1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Implement CPU time clocks for the POSIX clock interface. 4 */ 5 6 #include <linux/sched/signal.h> 7 #include <linux/sched/cputime.h> 8 #include <linux/posix-timers.h> 9 #include <linux/errno.h> 10 #include <linux/math64.h> 11 #include <linux/uaccess.h> 12 #include <linux/kernel_stat.h> 13 #include <trace/events/timer.h> 14 #include <linux/tick.h> 15 #include <linux/workqueue.h> 16 #include <linux/compat.h> 17 18 #include "posix-timers.h" 19 20 static void posix_cpu_timer_rearm(struct k_itimer *timer); 21 22 /* 23 * Called after updating RLIMIT_CPU to run cpu timer and update 24 * tsk->signal->cputime_expires expiration cache if necessary. Needs 25 * siglock protection since other code may update expiration cache as 26 * well. 27 */ 28 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new) 29 { 30 u64 nsecs = rlim_new * NSEC_PER_SEC; 31 32 spin_lock_irq(&task->sighand->siglock); 33 set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL); 34 spin_unlock_irq(&task->sighand->siglock); 35 } 36 37 static int check_clock(const clockid_t which_clock) 38 { 39 int error = 0; 40 struct task_struct *p; 41 const pid_t pid = CPUCLOCK_PID(which_clock); 42 43 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX) 44 return -EINVAL; 45 46 if (pid == 0) 47 return 0; 48 49 rcu_read_lock(); 50 p = find_task_by_vpid(pid); 51 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ? 52 same_thread_group(p, current) : has_group_leader_pid(p))) { 53 error = -EINVAL; 54 } 55 rcu_read_unlock(); 56 57 return error; 58 } 59 60 /* 61 * Update expiry time from increment, and increase overrun count, 62 * given the current clock sample. 63 */ 64 static void bump_cpu_timer(struct k_itimer *timer, u64 now) 65 { 66 int i; 67 u64 delta, incr; 68 69 if (timer->it.cpu.incr == 0) 70 return; 71 72 if (now < timer->it.cpu.expires) 73 return; 74 75 incr = timer->it.cpu.incr; 76 delta = now + incr - timer->it.cpu.expires; 77 78 /* Don't use (incr*2 < delta), incr*2 might overflow. */ 79 for (i = 0; incr < delta - incr; i++) 80 incr = incr << 1; 81 82 for (; i >= 0; incr >>= 1, i--) { 83 if (delta < incr) 84 continue; 85 86 timer->it.cpu.expires += incr; 87 timer->it_overrun += 1 << i; 88 delta -= incr; 89 } 90 } 91 92 /** 93 * task_cputime_zero - Check a task_cputime struct for all zero fields. 94 * 95 * @cputime: The struct to compare. 96 * 97 * Checks @cputime to see if all fields are zero. Returns true if all fields 98 * are zero, false if any field is nonzero. 99 */ 100 static inline int task_cputime_zero(const struct task_cputime *cputime) 101 { 102 if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime) 103 return 1; 104 return 0; 105 } 106 107 static inline u64 prof_ticks(struct task_struct *p) 108 { 109 u64 utime, stime; 110 111 task_cputime(p, &utime, &stime); 112 113 return utime + stime; 114 } 115 static inline u64 virt_ticks(struct task_struct *p) 116 { 117 u64 utime, stime; 118 119 task_cputime(p, &utime, &stime); 120 121 return utime; 122 } 123 124 static int 125 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp) 126 { 127 int error = check_clock(which_clock); 128 if (!error) { 129 tp->tv_sec = 0; 130 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ); 131 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { 132 /* 133 * If sched_clock is using a cycle counter, we 134 * don't have any idea of its true resolution 135 * exported, but it is much more than 1s/HZ. 136 */ 137 tp->tv_nsec = 1; 138 } 139 } 140 return error; 141 } 142 143 static int 144 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec64 *tp) 145 { 146 /* 147 * You can never reset a CPU clock, but we check for other errors 148 * in the call before failing with EPERM. 149 */ 150 int error = check_clock(which_clock); 151 if (error == 0) { 152 error = -EPERM; 153 } 154 return error; 155 } 156 157 158 /* 159 * Sample a per-thread clock for the given task. 160 */ 161 static int cpu_clock_sample(const clockid_t which_clock, 162 struct task_struct *p, u64 *sample) 163 { 164 switch (CPUCLOCK_WHICH(which_clock)) { 165 default: 166 return -EINVAL; 167 case CPUCLOCK_PROF: 168 *sample = prof_ticks(p); 169 break; 170 case CPUCLOCK_VIRT: 171 *sample = virt_ticks(p); 172 break; 173 case CPUCLOCK_SCHED: 174 *sample = task_sched_runtime(p); 175 break; 176 } 177 return 0; 178 } 179 180 /* 181 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg 182 * to avoid race conditions with concurrent updates to cputime. 183 */ 184 static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime) 185 { 186 u64 curr_cputime; 187 retry: 188 curr_cputime = atomic64_read(cputime); 189 if (sum_cputime > curr_cputime) { 190 if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime) 191 goto retry; 192 } 193 } 194 195 static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum) 196 { 197 __update_gt_cputime(&cputime_atomic->utime, sum->utime); 198 __update_gt_cputime(&cputime_atomic->stime, sum->stime); 199 __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime); 200 } 201 202 /* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */ 203 static inline void sample_cputime_atomic(struct task_cputime *times, 204 struct task_cputime_atomic *atomic_times) 205 { 206 times->utime = atomic64_read(&atomic_times->utime); 207 times->stime = atomic64_read(&atomic_times->stime); 208 times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime); 209 } 210 211 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times) 212 { 213 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; 214 struct task_cputime sum; 215 216 /* Check if cputimer isn't running. This is accessed without locking. */ 217 if (!READ_ONCE(cputimer->running)) { 218 /* 219 * The POSIX timer interface allows for absolute time expiry 220 * values through the TIMER_ABSTIME flag, therefore we have 221 * to synchronize the timer to the clock every time we start it. 222 */ 223 thread_group_cputime(tsk, &sum); 224 update_gt_cputime(&cputimer->cputime_atomic, &sum); 225 226 /* 227 * We're setting cputimer->running without a lock. Ensure 228 * this only gets written to in one operation. We set 229 * running after update_gt_cputime() as a small optimization, 230 * but barriers are not required because update_gt_cputime() 231 * can handle concurrent updates. 232 */ 233 WRITE_ONCE(cputimer->running, true); 234 } 235 sample_cputime_atomic(times, &cputimer->cputime_atomic); 236 } 237 238 /* 239 * Sample a process (thread group) clock for the given group_leader task. 240 * Must be called with task sighand lock held for safe while_each_thread() 241 * traversal. 242 */ 243 static int cpu_clock_sample_group(const clockid_t which_clock, 244 struct task_struct *p, 245 u64 *sample) 246 { 247 struct task_cputime cputime; 248 249 switch (CPUCLOCK_WHICH(which_clock)) { 250 default: 251 return -EINVAL; 252 case CPUCLOCK_PROF: 253 thread_group_cputime(p, &cputime); 254 *sample = cputime.utime + cputime.stime; 255 break; 256 case CPUCLOCK_VIRT: 257 thread_group_cputime(p, &cputime); 258 *sample = cputime.utime; 259 break; 260 case CPUCLOCK_SCHED: 261 thread_group_cputime(p, &cputime); 262 *sample = cputime.sum_exec_runtime; 263 break; 264 } 265 return 0; 266 } 267 268 static int posix_cpu_clock_get_task(struct task_struct *tsk, 269 const clockid_t which_clock, 270 struct timespec64 *tp) 271 { 272 int err = -EINVAL; 273 u64 rtn; 274 275 if (CPUCLOCK_PERTHREAD(which_clock)) { 276 if (same_thread_group(tsk, current)) 277 err = cpu_clock_sample(which_clock, tsk, &rtn); 278 } else { 279 if (tsk == current || thread_group_leader(tsk)) 280 err = cpu_clock_sample_group(which_clock, tsk, &rtn); 281 } 282 283 if (!err) 284 *tp = ns_to_timespec64(rtn); 285 286 return err; 287 } 288 289 290 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec64 *tp) 291 { 292 const pid_t pid = CPUCLOCK_PID(which_clock); 293 int err = -EINVAL; 294 295 if (pid == 0) { 296 /* 297 * Special case constant value for our own clocks. 298 * We don't have to do any lookup to find ourselves. 299 */ 300 err = posix_cpu_clock_get_task(current, which_clock, tp); 301 } else { 302 /* 303 * Find the given PID, and validate that the caller 304 * should be able to see it. 305 */ 306 struct task_struct *p; 307 rcu_read_lock(); 308 p = find_task_by_vpid(pid); 309 if (p) 310 err = posix_cpu_clock_get_task(p, which_clock, tp); 311 rcu_read_unlock(); 312 } 313 314 return err; 315 } 316 317 /* 318 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer. 319 * This is called from sys_timer_create() and do_cpu_nanosleep() with the 320 * new timer already all-zeros initialized. 321 */ 322 static int posix_cpu_timer_create(struct k_itimer *new_timer) 323 { 324 int ret = 0; 325 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock); 326 struct task_struct *p; 327 328 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX) 329 return -EINVAL; 330 331 new_timer->kclock = &clock_posix_cpu; 332 333 INIT_LIST_HEAD(&new_timer->it.cpu.entry); 334 335 rcu_read_lock(); 336 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) { 337 if (pid == 0) { 338 p = current; 339 } else { 340 p = find_task_by_vpid(pid); 341 if (p && !same_thread_group(p, current)) 342 p = NULL; 343 } 344 } else { 345 if (pid == 0) { 346 p = current->group_leader; 347 } else { 348 p = find_task_by_vpid(pid); 349 if (p && !has_group_leader_pid(p)) 350 p = NULL; 351 } 352 } 353 new_timer->it.cpu.task = p; 354 if (p) { 355 get_task_struct(p); 356 } else { 357 ret = -EINVAL; 358 } 359 rcu_read_unlock(); 360 361 return ret; 362 } 363 364 /* 365 * Clean up a CPU-clock timer that is about to be destroyed. 366 * This is called from timer deletion with the timer already locked. 367 * If we return TIMER_RETRY, it's necessary to release the timer's lock 368 * and try again. (This happens when the timer is in the middle of firing.) 369 */ 370 static int posix_cpu_timer_del(struct k_itimer *timer) 371 { 372 int ret = 0; 373 unsigned long flags; 374 struct sighand_struct *sighand; 375 struct task_struct *p = timer->it.cpu.task; 376 377 WARN_ON_ONCE(p == NULL); 378 379 /* 380 * Protect against sighand release/switch in exit/exec and process/ 381 * thread timer list entry concurrent read/writes. 382 */ 383 sighand = lock_task_sighand(p, &flags); 384 if (unlikely(sighand == NULL)) { 385 /* 386 * We raced with the reaping of the task. 387 * The deletion should have cleared us off the list. 388 */ 389 WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry)); 390 } else { 391 if (timer->it.cpu.firing) 392 ret = TIMER_RETRY; 393 else 394 list_del(&timer->it.cpu.entry); 395 396 unlock_task_sighand(p, &flags); 397 } 398 399 if (!ret) 400 put_task_struct(p); 401 402 return ret; 403 } 404 405 static void cleanup_timers_list(struct list_head *head) 406 { 407 struct cpu_timer_list *timer, *next; 408 409 list_for_each_entry_safe(timer, next, head, entry) 410 list_del_init(&timer->entry); 411 } 412 413 /* 414 * Clean out CPU timers still ticking when a thread exited. The task 415 * pointer is cleared, and the expiry time is replaced with the residual 416 * time for later timer_gettime calls to return. 417 * This must be called with the siglock held. 418 */ 419 static void cleanup_timers(struct list_head *head) 420 { 421 cleanup_timers_list(head); 422 cleanup_timers_list(++head); 423 cleanup_timers_list(++head); 424 } 425 426 /* 427 * These are both called with the siglock held, when the current thread 428 * is being reaped. When the final (leader) thread in the group is reaped, 429 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit. 430 */ 431 void posix_cpu_timers_exit(struct task_struct *tsk) 432 { 433 cleanup_timers(tsk->cpu_timers); 434 } 435 void posix_cpu_timers_exit_group(struct task_struct *tsk) 436 { 437 cleanup_timers(tsk->signal->cpu_timers); 438 } 439 440 static inline int expires_gt(u64 expires, u64 new_exp) 441 { 442 return expires == 0 || expires > new_exp; 443 } 444 445 /* 446 * Insert the timer on the appropriate list before any timers that 447 * expire later. This must be called with the sighand lock held. 448 */ 449 static void arm_timer(struct k_itimer *timer) 450 { 451 struct task_struct *p = timer->it.cpu.task; 452 struct list_head *head, *listpos; 453 struct task_cputime *cputime_expires; 454 struct cpu_timer_list *const nt = &timer->it.cpu; 455 struct cpu_timer_list *next; 456 457 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 458 head = p->cpu_timers; 459 cputime_expires = &p->cputime_expires; 460 } else { 461 head = p->signal->cpu_timers; 462 cputime_expires = &p->signal->cputime_expires; 463 } 464 head += CPUCLOCK_WHICH(timer->it_clock); 465 466 listpos = head; 467 list_for_each_entry(next, head, entry) { 468 if (nt->expires < next->expires) 469 break; 470 listpos = &next->entry; 471 } 472 list_add(&nt->entry, listpos); 473 474 if (listpos == head) { 475 u64 exp = nt->expires; 476 477 /* 478 * We are the new earliest-expiring POSIX 1.b timer, hence 479 * need to update expiration cache. Take into account that 480 * for process timers we share expiration cache with itimers 481 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME. 482 */ 483 484 switch (CPUCLOCK_WHICH(timer->it_clock)) { 485 case CPUCLOCK_PROF: 486 if (expires_gt(cputime_expires->prof_exp, exp)) 487 cputime_expires->prof_exp = exp; 488 break; 489 case CPUCLOCK_VIRT: 490 if (expires_gt(cputime_expires->virt_exp, exp)) 491 cputime_expires->virt_exp = exp; 492 break; 493 case CPUCLOCK_SCHED: 494 if (expires_gt(cputime_expires->sched_exp, exp)) 495 cputime_expires->sched_exp = exp; 496 break; 497 } 498 if (CPUCLOCK_PERTHREAD(timer->it_clock)) 499 tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER); 500 else 501 tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER); 502 } 503 } 504 505 /* 506 * The timer is locked, fire it and arrange for its reload. 507 */ 508 static void cpu_timer_fire(struct k_itimer *timer) 509 { 510 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { 511 /* 512 * User don't want any signal. 513 */ 514 timer->it.cpu.expires = 0; 515 } else if (unlikely(timer->sigq == NULL)) { 516 /* 517 * This a special case for clock_nanosleep, 518 * not a normal timer from sys_timer_create. 519 */ 520 wake_up_process(timer->it_process); 521 timer->it.cpu.expires = 0; 522 } else if (timer->it.cpu.incr == 0) { 523 /* 524 * One-shot timer. Clear it as soon as it's fired. 525 */ 526 posix_timer_event(timer, 0); 527 timer->it.cpu.expires = 0; 528 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) { 529 /* 530 * The signal did not get queued because the signal 531 * was ignored, so we won't get any callback to 532 * reload the timer. But we need to keep it 533 * ticking in case the signal is deliverable next time. 534 */ 535 posix_cpu_timer_rearm(timer); 536 ++timer->it_requeue_pending; 537 } 538 } 539 540 /* 541 * Sample a process (thread group) timer for the given group_leader task. 542 * Must be called with task sighand lock held for safe while_each_thread() 543 * traversal. 544 */ 545 static int cpu_timer_sample_group(const clockid_t which_clock, 546 struct task_struct *p, u64 *sample) 547 { 548 struct task_cputime cputime; 549 550 thread_group_cputimer(p, &cputime); 551 switch (CPUCLOCK_WHICH(which_clock)) { 552 default: 553 return -EINVAL; 554 case CPUCLOCK_PROF: 555 *sample = cputime.utime + cputime.stime; 556 break; 557 case CPUCLOCK_VIRT: 558 *sample = cputime.utime; 559 break; 560 case CPUCLOCK_SCHED: 561 *sample = cputime.sum_exec_runtime; 562 break; 563 } 564 return 0; 565 } 566 567 /* 568 * Guts of sys_timer_settime for CPU timers. 569 * This is called with the timer locked and interrupts disabled. 570 * If we return TIMER_RETRY, it's necessary to release the timer's lock 571 * and try again. (This happens when the timer is in the middle of firing.) 572 */ 573 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags, 574 struct itimerspec64 *new, struct itimerspec64 *old) 575 { 576 unsigned long flags; 577 struct sighand_struct *sighand; 578 struct task_struct *p = timer->it.cpu.task; 579 u64 old_expires, new_expires, old_incr, val; 580 int ret; 581 582 WARN_ON_ONCE(p == NULL); 583 584 /* 585 * Use the to_ktime conversion because that clamps the maximum 586 * value to KTIME_MAX and avoid multiplication overflows. 587 */ 588 new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value)); 589 590 /* 591 * Protect against sighand release/switch in exit/exec and p->cpu_timers 592 * and p->signal->cpu_timers read/write in arm_timer() 593 */ 594 sighand = lock_task_sighand(p, &flags); 595 /* 596 * If p has just been reaped, we can no 597 * longer get any information about it at all. 598 */ 599 if (unlikely(sighand == NULL)) { 600 return -ESRCH; 601 } 602 603 /* 604 * Disarm any old timer after extracting its expiry time. 605 */ 606 lockdep_assert_irqs_disabled(); 607 608 ret = 0; 609 old_incr = timer->it.cpu.incr; 610 old_expires = timer->it.cpu.expires; 611 if (unlikely(timer->it.cpu.firing)) { 612 timer->it.cpu.firing = -1; 613 ret = TIMER_RETRY; 614 } else 615 list_del_init(&timer->it.cpu.entry); 616 617 /* 618 * We need to sample the current value to convert the new 619 * value from to relative and absolute, and to convert the 620 * old value from absolute to relative. To set a process 621 * timer, we need a sample to balance the thread expiry 622 * times (in arm_timer). With an absolute time, we must 623 * check if it's already passed. In short, we need a sample. 624 */ 625 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 626 cpu_clock_sample(timer->it_clock, p, &val); 627 } else { 628 cpu_timer_sample_group(timer->it_clock, p, &val); 629 } 630 631 if (old) { 632 if (old_expires == 0) { 633 old->it_value.tv_sec = 0; 634 old->it_value.tv_nsec = 0; 635 } else { 636 /* 637 * Update the timer in case it has 638 * overrun already. If it has, 639 * we'll report it as having overrun 640 * and with the next reloaded timer 641 * already ticking, though we are 642 * swallowing that pending 643 * notification here to install the 644 * new setting. 645 */ 646 bump_cpu_timer(timer, val); 647 if (val < timer->it.cpu.expires) { 648 old_expires = timer->it.cpu.expires - val; 649 old->it_value = ns_to_timespec64(old_expires); 650 } else { 651 old->it_value.tv_nsec = 1; 652 old->it_value.tv_sec = 0; 653 } 654 } 655 } 656 657 if (unlikely(ret)) { 658 /* 659 * We are colliding with the timer actually firing. 660 * Punt after filling in the timer's old value, and 661 * disable this firing since we are already reporting 662 * it as an overrun (thanks to bump_cpu_timer above). 663 */ 664 unlock_task_sighand(p, &flags); 665 goto out; 666 } 667 668 if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) { 669 new_expires += val; 670 } 671 672 /* 673 * Install the new expiry time (or zero). 674 * For a timer with no notification action, we don't actually 675 * arm the timer (we'll just fake it for timer_gettime). 676 */ 677 timer->it.cpu.expires = new_expires; 678 if (new_expires != 0 && val < new_expires) { 679 arm_timer(timer); 680 } 681 682 unlock_task_sighand(p, &flags); 683 /* 684 * Install the new reload setting, and 685 * set up the signal and overrun bookkeeping. 686 */ 687 timer->it.cpu.incr = timespec64_to_ns(&new->it_interval); 688 689 /* 690 * This acts as a modification timestamp for the timer, 691 * so any automatic reload attempt will punt on seeing 692 * that we have reset the timer manually. 693 */ 694 timer->it_requeue_pending = (timer->it_requeue_pending + 2) & 695 ~REQUEUE_PENDING; 696 timer->it_overrun_last = 0; 697 timer->it_overrun = -1; 698 699 if (new_expires != 0 && !(val < new_expires)) { 700 /* 701 * The designated time already passed, so we notify 702 * immediately, even if the thread never runs to 703 * accumulate more time on this clock. 704 */ 705 cpu_timer_fire(timer); 706 } 707 708 ret = 0; 709 out: 710 if (old) 711 old->it_interval = ns_to_timespec64(old_incr); 712 713 return ret; 714 } 715 716 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp) 717 { 718 u64 now; 719 struct task_struct *p = timer->it.cpu.task; 720 721 WARN_ON_ONCE(p == NULL); 722 723 /* 724 * Easy part: convert the reload time. 725 */ 726 itp->it_interval = ns_to_timespec64(timer->it.cpu.incr); 727 728 if (!timer->it.cpu.expires) 729 return; 730 731 /* 732 * Sample the clock to take the difference with the expiry time. 733 */ 734 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 735 cpu_clock_sample(timer->it_clock, p, &now); 736 } else { 737 struct sighand_struct *sighand; 738 unsigned long flags; 739 740 /* 741 * Protect against sighand release/switch in exit/exec and 742 * also make timer sampling safe if it ends up calling 743 * thread_group_cputime(). 744 */ 745 sighand = lock_task_sighand(p, &flags); 746 if (unlikely(sighand == NULL)) { 747 /* 748 * The process has been reaped. 749 * We can't even collect a sample any more. 750 * Call the timer disarmed, nothing else to do. 751 */ 752 timer->it.cpu.expires = 0; 753 return; 754 } else { 755 cpu_timer_sample_group(timer->it_clock, p, &now); 756 unlock_task_sighand(p, &flags); 757 } 758 } 759 760 if (now < timer->it.cpu.expires) { 761 itp->it_value = ns_to_timespec64(timer->it.cpu.expires - now); 762 } else { 763 /* 764 * The timer should have expired already, but the firing 765 * hasn't taken place yet. Say it's just about to expire. 766 */ 767 itp->it_value.tv_nsec = 1; 768 itp->it_value.tv_sec = 0; 769 } 770 } 771 772 static unsigned long long 773 check_timers_list(struct list_head *timers, 774 struct list_head *firing, 775 unsigned long long curr) 776 { 777 int maxfire = 20; 778 779 while (!list_empty(timers)) { 780 struct cpu_timer_list *t; 781 782 t = list_first_entry(timers, struct cpu_timer_list, entry); 783 784 if (!--maxfire || curr < t->expires) 785 return t->expires; 786 787 t->firing = 1; 788 list_move_tail(&t->entry, firing); 789 } 790 791 return 0; 792 } 793 794 /* 795 * Check for any per-thread CPU timers that have fired and move them off 796 * the tsk->cpu_timers[N] list onto the firing list. Here we update the 797 * tsk->it_*_expires values to reflect the remaining thread CPU timers. 798 */ 799 static void check_thread_timers(struct task_struct *tsk, 800 struct list_head *firing) 801 { 802 struct list_head *timers = tsk->cpu_timers; 803 struct task_cputime *tsk_expires = &tsk->cputime_expires; 804 u64 expires; 805 unsigned long soft; 806 807 /* 808 * If cputime_expires is zero, then there are no active 809 * per thread CPU timers. 810 */ 811 if (task_cputime_zero(&tsk->cputime_expires)) 812 return; 813 814 expires = check_timers_list(timers, firing, prof_ticks(tsk)); 815 tsk_expires->prof_exp = expires; 816 817 expires = check_timers_list(++timers, firing, virt_ticks(tsk)); 818 tsk_expires->virt_exp = expires; 819 820 tsk_expires->sched_exp = check_timers_list(++timers, firing, 821 tsk->se.sum_exec_runtime); 822 823 /* 824 * Check for the special case thread timers. 825 */ 826 soft = task_rlimit(tsk, RLIMIT_RTTIME); 827 if (soft != RLIM_INFINITY) { 828 unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME); 829 830 if (hard != RLIM_INFINITY && 831 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) { 832 /* 833 * At the hard limit, we just die. 834 * No need to calculate anything else now. 835 */ 836 if (print_fatal_signals) { 837 pr_info("CPU Watchdog Timeout (hard): %s[%d]\n", 838 tsk->comm, task_pid_nr(tsk)); 839 } 840 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); 841 return; 842 } 843 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) { 844 /* 845 * At the soft limit, send a SIGXCPU every second. 846 */ 847 if (soft < hard) { 848 soft += USEC_PER_SEC; 849 tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur = 850 soft; 851 } 852 if (print_fatal_signals) { 853 pr_info("RT Watchdog Timeout (soft): %s[%d]\n", 854 tsk->comm, task_pid_nr(tsk)); 855 } 856 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); 857 } 858 } 859 if (task_cputime_zero(tsk_expires)) 860 tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER); 861 } 862 863 static inline void stop_process_timers(struct signal_struct *sig) 864 { 865 struct thread_group_cputimer *cputimer = &sig->cputimer; 866 867 /* Turn off cputimer->running. This is done without locking. */ 868 WRITE_ONCE(cputimer->running, false); 869 tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER); 870 } 871 872 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it, 873 u64 *expires, u64 cur_time, int signo) 874 { 875 if (!it->expires) 876 return; 877 878 if (cur_time >= it->expires) { 879 if (it->incr) 880 it->expires += it->incr; 881 else 882 it->expires = 0; 883 884 trace_itimer_expire(signo == SIGPROF ? 885 ITIMER_PROF : ITIMER_VIRTUAL, 886 tsk->signal->leader_pid, cur_time); 887 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk); 888 } 889 890 if (it->expires && (!*expires || it->expires < *expires)) 891 *expires = it->expires; 892 } 893 894 /* 895 * Check for any per-thread CPU timers that have fired and move them 896 * off the tsk->*_timers list onto the firing list. Per-thread timers 897 * have already been taken off. 898 */ 899 static void check_process_timers(struct task_struct *tsk, 900 struct list_head *firing) 901 { 902 struct signal_struct *const sig = tsk->signal; 903 u64 utime, ptime, virt_expires, prof_expires; 904 u64 sum_sched_runtime, sched_expires; 905 struct list_head *timers = sig->cpu_timers; 906 struct task_cputime cputime; 907 unsigned long soft; 908 909 /* 910 * If cputimer is not running, then there are no active 911 * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU). 912 */ 913 if (!READ_ONCE(tsk->signal->cputimer.running)) 914 return; 915 916 /* 917 * Signify that a thread is checking for process timers. 918 * Write access to this field is protected by the sighand lock. 919 */ 920 sig->cputimer.checking_timer = true; 921 922 /* 923 * Collect the current process totals. 924 */ 925 thread_group_cputimer(tsk, &cputime); 926 utime = cputime.utime; 927 ptime = utime + cputime.stime; 928 sum_sched_runtime = cputime.sum_exec_runtime; 929 930 prof_expires = check_timers_list(timers, firing, ptime); 931 virt_expires = check_timers_list(++timers, firing, utime); 932 sched_expires = check_timers_list(++timers, firing, sum_sched_runtime); 933 934 /* 935 * Check for the special case process timers. 936 */ 937 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime, 938 SIGPROF); 939 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime, 940 SIGVTALRM); 941 soft = task_rlimit(tsk, RLIMIT_CPU); 942 if (soft != RLIM_INFINITY) { 943 unsigned long psecs = div_u64(ptime, NSEC_PER_SEC); 944 unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU); 945 u64 x; 946 if (psecs >= hard) { 947 /* 948 * At the hard limit, we just die. 949 * No need to calculate anything else now. 950 */ 951 if (print_fatal_signals) { 952 pr_info("RT Watchdog Timeout (hard): %s[%d]\n", 953 tsk->comm, task_pid_nr(tsk)); 954 } 955 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); 956 return; 957 } 958 if (psecs >= soft) { 959 /* 960 * At the soft limit, send a SIGXCPU every second. 961 */ 962 if (print_fatal_signals) { 963 pr_info("CPU Watchdog Timeout (soft): %s[%d]\n", 964 tsk->comm, task_pid_nr(tsk)); 965 } 966 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); 967 if (soft < hard) { 968 soft++; 969 sig->rlim[RLIMIT_CPU].rlim_cur = soft; 970 } 971 } 972 x = soft * NSEC_PER_SEC; 973 if (!prof_expires || x < prof_expires) 974 prof_expires = x; 975 } 976 977 sig->cputime_expires.prof_exp = prof_expires; 978 sig->cputime_expires.virt_exp = virt_expires; 979 sig->cputime_expires.sched_exp = sched_expires; 980 if (task_cputime_zero(&sig->cputime_expires)) 981 stop_process_timers(sig); 982 983 sig->cputimer.checking_timer = false; 984 } 985 986 /* 987 * This is called from the signal code (via posixtimer_rearm) 988 * when the last timer signal was delivered and we have to reload the timer. 989 */ 990 static void posix_cpu_timer_rearm(struct k_itimer *timer) 991 { 992 struct sighand_struct *sighand; 993 unsigned long flags; 994 struct task_struct *p = timer->it.cpu.task; 995 u64 now; 996 997 WARN_ON_ONCE(p == NULL); 998 999 /* 1000 * Fetch the current sample and update the timer's expiry time. 1001 */ 1002 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 1003 cpu_clock_sample(timer->it_clock, p, &now); 1004 bump_cpu_timer(timer, now); 1005 if (unlikely(p->exit_state)) 1006 return; 1007 1008 /* Protect timer list r/w in arm_timer() */ 1009 sighand = lock_task_sighand(p, &flags); 1010 if (!sighand) 1011 return; 1012 } else { 1013 /* 1014 * Protect arm_timer() and timer sampling in case of call to 1015 * thread_group_cputime(). 1016 */ 1017 sighand = lock_task_sighand(p, &flags); 1018 if (unlikely(sighand == NULL)) { 1019 /* 1020 * The process has been reaped. 1021 * We can't even collect a sample any more. 1022 */ 1023 timer->it.cpu.expires = 0; 1024 return; 1025 } else if (unlikely(p->exit_state) && thread_group_empty(p)) { 1026 /* If the process is dying, no need to rearm */ 1027 goto unlock; 1028 } 1029 cpu_timer_sample_group(timer->it_clock, p, &now); 1030 bump_cpu_timer(timer, now); 1031 /* Leave the sighand locked for the call below. */ 1032 } 1033 1034 /* 1035 * Now re-arm for the new expiry time. 1036 */ 1037 lockdep_assert_irqs_disabled(); 1038 arm_timer(timer); 1039 unlock: 1040 unlock_task_sighand(p, &flags); 1041 } 1042 1043 /** 1044 * task_cputime_expired - Compare two task_cputime entities. 1045 * 1046 * @sample: The task_cputime structure to be checked for expiration. 1047 * @expires: Expiration times, against which @sample will be checked. 1048 * 1049 * Checks @sample against @expires to see if any field of @sample has expired. 1050 * Returns true if any field of the former is greater than the corresponding 1051 * field of the latter if the latter field is set. Otherwise returns false. 1052 */ 1053 static inline int task_cputime_expired(const struct task_cputime *sample, 1054 const struct task_cputime *expires) 1055 { 1056 if (expires->utime && sample->utime >= expires->utime) 1057 return 1; 1058 if (expires->stime && sample->utime + sample->stime >= expires->stime) 1059 return 1; 1060 if (expires->sum_exec_runtime != 0 && 1061 sample->sum_exec_runtime >= expires->sum_exec_runtime) 1062 return 1; 1063 return 0; 1064 } 1065 1066 /** 1067 * fastpath_timer_check - POSIX CPU timers fast path. 1068 * 1069 * @tsk: The task (thread) being checked. 1070 * 1071 * Check the task and thread group timers. If both are zero (there are no 1072 * timers set) return false. Otherwise snapshot the task and thread group 1073 * timers and compare them with the corresponding expiration times. Return 1074 * true if a timer has expired, else return false. 1075 */ 1076 static inline int fastpath_timer_check(struct task_struct *tsk) 1077 { 1078 struct signal_struct *sig; 1079 1080 if (!task_cputime_zero(&tsk->cputime_expires)) { 1081 struct task_cputime task_sample; 1082 1083 task_cputime(tsk, &task_sample.utime, &task_sample.stime); 1084 task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime; 1085 if (task_cputime_expired(&task_sample, &tsk->cputime_expires)) 1086 return 1; 1087 } 1088 1089 sig = tsk->signal; 1090 /* 1091 * Check if thread group timers expired when the cputimer is 1092 * running and no other thread in the group is already checking 1093 * for thread group cputimers. These fields are read without the 1094 * sighand lock. However, this is fine because this is meant to 1095 * be a fastpath heuristic to determine whether we should try to 1096 * acquire the sighand lock to check/handle timers. 1097 * 1098 * In the worst case scenario, if 'running' or 'checking_timer' gets 1099 * set but the current thread doesn't see the change yet, we'll wait 1100 * until the next thread in the group gets a scheduler interrupt to 1101 * handle the timer. This isn't an issue in practice because these 1102 * types of delays with signals actually getting sent are expected. 1103 */ 1104 if (READ_ONCE(sig->cputimer.running) && 1105 !READ_ONCE(sig->cputimer.checking_timer)) { 1106 struct task_cputime group_sample; 1107 1108 sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic); 1109 1110 if (task_cputime_expired(&group_sample, &sig->cputime_expires)) 1111 return 1; 1112 } 1113 1114 return 0; 1115 } 1116 1117 /* 1118 * This is called from the timer interrupt handler. The irq handler has 1119 * already updated our counts. We need to check if any timers fire now. 1120 * Interrupts are disabled. 1121 */ 1122 void run_posix_cpu_timers(struct task_struct *tsk) 1123 { 1124 LIST_HEAD(firing); 1125 struct k_itimer *timer, *next; 1126 unsigned long flags; 1127 1128 lockdep_assert_irqs_disabled(); 1129 1130 /* 1131 * The fast path checks that there are no expired thread or thread 1132 * group timers. If that's so, just return. 1133 */ 1134 if (!fastpath_timer_check(tsk)) 1135 return; 1136 1137 if (!lock_task_sighand(tsk, &flags)) 1138 return; 1139 /* 1140 * Here we take off tsk->signal->cpu_timers[N] and 1141 * tsk->cpu_timers[N] all the timers that are firing, and 1142 * put them on the firing list. 1143 */ 1144 check_thread_timers(tsk, &firing); 1145 1146 check_process_timers(tsk, &firing); 1147 1148 /* 1149 * We must release these locks before taking any timer's lock. 1150 * There is a potential race with timer deletion here, as the 1151 * siglock now protects our private firing list. We have set 1152 * the firing flag in each timer, so that a deletion attempt 1153 * that gets the timer lock before we do will give it up and 1154 * spin until we've taken care of that timer below. 1155 */ 1156 unlock_task_sighand(tsk, &flags); 1157 1158 /* 1159 * Now that all the timers on our list have the firing flag, 1160 * no one will touch their list entries but us. We'll take 1161 * each timer's lock before clearing its firing flag, so no 1162 * timer call will interfere. 1163 */ 1164 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) { 1165 int cpu_firing; 1166 1167 spin_lock(&timer->it_lock); 1168 list_del_init(&timer->it.cpu.entry); 1169 cpu_firing = timer->it.cpu.firing; 1170 timer->it.cpu.firing = 0; 1171 /* 1172 * The firing flag is -1 if we collided with a reset 1173 * of the timer, which already reported this 1174 * almost-firing as an overrun. So don't generate an event. 1175 */ 1176 if (likely(cpu_firing >= 0)) 1177 cpu_timer_fire(timer); 1178 spin_unlock(&timer->it_lock); 1179 } 1180 } 1181 1182 /* 1183 * Set one of the process-wide special case CPU timers or RLIMIT_CPU. 1184 * The tsk->sighand->siglock must be held by the caller. 1185 */ 1186 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx, 1187 u64 *newval, u64 *oldval) 1188 { 1189 u64 now; 1190 1191 WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED); 1192 cpu_timer_sample_group(clock_idx, tsk, &now); 1193 1194 if (oldval) { 1195 /* 1196 * We are setting itimer. The *oldval is absolute and we update 1197 * it to be relative, *newval argument is relative and we update 1198 * it to be absolute. 1199 */ 1200 if (*oldval) { 1201 if (*oldval <= now) { 1202 /* Just about to fire. */ 1203 *oldval = TICK_NSEC; 1204 } else { 1205 *oldval -= now; 1206 } 1207 } 1208 1209 if (!*newval) 1210 return; 1211 *newval += now; 1212 } 1213 1214 /* 1215 * Update expiration cache if we are the earliest timer, or eventually 1216 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire. 1217 */ 1218 switch (clock_idx) { 1219 case CPUCLOCK_PROF: 1220 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval)) 1221 tsk->signal->cputime_expires.prof_exp = *newval; 1222 break; 1223 case CPUCLOCK_VIRT: 1224 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval)) 1225 tsk->signal->cputime_expires.virt_exp = *newval; 1226 break; 1227 } 1228 1229 tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER); 1230 } 1231 1232 static int do_cpu_nanosleep(const clockid_t which_clock, int flags, 1233 const struct timespec64 *rqtp) 1234 { 1235 struct itimerspec64 it; 1236 struct k_itimer timer; 1237 u64 expires; 1238 int error; 1239 1240 /* 1241 * Set up a temporary timer and then wait for it to go off. 1242 */ 1243 memset(&timer, 0, sizeof timer); 1244 spin_lock_init(&timer.it_lock); 1245 timer.it_clock = which_clock; 1246 timer.it_overrun = -1; 1247 error = posix_cpu_timer_create(&timer); 1248 timer.it_process = current; 1249 if (!error) { 1250 static struct itimerspec64 zero_it; 1251 struct restart_block *restart; 1252 1253 memset(&it, 0, sizeof(it)); 1254 it.it_value = *rqtp; 1255 1256 spin_lock_irq(&timer.it_lock); 1257 error = posix_cpu_timer_set(&timer, flags, &it, NULL); 1258 if (error) { 1259 spin_unlock_irq(&timer.it_lock); 1260 return error; 1261 } 1262 1263 while (!signal_pending(current)) { 1264 if (timer.it.cpu.expires == 0) { 1265 /* 1266 * Our timer fired and was reset, below 1267 * deletion can not fail. 1268 */ 1269 posix_cpu_timer_del(&timer); 1270 spin_unlock_irq(&timer.it_lock); 1271 return 0; 1272 } 1273 1274 /* 1275 * Block until cpu_timer_fire (or a signal) wakes us. 1276 */ 1277 __set_current_state(TASK_INTERRUPTIBLE); 1278 spin_unlock_irq(&timer.it_lock); 1279 schedule(); 1280 spin_lock_irq(&timer.it_lock); 1281 } 1282 1283 /* 1284 * We were interrupted by a signal. 1285 */ 1286 expires = timer.it.cpu.expires; 1287 error = posix_cpu_timer_set(&timer, 0, &zero_it, &it); 1288 if (!error) { 1289 /* 1290 * Timer is now unarmed, deletion can not fail. 1291 */ 1292 posix_cpu_timer_del(&timer); 1293 } 1294 spin_unlock_irq(&timer.it_lock); 1295 1296 while (error == TIMER_RETRY) { 1297 /* 1298 * We need to handle case when timer was or is in the 1299 * middle of firing. In other cases we already freed 1300 * resources. 1301 */ 1302 spin_lock_irq(&timer.it_lock); 1303 error = posix_cpu_timer_del(&timer); 1304 spin_unlock_irq(&timer.it_lock); 1305 } 1306 1307 if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) { 1308 /* 1309 * It actually did fire already. 1310 */ 1311 return 0; 1312 } 1313 1314 error = -ERESTART_RESTARTBLOCK; 1315 /* 1316 * Report back to the user the time still remaining. 1317 */ 1318 restart = ¤t->restart_block; 1319 restart->nanosleep.expires = expires; 1320 if (restart->nanosleep.type != TT_NONE) 1321 error = nanosleep_copyout(restart, &it.it_value); 1322 } 1323 1324 return error; 1325 } 1326 1327 static long posix_cpu_nsleep_restart(struct restart_block *restart_block); 1328 1329 static int posix_cpu_nsleep(const clockid_t which_clock, int flags, 1330 const struct timespec64 *rqtp) 1331 { 1332 struct restart_block *restart_block = ¤t->restart_block; 1333 int error; 1334 1335 /* 1336 * Diagnose required errors first. 1337 */ 1338 if (CPUCLOCK_PERTHREAD(which_clock) && 1339 (CPUCLOCK_PID(which_clock) == 0 || 1340 CPUCLOCK_PID(which_clock) == task_pid_vnr(current))) 1341 return -EINVAL; 1342 1343 error = do_cpu_nanosleep(which_clock, flags, rqtp); 1344 1345 if (error == -ERESTART_RESTARTBLOCK) { 1346 1347 if (flags & TIMER_ABSTIME) 1348 return -ERESTARTNOHAND; 1349 1350 restart_block->fn = posix_cpu_nsleep_restart; 1351 restart_block->nanosleep.clockid = which_clock; 1352 } 1353 return error; 1354 } 1355 1356 static long posix_cpu_nsleep_restart(struct restart_block *restart_block) 1357 { 1358 clockid_t which_clock = restart_block->nanosleep.clockid; 1359 struct timespec64 t; 1360 1361 t = ns_to_timespec64(restart_block->nanosleep.expires); 1362 1363 return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t); 1364 } 1365 1366 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED) 1367 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED) 1368 1369 static int process_cpu_clock_getres(const clockid_t which_clock, 1370 struct timespec64 *tp) 1371 { 1372 return posix_cpu_clock_getres(PROCESS_CLOCK, tp); 1373 } 1374 static int process_cpu_clock_get(const clockid_t which_clock, 1375 struct timespec64 *tp) 1376 { 1377 return posix_cpu_clock_get(PROCESS_CLOCK, tp); 1378 } 1379 static int process_cpu_timer_create(struct k_itimer *timer) 1380 { 1381 timer->it_clock = PROCESS_CLOCK; 1382 return posix_cpu_timer_create(timer); 1383 } 1384 static int process_cpu_nsleep(const clockid_t which_clock, int flags, 1385 const struct timespec64 *rqtp) 1386 { 1387 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp); 1388 } 1389 static int thread_cpu_clock_getres(const clockid_t which_clock, 1390 struct timespec64 *tp) 1391 { 1392 return posix_cpu_clock_getres(THREAD_CLOCK, tp); 1393 } 1394 static int thread_cpu_clock_get(const clockid_t which_clock, 1395 struct timespec64 *tp) 1396 { 1397 return posix_cpu_clock_get(THREAD_CLOCK, tp); 1398 } 1399 static int thread_cpu_timer_create(struct k_itimer *timer) 1400 { 1401 timer->it_clock = THREAD_CLOCK; 1402 return posix_cpu_timer_create(timer); 1403 } 1404 1405 const struct k_clock clock_posix_cpu = { 1406 .clock_getres = posix_cpu_clock_getres, 1407 .clock_set = posix_cpu_clock_set, 1408 .clock_get = posix_cpu_clock_get, 1409 .timer_create = posix_cpu_timer_create, 1410 .nsleep = posix_cpu_nsleep, 1411 .timer_set = posix_cpu_timer_set, 1412 .timer_del = posix_cpu_timer_del, 1413 .timer_get = posix_cpu_timer_get, 1414 .timer_rearm = posix_cpu_timer_rearm, 1415 }; 1416 1417 const struct k_clock clock_process = { 1418 .clock_getres = process_cpu_clock_getres, 1419 .clock_get = process_cpu_clock_get, 1420 .timer_create = process_cpu_timer_create, 1421 .nsleep = process_cpu_nsleep, 1422 }; 1423 1424 const struct k_clock clock_thread = { 1425 .clock_getres = thread_cpu_clock_getres, 1426 .clock_get = thread_cpu_clock_get, 1427 .timer_create = thread_cpu_timer_create, 1428 }; 1429