
1108 
1109 		sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic);
1110 
1111 		if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1112 			return 1;
1113 	}
1114 
1115 	return 0;
1116 }
1117 
1118 /*
1119  * This is called from the timer interrupt handler.  The irq handler has
1120  * already updated our counts.  We need to check if any timers fire now.
1121  * Interrupts are disabled.
1122  */
1123 void run_posix_cpu_timers(struct task_struct *tsk)
1124 {
1125 	LIST_HEAD(firing);
1126 	struct k_itimer *timer, *next;
1127 	unsigned long flags;
1128 
1129 	WARN_ON_ONCE(!irqs_disabled());
1130 
1131 	/*
1132 	 * The fast path checks that there are no expired thread or thread
1133 	 * group timers.  If that's so, just return.
1134 	 */
1135 	if (!fastpath_timer_check(tsk))
1136 		return;
1137 
1138 	if (!lock_task_sighand(tsk, &flags))
1139 		return;
1140 	/*
1141 	 * Here we take off tsk->signal->cpu_timers[N] and
1142 	 * tsk->cpu_timers[N] all the timers that are firing, and
1143 	 * put them on the firing list.
1144 	 */
1145 	check_thread_timers(tsk, &firing);
1146 
1147 	check_process_timers(tsk, &firing);
1148 
1149 	/*
1150 	 * We must release these locks before taking any timer's lock.
1151 	 * There is a potential race with timer deletion here, as the
1152 	 * siglock now protects our private firing list.  We have set
1153 	 * the firing flag in each timer, so that a deletion attempt
1154 	 * that gets the timer lock before we do will give it up and
1155 	 * spin until we've taken care of that timer below.
1156 	 */
1157 	unlock_task_sighand(tsk, &flags);
1158 
1159 	/*
1160 	 * Now that all the timers on our list have the firing flag,
1161 	 * no one will touch their list entries but us.  We'll take
1162 	 * each timer's lock before clearing its firing flag, so no
1163 	 * timer call will interfere.
1164 	 */
1165 	list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1166 		int cpu_firing;
1167 
1168 		spin_lock(&timer->it_lock);
1169 		list_del_init(&timer->it.cpu.entry);
1170 		cpu_firing = timer->it.cpu.firing;
1171 		timer->it.cpu.firing = 0;
1172 		/*
1173 		 * The firing flag is -1 if we collided with a reset
1174 		 * of the timer, which already reported this
1175 		 * almost-firing as an overrun.  So don't generate an event.
1176 		 */
1177 		if (likely(cpu_firing >= 0))
1178 			cpu_timer_fire(timer);
1179 		spin_unlock(&timer->it_lock);
1180 	}
1181 }
1182 
1183 /*
1184  * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1185  * The tsk->sighand->siglock must be held by the caller.
1186  */
1187 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1188 			   u64 *newval, u64 *oldval)
1189 {
1190 	u64 now;
1191 
1192 	WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
1193 	cpu_timer_sample_group(clock_idx, tsk, &now);
1194 
1195 	if (oldval) {
1196 		/*
1197 		 * We are setting itimer. The *oldval is absolute and we update
1198 		 * it to be relative, *newval argument is relative and we update
1199 		 * it to be absolute.
1200 		 */
1201 		if (*oldval) {
1202 			if (*oldval <= now) {
1203 				/* Just about to fire. */
1204 				*oldval = TICK_NSEC;
1205 			} else {
1206 				*oldval -= now;
1207 			}
1208 		}
1209 
1210 		if (!*newval)
1211 			return;
1212 		*newval += now;
1213 	}
1214 
1215 	/*
1216 	 * Update expiration cache if we are the earliest timer, or eventually
1217 	 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1218 	 */
1219 	switch (clock_idx) {
1220 	case CPUCLOCK_PROF:
1221 		if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1222 			tsk->signal->cputime_expires.prof_exp = *newval;
1223 		break;
1224 	case CPUCLOCK_VIRT:
1225 		if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1226 			tsk->signal->cputime_expires.virt_exp = *newval;
1227 		break;
1228 	}
1229 
1230 	tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER);
1231 }
1232 
1233 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1234 			    const struct timespec64 *rqtp)
1235 {
1236 	struct itimerspec64 it;
1237 	struct k_itimer timer;
1238 	u64 expires;
1239 	int error;
1240 
1241 	/*
1242 	 * Set up a temporary timer and then wait for it to go off.
1243 	 */
1244 	memset(&timer, 0, sizeof timer);
1245 	spin_lock_init(&timer.it_lock);
1246 	timer.it_clock = which_clock;
1247 	timer.it_overrun = -1;
1248 	error = posix_cpu_timer_create(&timer);
1249 	timer.it_process = current;
1250 	if (!error) {
1251 		static struct itimerspec64 zero_it;
1252 		struct restart_block *restart;
1253 
1254 		memset(&it, 0, sizeof(it));
1255 		it.it_value = *rqtp;
1256 
1257 		spin_lock_irq(&timer.it_lock);
1258 		error = posix_cpu_timer_set(&timer, flags, &it, NULL);
1259 		if (error) {
1260 			spin_unlock_irq(&timer.it_lock);
1261 			return error;
1262 		}
1263 
1264 		while (!signal_pending(current)) {
1265 			if (timer.it.cpu.expires == 0) {
1266 				/*
1267 				 * Our timer fired and was reset, below
1268 				 * deletion can not fail.
1269 				 */
1270 				posix_cpu_timer_del(&timer);
1271 				spin_unlock_irq(&timer.it_lock);
1272 				return 0;
1273 			}
1274 
1275 			/*
1276 			 * Block until cpu_timer_fire (or a signal) wakes us.
1277 			 */
1278 			__set_current_state(TASK_INTERRUPTIBLE);
1279 			spin_unlock_irq(&timer.it_lock);
1280 			schedule();
1281 			spin_lock_irq(&timer.it_lock);
1282 		}
1283 
1284 		/*
1285 		 * We were interrupted by a signal.
1286 		 */
1287 		expires = timer.it.cpu.expires;
1288 		error = posix_cpu_timer_set(&timer, 0, &zero_it, &it);
1289 		if (!error) {
1290 			/*
1291 			 * Timer is now unarmed, deletion can not fail.
1292 			 */
1293 			posix_cpu_timer_del(&timer);
1294 		}
1295 		spin_unlock_irq(&timer.it_lock);
1296 
1297 		while (error == TIMER_RETRY) {
1298 			/*
1299 			 * We need to handle case when timer was or is in the
1300 			 * middle of firing. In other cases we already freed
1301 			 * resources.
1302 			 */
1303 			spin_lock_irq(&timer.it_lock);
1304 			error = posix_cpu_timer_del(&timer);
1305 			spin_unlock_irq(&timer.it_lock);
1306 		}
1307 
1308 		if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
1309 			/*
1310 			 * It actually did fire already.
1311 			 */
1312 			return 0;
1313 		}
1314 
1315 		error = -ERESTART_RESTARTBLOCK;
1316 		/*
1317 		 * Report back to the user the time still remaining.
1318 		 */
1319 		restart = &current->restart_block;
1320 		restart->nanosleep.expires = expires;
1321 		if (restart->nanosleep.type != TT_NONE)
1322 			error = nanosleep_copyout(restart, &it.it_value);
1323 	}
1324 
1325 	return error;
1326 }
1327 
1328 static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1329 
1330 static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1331 			    const struct timespec64 *rqtp)
1332 {
1333 	struct restart_block *restart_block = &current->restart_block;
1334 	int error;
1335 
1336 	/*
1337 	 * Diagnose required errors first.
1338 	 */
1339 	if (CPUCLOCK_PERTHREAD(which_clock) &&
1340 	    (CPUCLOCK_PID(which_clock) == 0 ||
1341 	     CPUCLOCK_PID(which_clock) == task_pid_vnr(current)))
1342 		return -EINVAL;
1343 
1344 	error = do_cpu_nanosleep(which_clock, flags, rqtp);
1345 
1346 	if (error == -ERESTART_RESTARTBLOCK) {
1347 
1348 		if (flags & TIMER_ABSTIME)
1349 			return -ERESTARTNOHAND;
1350 
1351 		restart_block->fn = posix_cpu_nsleep_restart;
1352 		restart_block->nanosleep.clockid = which_clock;
1353 	}
1354 	return error;
1355 }
1356 
1357 static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1358 {
1359 	clockid_t which_clock = restart_block->nanosleep.clockid;
1360 	struct timespec64 t;
1361 
1362 	t = ns_to_timespec64(restart_block->nanosleep.expires);
1363 
1364 	return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t);
1365 }
1366 
1367 #define PROCESS_CLOCK	MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1368 #define THREAD_CLOCK	MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1369 
1370 static int process_cpu_clock_getres(const clockid_t which_clock,
1371 				    struct timespec64 *tp)
1372 {
1373 	return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1374 }
1375 static int process_cpu_clock_get(const clockid_t which_clock,
1376 				 struct timespec64 *tp)
1377 {
1378 	return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1379 }
1380 static int process_cpu_timer_create(struct k_itimer *timer)
1381 {
1382 	timer->it_clock = PROCESS_CLOCK;
1383 	return posix_cpu_timer_create(timer);
1384 }
1385 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1386 			      const struct timespec64 *rqtp)
1387 {
1388 	return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
1389 }
1390 static int thread_cpu_clock_getres(const clockid_t which_clock,
1391 				   struct timespec64 *tp)
1392 {
1393 	return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1394 }
1395 static int thread_cpu_clock_get(const clockid_t which_clock,
1396 				struct timespec64 *tp)
1397 {
1398 	return posix_cpu_clock_get(THREAD_CLOCK, tp);
1399 }
1400 static int thread_cpu_timer_create(struct k_itimer *timer)
1401 {
1402 	timer->it_clock = THREAD_CLOCK;
1403 	return posix_cpu_timer_create(timer);
1404 }
1405 
1406 const struct k_clock clock_posix_cpu = {
1407 	.clock_getres	= posix_cpu_clock_getres,
1408 	.clock_set	= posix_cpu_clock_set,
1409 	.clock_get	= posix_cpu_clock_get,
1410 	.timer_create	= posix_cpu_timer_create,
1411 	.nsleep		= posix_cpu_nsleep,
1412 	.timer_set	= posix_cpu_timer_set,
1413 	.timer_del	= posix_cpu_timer_del,
1414 	.timer_get	= posix_cpu_timer_get,
1415 	.timer_rearm	= posix_cpu_timer_rearm,
1416 };
1417 
1418 const struct k_clock clock_process = {
1419 	.clock_getres	= process_cpu_clock_getres,
1420 	.clock_get	= process_cpu_clock_get,
1421 	.timer_create	= process_cpu_timer_create,
1422 	.nsleep		= process_cpu_nsleep,
1423 };
1424 
1425 const struct k_clock clock_thread = {
1426 	.clock_getres	= thread_cpu_clock_getres,
1427 	.clock_get	= thread_cpu_clock_get,
1428 	.timer_create	= thread_cpu_timer_create,
1429 };
1430