1 /* 2 * Implement CPU time clocks for the POSIX clock interface. 3 */ 4 5 #include <linux/sched.h> 6 #include <linux/posix-timers.h> 7 #include <linux/errno.h> 8 #include <linux/math64.h> 9 #include <asm/uaccess.h> 10 #include <linux/kernel_stat.h> 11 #include <trace/events/timer.h> 12 #include <linux/random.h> 13 #include <linux/tick.h> 14 #include <linux/workqueue.h> 15 16 /* 17 * Called after updating RLIMIT_CPU to run cpu timer and update 18 * tsk->signal->cputime_expires expiration cache if necessary. Needs 19 * siglock protection since other code may update expiration cache as 20 * well. 21 */ 22 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new) 23 { 24 cputime_t cputime = secs_to_cputime(rlim_new); 25 26 spin_lock_irq(&task->sighand->siglock); 27 set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL); 28 spin_unlock_irq(&task->sighand->siglock); 29 } 30 31 static int check_clock(const clockid_t which_clock) 32 { 33 int error = 0; 34 struct task_struct *p; 35 const pid_t pid = CPUCLOCK_PID(which_clock); 36 37 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX) 38 return -EINVAL; 39 40 if (pid == 0) 41 return 0; 42 43 rcu_read_lock(); 44 p = find_task_by_vpid(pid); 45 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ? 46 same_thread_group(p, current) : has_group_leader_pid(p))) { 47 error = -EINVAL; 48 } 49 rcu_read_unlock(); 50 51 return error; 52 } 53 54 static inline unsigned long long 55 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp) 56 { 57 unsigned long long ret; 58 59 ret = 0; /* high half always zero when .cpu used */ 60 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { 61 ret = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec; 62 } else { 63 ret = cputime_to_expires(timespec_to_cputime(tp)); 64 } 65 return ret; 66 } 67 68 static void sample_to_timespec(const clockid_t which_clock, 69 unsigned long long expires, 70 struct timespec *tp) 71 { 72 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) 73 *tp = ns_to_timespec(expires); 74 else 75 cputime_to_timespec((__force cputime_t)expires, tp); 76 } 77 78 /* 79 * Update expiry time from increment, and increase overrun count, 80 * given the current clock sample. 81 */ 82 static void bump_cpu_timer(struct k_itimer *timer, 83 unsigned long long now) 84 { 85 int i; 86 unsigned long long delta, incr; 87 88 if (timer->it.cpu.incr == 0) 89 return; 90 91 if (now < timer->it.cpu.expires) 92 return; 93 94 incr = timer->it.cpu.incr; 95 delta = now + incr - timer->it.cpu.expires; 96 97 /* Don't use (incr*2 < delta), incr*2 might overflow. */ 98 for (i = 0; incr < delta - incr; i++) 99 incr = incr << 1; 100 101 for (; i >= 0; incr >>= 1, i--) { 102 if (delta < incr) 103 continue; 104 105 timer->it.cpu.expires += incr; 106 timer->it_overrun += 1 << i; 107 delta -= incr; 108 } 109 } 110 111 /** 112 * task_cputime_zero - Check a task_cputime struct for all zero fields. 113 * 114 * @cputime: The struct to compare. 115 * 116 * Checks @cputime to see if all fields are zero. Returns true if all fields 117 * are zero, false if any field is nonzero. 118 */ 119 static inline int task_cputime_zero(const struct task_cputime *cputime) 120 { 121 if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime) 122 return 1; 123 return 0; 124 } 125 126 static inline unsigned long long prof_ticks(struct task_struct *p) 127 { 128 cputime_t utime, stime; 129 130 task_cputime(p, &utime, &stime); 131 132 return cputime_to_expires(utime + stime); 133 } 134 static inline unsigned long long virt_ticks(struct task_struct *p) 135 { 136 cputime_t utime; 137 138 task_cputime(p, &utime, NULL); 139 140 return cputime_to_expires(utime); 141 } 142 143 static int 144 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp) 145 { 146 int error = check_clock(which_clock); 147 if (!error) { 148 tp->tv_sec = 0; 149 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ); 150 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { 151 /* 152 * If sched_clock is using a cycle counter, we 153 * don't have any idea of its true resolution 154 * exported, but it is much more than 1s/HZ. 155 */ 156 tp->tv_nsec = 1; 157 } 158 } 159 return error; 160 } 161 162 static int 163 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp) 164 { 165 /* 166 * You can never reset a CPU clock, but we check for other errors 167 * in the call before failing with EPERM. 168 */ 169 int error = check_clock(which_clock); 170 if (error == 0) { 171 error = -EPERM; 172 } 173 return error; 174 } 175 176 177 /* 178 * Sample a per-thread clock for the given task. 179 */ 180 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p, 181 unsigned long long *sample) 182 { 183 switch (CPUCLOCK_WHICH(which_clock)) { 184 default: 185 return -EINVAL; 186 case CPUCLOCK_PROF: 187 *sample = prof_ticks(p); 188 break; 189 case CPUCLOCK_VIRT: 190 *sample = virt_ticks(p); 191 break; 192 case CPUCLOCK_SCHED: 193 *sample = task_sched_runtime(p); 194 break; 195 } 196 return 0; 197 } 198 199 /* 200 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg 201 * to avoid race conditions with concurrent updates to cputime. 202 */ 203 static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime) 204 { 205 u64 curr_cputime; 206 retry: 207 curr_cputime = atomic64_read(cputime); 208 if (sum_cputime > curr_cputime) { 209 if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime) 210 goto retry; 211 } 212 } 213 214 static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum) 215 { 216 __update_gt_cputime(&cputime_atomic->utime, sum->utime); 217 __update_gt_cputime(&cputime_atomic->stime, sum->stime); 218 __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime); 219 } 220 221 /* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */ 222 static inline void sample_cputime_atomic(struct task_cputime *times, 223 struct task_cputime_atomic *atomic_times) 224 { 225 times->utime = atomic64_read(&atomic_times->utime); 226 times->stime = atomic64_read(&atomic_times->stime); 227 times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime); 228 } 229 230 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times) 231 { 232 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; 233 struct task_cputime sum; 234 235 /* Check if cputimer isn't running. This is accessed without locking. */ 236 if (!READ_ONCE(cputimer->running)) { 237 /* 238 * The POSIX timer interface allows for absolute time expiry 239 * values through the TIMER_ABSTIME flag, therefore we have 240 * to synchronize the timer to the clock every time we start it. 241 */ 242 thread_group_cputime(tsk, &sum); 243 update_gt_cputime(&cputimer->cputime_atomic, &sum); 244 245 /* 246 * We're setting cputimer->running without a lock. Ensure 247 * this only gets written to in one operation. We set 248 * running after update_gt_cputime() as a small optimization, 249 * but barriers are not required because update_gt_cputime() 250 * can handle concurrent updates. 251 */ 252 WRITE_ONCE(cputimer->running, true); 253 } 254 sample_cputime_atomic(times, &cputimer->cputime_atomic); 255 } 256 257 /* 258 * Sample a process (thread group) clock for the given group_leader task. 259 * Must be called with task sighand lock held for safe while_each_thread() 260 * traversal. 261 */ 262 static int cpu_clock_sample_group(const clockid_t which_clock, 263 struct task_struct *p, 264 unsigned long long *sample) 265 { 266 struct task_cputime cputime; 267 268 switch (CPUCLOCK_WHICH(which_clock)) { 269 default: 270 return -EINVAL; 271 case CPUCLOCK_PROF: 272 thread_group_cputime(p, &cputime); 273 *sample = cputime_to_expires(cputime.utime + cputime.stime); 274 break; 275 case CPUCLOCK_VIRT: 276 thread_group_cputime(p, &cputime); 277 *sample = cputime_to_expires(cputime.utime); 278 break; 279 case CPUCLOCK_SCHED: 280 thread_group_cputime(p, &cputime); 281 *sample = cputime.sum_exec_runtime; 282 break; 283 } 284 return 0; 285 } 286 287 static int posix_cpu_clock_get_task(struct task_struct *tsk, 288 const clockid_t which_clock, 289 struct timespec *tp) 290 { 291 int err = -EINVAL; 292 unsigned long long rtn; 293 294 if (CPUCLOCK_PERTHREAD(which_clock)) { 295 if (same_thread_group(tsk, current)) 296 err = cpu_clock_sample(which_clock, tsk, &rtn); 297 } else { 298 if (tsk == current || thread_group_leader(tsk)) 299 err = cpu_clock_sample_group(which_clock, tsk, &rtn); 300 } 301 302 if (!err) 303 sample_to_timespec(which_clock, rtn, tp); 304 305 return err; 306 } 307 308 309 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp) 310 { 311 const pid_t pid = CPUCLOCK_PID(which_clock); 312 int err = -EINVAL; 313 314 if (pid == 0) { 315 /* 316 * Special case constant value for our own clocks. 317 * We don't have to do any lookup to find ourselves. 318 */ 319 err = posix_cpu_clock_get_task(current, which_clock, tp); 320 } else { 321 /* 322 * Find the given PID, and validate that the caller 323 * should be able to see it. 324 */ 325 struct task_struct *p; 326 rcu_read_lock(); 327 p = find_task_by_vpid(pid); 328 if (p) 329 err = posix_cpu_clock_get_task(p, which_clock, tp); 330 rcu_read_unlock(); 331 } 332 333 return err; 334 } 335 336 /* 337 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer. 338 * This is called from sys_timer_create() and do_cpu_nanosleep() with the 339 * new timer already all-zeros initialized. 340 */ 341 static int posix_cpu_timer_create(struct k_itimer *new_timer) 342 { 343 int ret = 0; 344 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock); 345 struct task_struct *p; 346 347 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX) 348 return -EINVAL; 349 350 INIT_LIST_HEAD(&new_timer->it.cpu.entry); 351 352 rcu_read_lock(); 353 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) { 354 if (pid == 0) { 355 p = current; 356 } else { 357 p = find_task_by_vpid(pid); 358 if (p && !same_thread_group(p, current)) 359 p = NULL; 360 } 361 } else { 362 if (pid == 0) { 363 p = current->group_leader; 364 } else { 365 p = find_task_by_vpid(pid); 366 if (p && !has_group_leader_pid(p)) 367 p = NULL; 368 } 369 } 370 new_timer->it.cpu.task = p; 371 if (p) { 372 get_task_struct(p); 373 } else { 374 ret = -EINVAL; 375 } 376 rcu_read_unlock(); 377 378 return ret; 379 } 380 381 /* 382 * Clean up a CPU-clock timer that is about to be destroyed. 383 * This is called from timer deletion with the timer already locked. 384 * If we return TIMER_RETRY, it's necessary to release the timer's lock 385 * and try again. (This happens when the timer is in the middle of firing.) 386 */ 387 static int posix_cpu_timer_del(struct k_itimer *timer) 388 { 389 int ret = 0; 390 unsigned long flags; 391 struct sighand_struct *sighand; 392 struct task_struct *p = timer->it.cpu.task; 393 394 WARN_ON_ONCE(p == NULL); 395 396 /* 397 * Protect against sighand release/switch in exit/exec and process/ 398 * thread timer list entry concurrent read/writes. 399 */ 400 sighand = lock_task_sighand(p, &flags); 401 if (unlikely(sighand == NULL)) { 402 /* 403 * We raced with the reaping of the task. 404 * The deletion should have cleared us off the list. 405 */ 406 WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry)); 407 } else { 408 if (timer->it.cpu.firing) 409 ret = TIMER_RETRY; 410 else 411 list_del(&timer->it.cpu.entry); 412 413 unlock_task_sighand(p, &flags); 414 } 415 416 if (!ret) 417 put_task_struct(p); 418 419 return ret; 420 } 421 422 static void cleanup_timers_list(struct list_head *head) 423 { 424 struct cpu_timer_list *timer, *next; 425 426 list_for_each_entry_safe(timer, next, head, entry) 427 list_del_init(&timer->entry); 428 } 429 430 /* 431 * Clean out CPU timers still ticking when a thread exited. The task 432 * pointer is cleared, and the expiry time is replaced with the residual 433 * time for later timer_gettime calls to return. 434 * This must be called with the siglock held. 435 */ 436 static void cleanup_timers(struct list_head *head) 437 { 438 cleanup_timers_list(head); 439 cleanup_timers_list(++head); 440 cleanup_timers_list(++head); 441 } 442 443 /* 444 * These are both called with the siglock held, when the current thread 445 * is being reaped. When the final (leader) thread in the group is reaped, 446 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit. 447 */ 448 void posix_cpu_timers_exit(struct task_struct *tsk) 449 { 450 add_device_randomness((const void*) &tsk->se.sum_exec_runtime, 451 sizeof(unsigned long long)); 452 cleanup_timers(tsk->cpu_timers); 453 454 } 455 void posix_cpu_timers_exit_group(struct task_struct *tsk) 456 { 457 cleanup_timers(tsk->signal->cpu_timers); 458 } 459 460 static inline int expires_gt(cputime_t expires, cputime_t new_exp) 461 { 462 return expires == 0 || expires > new_exp; 463 } 464 465 /* 466 * Insert the timer on the appropriate list before any timers that 467 * expire later. This must be called with the sighand lock held. 468 */ 469 static void arm_timer(struct k_itimer *timer) 470 { 471 struct task_struct *p = timer->it.cpu.task; 472 struct list_head *head, *listpos; 473 struct task_cputime *cputime_expires; 474 struct cpu_timer_list *const nt = &timer->it.cpu; 475 struct cpu_timer_list *next; 476 477 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 478 head = p->cpu_timers; 479 cputime_expires = &p->cputime_expires; 480 } else { 481 head = p->signal->cpu_timers; 482 cputime_expires = &p->signal->cputime_expires; 483 } 484 head += CPUCLOCK_WHICH(timer->it_clock); 485 486 listpos = head; 487 list_for_each_entry(next, head, entry) { 488 if (nt->expires < next->expires) 489 break; 490 listpos = &next->entry; 491 } 492 list_add(&nt->entry, listpos); 493 494 if (listpos == head) { 495 unsigned long long exp = nt->expires; 496 497 /* 498 * We are the new earliest-expiring POSIX 1.b timer, hence 499 * need to update expiration cache. Take into account that 500 * for process timers we share expiration cache with itimers 501 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME. 502 */ 503 504 switch (CPUCLOCK_WHICH(timer->it_clock)) { 505 case CPUCLOCK_PROF: 506 if (expires_gt(cputime_expires->prof_exp, expires_to_cputime(exp))) 507 cputime_expires->prof_exp = expires_to_cputime(exp); 508 break; 509 case CPUCLOCK_VIRT: 510 if (expires_gt(cputime_expires->virt_exp, expires_to_cputime(exp))) 511 cputime_expires->virt_exp = expires_to_cputime(exp); 512 break; 513 case CPUCLOCK_SCHED: 514 if (cputime_expires->sched_exp == 0 || 515 cputime_expires->sched_exp > exp) 516 cputime_expires->sched_exp = exp; 517 break; 518 } 519 if (CPUCLOCK_PERTHREAD(timer->it_clock)) 520 tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER); 521 else 522 tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER); 523 } 524 } 525 526 /* 527 * The timer is locked, fire it and arrange for its reload. 528 */ 529 static void cpu_timer_fire(struct k_itimer *timer) 530 { 531 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { 532 /* 533 * User don't want any signal. 534 */ 535 timer->it.cpu.expires = 0; 536 } else if (unlikely(timer->sigq == NULL)) { 537 /* 538 * This a special case for clock_nanosleep, 539 * not a normal timer from sys_timer_create. 540 */ 541 wake_up_process(timer->it_process); 542 timer->it.cpu.expires = 0; 543 } else if (timer->it.cpu.incr == 0) { 544 /* 545 * One-shot timer. Clear it as soon as it's fired. 546 */ 547 posix_timer_event(timer, 0); 548 timer->it.cpu.expires = 0; 549 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) { 550 /* 551 * The signal did not get queued because the signal 552 * was ignored, so we won't get any callback to 553 * reload the timer. But we need to keep it 554 * ticking in case the signal is deliverable next time. 555 */ 556 posix_cpu_timer_schedule(timer); 557 } 558 } 559 560 /* 561 * Sample a process (thread group) timer for the given group_leader task. 562 * Must be called with task sighand lock held for safe while_each_thread() 563 * traversal. 564 */ 565 static int cpu_timer_sample_group(const clockid_t which_clock, 566 struct task_struct *p, 567 unsigned long long *sample) 568 { 569 struct task_cputime cputime; 570 571 thread_group_cputimer(p, &cputime); 572 switch (CPUCLOCK_WHICH(which_clock)) { 573 default: 574 return -EINVAL; 575 case CPUCLOCK_PROF: 576 *sample = cputime_to_expires(cputime.utime + cputime.stime); 577 break; 578 case CPUCLOCK_VIRT: 579 *sample = cputime_to_expires(cputime.utime); 580 break; 581 case CPUCLOCK_SCHED: 582 *sample = cputime.sum_exec_runtime; 583 break; 584 } 585 return 0; 586 } 587 588 /* 589 * Guts of sys_timer_settime for CPU timers. 590 * This is called with the timer locked and interrupts disabled. 591 * If we return TIMER_RETRY, it's necessary to release the timer's lock 592 * and try again. (This happens when the timer is in the middle of firing.) 593 */ 594 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags, 595 struct itimerspec *new, struct itimerspec *old) 596 { 597 unsigned long flags; 598 struct sighand_struct *sighand; 599 struct task_struct *p = timer->it.cpu.task; 600 unsigned long long old_expires, new_expires, old_incr, val; 601 int ret; 602 603 WARN_ON_ONCE(p == NULL); 604 605 new_expires = timespec_to_sample(timer->it_clock, &new->it_value); 606 607 /* 608 * Protect against sighand release/switch in exit/exec and p->cpu_timers 609 * and p->signal->cpu_timers read/write in arm_timer() 610 */ 611 sighand = lock_task_sighand(p, &flags); 612 /* 613 * If p has just been reaped, we can no 614 * longer get any information about it at all. 615 */ 616 if (unlikely(sighand == NULL)) { 617 return -ESRCH; 618 } 619 620 /* 621 * Disarm any old timer after extracting its expiry time. 622 */ 623 WARN_ON_ONCE(!irqs_disabled()); 624 625 ret = 0; 626 old_incr = timer->it.cpu.incr; 627 old_expires = timer->it.cpu.expires; 628 if (unlikely(timer->it.cpu.firing)) { 629 timer->it.cpu.firing = -1; 630 ret = TIMER_RETRY; 631 } else 632 list_del_init(&timer->it.cpu.entry); 633 634 /* 635 * We need to sample the current value to convert the new 636 * value from to relative and absolute, and to convert the 637 * old value from absolute to relative. To set a process 638 * timer, we need a sample to balance the thread expiry 639 * times (in arm_timer). With an absolute time, we must 640 * check if it's already passed. In short, we need a sample. 641 */ 642 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 643 cpu_clock_sample(timer->it_clock, p, &val); 644 } else { 645 cpu_timer_sample_group(timer->it_clock, p, &val); 646 } 647 648 if (old) { 649 if (old_expires == 0) { 650 old->it_value.tv_sec = 0; 651 old->it_value.tv_nsec = 0; 652 } else { 653 /* 654 * Update the timer in case it has 655 * overrun already. If it has, 656 * we'll report it as having overrun 657 * and with the next reloaded timer 658 * already ticking, though we are 659 * swallowing that pending 660 * notification here to install the 661 * new setting. 662 */ 663 bump_cpu_timer(timer, val); 664 if (val < timer->it.cpu.expires) { 665 old_expires = timer->it.cpu.expires - val; 666 sample_to_timespec(timer->it_clock, 667 old_expires, 668 &old->it_value); 669 } else { 670 old->it_value.tv_nsec = 1; 671 old->it_value.tv_sec = 0; 672 } 673 } 674 } 675 676 if (unlikely(ret)) { 677 /* 678 * We are colliding with the timer actually firing. 679 * Punt after filling in the timer's old value, and 680 * disable this firing since we are already reporting 681 * it as an overrun (thanks to bump_cpu_timer above). 682 */ 683 unlock_task_sighand(p, &flags); 684 goto out; 685 } 686 687 if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) { 688 new_expires += val; 689 } 690 691 /* 692 * Install the new expiry time (or zero). 693 * For a timer with no notification action, we don't actually 694 * arm the timer (we'll just fake it for timer_gettime). 695 */ 696 timer->it.cpu.expires = new_expires; 697 if (new_expires != 0 && val < new_expires) { 698 arm_timer(timer); 699 } 700 701 unlock_task_sighand(p, &flags); 702 /* 703 * Install the new reload setting, and 704 * set up the signal and overrun bookkeeping. 705 */ 706 timer->it.cpu.incr = timespec_to_sample(timer->it_clock, 707 &new->it_interval); 708 709 /* 710 * This acts as a modification timestamp for the timer, 711 * so any automatic reload attempt will punt on seeing 712 * that we have reset the timer manually. 713 */ 714 timer->it_requeue_pending = (timer->it_requeue_pending + 2) & 715 ~REQUEUE_PENDING; 716 timer->it_overrun_last = 0; 717 timer->it_overrun = -1; 718 719 if (new_expires != 0 && !(val < new_expires)) { 720 /* 721 * The designated time already passed, so we notify 722 * immediately, even if the thread never runs to 723 * accumulate more time on this clock. 724 */ 725 cpu_timer_fire(timer); 726 } 727 728 ret = 0; 729 out: 730 if (old) { 731 sample_to_timespec(timer->it_clock, 732 old_incr, &old->it_interval); 733 } 734 735 return ret; 736 } 737 738 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp) 739 { 740 unsigned long long now; 741 struct task_struct *p = timer->it.cpu.task; 742 743 WARN_ON_ONCE(p == NULL); 744 745 /* 746 * Easy part: convert the reload time. 747 */ 748 sample_to_timespec(timer->it_clock, 749 timer->it.cpu.incr, &itp->it_interval); 750 751 if (timer->it.cpu.expires == 0) { /* Timer not armed at all. */ 752 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0; 753 return; 754 } 755 756 /* 757 * Sample the clock to take the difference with the expiry time. 758 */ 759 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 760 cpu_clock_sample(timer->it_clock, p, &now); 761 } else { 762 struct sighand_struct *sighand; 763 unsigned long flags; 764 765 /* 766 * Protect against sighand release/switch in exit/exec and 767 * also make timer sampling safe if it ends up calling 768 * thread_group_cputime(). 769 */ 770 sighand = lock_task_sighand(p, &flags); 771 if (unlikely(sighand == NULL)) { 772 /* 773 * The process has been reaped. 774 * We can't even collect a sample any more. 775 * Call the timer disarmed, nothing else to do. 776 */ 777 timer->it.cpu.expires = 0; 778 sample_to_timespec(timer->it_clock, timer->it.cpu.expires, 779 &itp->it_value); 780 } else { 781 cpu_timer_sample_group(timer->it_clock, p, &now); 782 unlock_task_sighand(p, &flags); 783 } 784 } 785 786 if (now < timer->it.cpu.expires) { 787 sample_to_timespec(timer->it_clock, 788 timer->it.cpu.expires - now, 789 &itp->it_value); 790 } else { 791 /* 792 * The timer should have expired already, but the firing 793 * hasn't taken place yet. Say it's just about to expire. 794 */ 795 itp->it_value.tv_nsec = 1; 796 itp->it_value.tv_sec = 0; 797 } 798 } 799 800 static unsigned long long 801 check_timers_list(struct list_head *timers, 802 struct list_head *firing, 803 unsigned long long curr) 804 { 805 int maxfire = 20; 806 807 while (!list_empty(timers)) { 808 struct cpu_timer_list *t; 809 810 t = list_first_entry(timers, struct cpu_timer_list, entry); 811 812 if (!--maxfire || curr < t->expires) 813 return t->expires; 814 815 t->firing = 1; 816 list_move_tail(&t->entry, firing); 817 } 818 819 return 0; 820 } 821 822 /* 823 * Check for any per-thread CPU timers that have fired and move them off 824 * the tsk->cpu_timers[N] list onto the firing list. Here we update the 825 * tsk->it_*_expires values to reflect the remaining thread CPU timers. 826 */ 827 static void check_thread_timers(struct task_struct *tsk, 828 struct list_head *firing) 829 { 830 struct list_head *timers = tsk->cpu_timers; 831 struct signal_struct *const sig = tsk->signal; 832 struct task_cputime *tsk_expires = &tsk->cputime_expires; 833 unsigned long long expires; 834 unsigned long soft; 835 836 /* 837 * If cputime_expires is zero, then there are no active 838 * per thread CPU timers. 839 */ 840 if (task_cputime_zero(&tsk->cputime_expires)) 841 return; 842 843 expires = check_timers_list(timers, firing, prof_ticks(tsk)); 844 tsk_expires->prof_exp = expires_to_cputime(expires); 845 846 expires = check_timers_list(++timers, firing, virt_ticks(tsk)); 847 tsk_expires->virt_exp = expires_to_cputime(expires); 848 849 tsk_expires->sched_exp = check_timers_list(++timers, firing, 850 tsk->se.sum_exec_runtime); 851 852 /* 853 * Check for the special case thread timers. 854 */ 855 soft = READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur); 856 if (soft != RLIM_INFINITY) { 857 unsigned long hard = 858 READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max); 859 860 if (hard != RLIM_INFINITY && 861 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) { 862 /* 863 * At the hard limit, we just die. 864 * No need to calculate anything else now. 865 */ 866 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); 867 return; 868 } 869 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) { 870 /* 871 * At the soft limit, send a SIGXCPU every second. 872 */ 873 if (soft < hard) { 874 soft += USEC_PER_SEC; 875 sig->rlim[RLIMIT_RTTIME].rlim_cur = soft; 876 } 877 printk(KERN_INFO 878 "RT Watchdog Timeout: %s[%d]\n", 879 tsk->comm, task_pid_nr(tsk)); 880 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); 881 } 882 } 883 if (task_cputime_zero(tsk_expires)) 884 tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER); 885 } 886 887 static inline void stop_process_timers(struct signal_struct *sig) 888 { 889 struct thread_group_cputimer *cputimer = &sig->cputimer; 890 891 /* Turn off cputimer->running. This is done without locking. */ 892 WRITE_ONCE(cputimer->running, false); 893 tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER); 894 } 895 896 static u32 onecputick; 897 898 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it, 899 unsigned long long *expires, 900 unsigned long long cur_time, int signo) 901 { 902 if (!it->expires) 903 return; 904 905 if (cur_time >= it->expires) { 906 if (it->incr) { 907 it->expires += it->incr; 908 it->error += it->incr_error; 909 if (it->error >= onecputick) { 910 it->expires -= cputime_one_jiffy; 911 it->error -= onecputick; 912 } 913 } else { 914 it->expires = 0; 915 } 916 917 trace_itimer_expire(signo == SIGPROF ? 918 ITIMER_PROF : ITIMER_VIRTUAL, 919 tsk->signal->leader_pid, cur_time); 920 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk); 921 } 922 923 if (it->expires && (!*expires || it->expires < *expires)) { 924 *expires = it->expires; 925 } 926 } 927 928 /* 929 * Check for any per-thread CPU timers that have fired and move them 930 * off the tsk->*_timers list onto the firing list. Per-thread timers 931 * have already been taken off. 932 */ 933 static void check_process_timers(struct task_struct *tsk, 934 struct list_head *firing) 935 { 936 struct signal_struct *const sig = tsk->signal; 937 unsigned long long utime, ptime, virt_expires, prof_expires; 938 unsigned long long sum_sched_runtime, sched_expires; 939 struct list_head *timers = sig->cpu_timers; 940 struct task_cputime cputime; 941 unsigned long soft; 942 943 /* 944 * If cputimer is not running, then there are no active 945 * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU). 946 */ 947 if (!READ_ONCE(tsk->signal->cputimer.running)) 948 return; 949 950 /* 951 * Signify that a thread is checking for process timers. 952 * Write access to this field is protected by the sighand lock. 953 */ 954 sig->cputimer.checking_timer = true; 955 956 /* 957 * Collect the current process totals. 958 */ 959 thread_group_cputimer(tsk, &cputime); 960 utime = cputime_to_expires(cputime.utime); 961 ptime = utime + cputime_to_expires(cputime.stime); 962 sum_sched_runtime = cputime.sum_exec_runtime; 963 964 prof_expires = check_timers_list(timers, firing, ptime); 965 virt_expires = check_timers_list(++timers, firing, utime); 966 sched_expires = check_timers_list(++timers, firing, sum_sched_runtime); 967 968 /* 969 * Check for the special case process timers. 970 */ 971 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime, 972 SIGPROF); 973 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime, 974 SIGVTALRM); 975 soft = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 976 if (soft != RLIM_INFINITY) { 977 unsigned long psecs = cputime_to_secs(ptime); 978 unsigned long hard = 979 READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_max); 980 cputime_t x; 981 if (psecs >= hard) { 982 /* 983 * At the hard limit, we just die. 984 * No need to calculate anything else now. 985 */ 986 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); 987 return; 988 } 989 if (psecs >= soft) { 990 /* 991 * At the soft limit, send a SIGXCPU every second. 992 */ 993 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); 994 if (soft < hard) { 995 soft++; 996 sig->rlim[RLIMIT_CPU].rlim_cur = soft; 997 } 998 } 999 x = secs_to_cputime(soft); 1000 if (!prof_expires || x < prof_expires) { 1001 prof_expires = x; 1002 } 1003 } 1004 1005 sig->cputime_expires.prof_exp = expires_to_cputime(prof_expires); 1006 sig->cputime_expires.virt_exp = expires_to_cputime(virt_expires); 1007 sig->cputime_expires.sched_exp = sched_expires; 1008 if (task_cputime_zero(&sig->cputime_expires)) 1009 stop_process_timers(sig); 1010 1011 sig->cputimer.checking_timer = false; 1012 } 1013 1014 /* 1015 * This is called from the signal code (via do_schedule_next_timer) 1016 * when the last timer signal was delivered and we have to reload the timer. 1017 */ 1018 void posix_cpu_timer_schedule(struct k_itimer *timer) 1019 { 1020 struct sighand_struct *sighand; 1021 unsigned long flags; 1022 struct task_struct *p = timer->it.cpu.task; 1023 unsigned long long now; 1024 1025 WARN_ON_ONCE(p == NULL); 1026 1027 /* 1028 * Fetch the current sample and update the timer's expiry time. 1029 */ 1030 if (CPUCLOCK_PERTHREAD(timer->it_clock)) { 1031 cpu_clock_sample(timer->it_clock, p, &now); 1032 bump_cpu_timer(timer, now); 1033 if (unlikely(p->exit_state)) 1034 goto out; 1035 1036 /* Protect timer list r/w in arm_timer() */ 1037 sighand = lock_task_sighand(p, &flags); 1038 if (!sighand) 1039 goto out; 1040 } else { 1041 /* 1042 * Protect arm_timer() and timer sampling in case of call to 1043 * thread_group_cputime(). 1044 */ 1045 sighand = lock_task_sighand(p, &flags); 1046 if (unlikely(sighand == NULL)) { 1047 /* 1048 * The process has been reaped. 1049 * We can't even collect a sample any more. 1050 */ 1051 timer->it.cpu.expires = 0; 1052 goto out; 1053 } else if (unlikely(p->exit_state) && thread_group_empty(p)) { 1054 unlock_task_sighand(p, &flags); 1055 /* Optimizations: if the process is dying, no need to rearm */ 1056 goto out; 1057 } 1058 cpu_timer_sample_group(timer->it_clock, p, &now); 1059 bump_cpu_timer(timer, now); 1060 /* Leave the sighand locked for the call below. */ 1061 } 1062 1063 /* 1064 * Now re-arm for the new expiry time. 1065 */ 1066 WARN_ON_ONCE(!irqs_disabled()); 1067 arm_timer(timer); 1068 unlock_task_sighand(p, &flags); 1069 1070 out: 1071 timer->it_overrun_last = timer->it_overrun; 1072 timer->it_overrun = -1; 1073 ++timer->it_requeue_pending; 1074 } 1075 1076 /** 1077 * task_cputime_expired - Compare two task_cputime entities. 1078 * 1079 * @sample: The task_cputime structure to be checked for expiration. 1080 * @expires: Expiration times, against which @sample will be checked. 1081 * 1082 * Checks @sample against @expires to see if any field of @sample has expired. 1083 * Returns true if any field of the former is greater than the corresponding 1084 * field of the latter if the latter field is set. Otherwise returns false. 1085 */ 1086 static inline int task_cputime_expired(const struct task_cputime *sample, 1087 const struct task_cputime *expires) 1088 { 1089 if (expires->utime && sample->utime >= expires->utime) 1090 return 1; 1091 if (expires->stime && sample->utime + sample->stime >= expires->stime) 1092 return 1; 1093 if (expires->sum_exec_runtime != 0 && 1094 sample->sum_exec_runtime >= expires->sum_exec_runtime) 1095 return 1; 1096 return 0; 1097 } 1098 1099 /** 1100 * fastpath_timer_check - POSIX CPU timers fast path. 1101 * 1102 * @tsk: The task (thread) being checked. 1103 * 1104 * Check the task and thread group timers. If both are zero (there are no 1105 * timers set) return false. Otherwise snapshot the task and thread group 1106 * timers and compare them with the corresponding expiration times. Return 1107 * true if a timer has expired, else return false. 1108 */ 1109 static inline int fastpath_timer_check(struct task_struct *tsk) 1110 { 1111 struct signal_struct *sig; 1112 1113 if (!task_cputime_zero(&tsk->cputime_expires)) { 1114 struct task_cputime task_sample; 1115 1116 task_cputime(tsk, &task_sample.utime, &task_sample.stime); 1117 task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime; 1118 if (task_cputime_expired(&task_sample, &tsk->cputime_expires)) 1119 return 1; 1120 } 1121 1122 sig = tsk->signal; 1123 /* 1124 * Check if thread group timers expired when the cputimer is 1125 * running and no other thread in the group is already checking 1126 * for thread group cputimers. These fields are read without the 1127 * sighand lock. However, this is fine because this is meant to 1128 * be a fastpath heuristic to determine whether we should try to 1129 * acquire the sighand lock to check/handle timers. 1130 * 1131 * In the worst case scenario, if 'running' or 'checking_timer' gets 1132 * set but the current thread doesn't see the change yet, we'll wait 1133 * until the next thread in the group gets a scheduler interrupt to 1134 * handle the timer. This isn't an issue in practice because these 1135 * types of delays with signals actually getting sent are expected. 1136 */ 1137 if (READ_ONCE(sig->cputimer.running) && 1138 !READ_ONCE(sig->cputimer.checking_timer)) { 1139 struct task_cputime group_sample; 1140 1141 sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic); 1142 1143 if (task_cputime_expired(&group_sample, &sig->cputime_expires)) 1144 return 1; 1145 } 1146 1147 return 0; 1148 } 1149 1150 /* 1151 * This is called from the timer interrupt handler. The irq handler has 1152 * already updated our counts. We need to check if any timers fire now. 1153 * Interrupts are disabled. 1154 */ 1155 void run_posix_cpu_timers(struct task_struct *tsk) 1156 { 1157 LIST_HEAD(firing); 1158 struct k_itimer *timer, *next; 1159 unsigned long flags; 1160 1161 WARN_ON_ONCE(!irqs_disabled()); 1162 1163 /* 1164 * The fast path checks that there are no expired thread or thread 1165 * group timers. If that's so, just return. 1166 */ 1167 if (!fastpath_timer_check(tsk)) 1168 return; 1169 1170 if (!lock_task_sighand(tsk, &flags)) 1171 return; 1172 /* 1173 * Here we take off tsk->signal->cpu_timers[N] and 1174 * tsk->cpu_timers[N] all the timers that are firing, and 1175 * put them on the firing list. 1176 */ 1177 check_thread_timers(tsk, &firing); 1178 1179 check_process_timers(tsk, &firing); 1180 1181 /* 1182 * We must release these locks before taking any timer's lock. 1183 * There is a potential race with timer deletion here, as the 1184 * siglock now protects our private firing list. We have set 1185 * the firing flag in each timer, so that a deletion attempt 1186 * that gets the timer lock before we do will give it up and 1187 * spin until we've taken care of that timer below. 1188 */ 1189 unlock_task_sighand(tsk, &flags); 1190 1191 /* 1192 * Now that all the timers on our list have the firing flag, 1193 * no one will touch their list entries but us. We'll take 1194 * each timer's lock before clearing its firing flag, so no 1195 * timer call will interfere. 1196 */ 1197 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) { 1198 int cpu_firing; 1199 1200 spin_lock(&timer->it_lock); 1201 list_del_init(&timer->it.cpu.entry); 1202 cpu_firing = timer->it.cpu.firing; 1203 timer->it.cpu.firing = 0; 1204 /* 1205 * The firing flag is -1 if we collided with a reset 1206 * of the timer, which already reported this 1207 * almost-firing as an overrun. So don't generate an event. 1208 */ 1209 if (likely(cpu_firing >= 0)) 1210 cpu_timer_fire(timer); 1211 spin_unlock(&timer->it_lock); 1212 } 1213 } 1214 1215 /* 1216 * Set one of the process-wide special case CPU timers or RLIMIT_CPU. 1217 * The tsk->sighand->siglock must be held by the caller. 1218 */ 1219 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx, 1220 cputime_t *newval, cputime_t *oldval) 1221 { 1222 unsigned long long now; 1223 1224 WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED); 1225 cpu_timer_sample_group(clock_idx, tsk, &now); 1226 1227 if (oldval) { 1228 /* 1229 * We are setting itimer. The *oldval is absolute and we update 1230 * it to be relative, *newval argument is relative and we update 1231 * it to be absolute. 1232 */ 1233 if (*oldval) { 1234 if (*oldval <= now) { 1235 /* Just about to fire. */ 1236 *oldval = cputime_one_jiffy; 1237 } else { 1238 *oldval -= now; 1239 } 1240 } 1241 1242 if (!*newval) 1243 return; 1244 *newval += now; 1245 } 1246 1247 /* 1248 * Update expiration cache if we are the earliest timer, or eventually 1249 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire. 1250 */ 1251 switch (clock_idx) { 1252 case CPUCLOCK_PROF: 1253 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval)) 1254 tsk->signal->cputime_expires.prof_exp = *newval; 1255 break; 1256 case CPUCLOCK_VIRT: 1257 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval)) 1258 tsk->signal->cputime_expires.virt_exp = *newval; 1259 break; 1260 } 1261 1262 tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER); 1263 } 1264 1265 static int do_cpu_nanosleep(const clockid_t which_clock, int flags, 1266 struct timespec *rqtp, struct itimerspec *it) 1267 { 1268 struct k_itimer timer; 1269 int error; 1270 1271 /* 1272 * Set up a temporary timer and then wait for it to go off. 1273 */ 1274 memset(&timer, 0, sizeof timer); 1275 spin_lock_init(&timer.it_lock); 1276 timer.it_clock = which_clock; 1277 timer.it_overrun = -1; 1278 error = posix_cpu_timer_create(&timer); 1279 timer.it_process = current; 1280 if (!error) { 1281 static struct itimerspec zero_it; 1282 1283 memset(it, 0, sizeof *it); 1284 it->it_value = *rqtp; 1285 1286 spin_lock_irq(&timer.it_lock); 1287 error = posix_cpu_timer_set(&timer, flags, it, NULL); 1288 if (error) { 1289 spin_unlock_irq(&timer.it_lock); 1290 return error; 1291 } 1292 1293 while (!signal_pending(current)) { 1294 if (timer.it.cpu.expires == 0) { 1295 /* 1296 * Our timer fired and was reset, below 1297 * deletion can not fail. 1298 */ 1299 posix_cpu_timer_del(&timer); 1300 spin_unlock_irq(&timer.it_lock); 1301 return 0; 1302 } 1303 1304 /* 1305 * Block until cpu_timer_fire (or a signal) wakes us. 1306 */ 1307 __set_current_state(TASK_INTERRUPTIBLE); 1308 spin_unlock_irq(&timer.it_lock); 1309 schedule(); 1310 spin_lock_irq(&timer.it_lock); 1311 } 1312 1313 /* 1314 * We were interrupted by a signal. 1315 */ 1316 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp); 1317 error = posix_cpu_timer_set(&timer, 0, &zero_it, it); 1318 if (!error) { 1319 /* 1320 * Timer is now unarmed, deletion can not fail. 1321 */ 1322 posix_cpu_timer_del(&timer); 1323 } 1324 spin_unlock_irq(&timer.it_lock); 1325 1326 while (error == TIMER_RETRY) { 1327 /* 1328 * We need to handle case when timer was or is in the 1329 * middle of firing. In other cases we already freed 1330 * resources. 1331 */ 1332 spin_lock_irq(&timer.it_lock); 1333 error = posix_cpu_timer_del(&timer); 1334 spin_unlock_irq(&timer.it_lock); 1335 } 1336 1337 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) { 1338 /* 1339 * It actually did fire already. 1340 */ 1341 return 0; 1342 } 1343 1344 error = -ERESTART_RESTARTBLOCK; 1345 } 1346 1347 return error; 1348 } 1349 1350 static long posix_cpu_nsleep_restart(struct restart_block *restart_block); 1351 1352 static int posix_cpu_nsleep(const clockid_t which_clock, int flags, 1353 struct timespec *rqtp, struct timespec __user *rmtp) 1354 { 1355 struct restart_block *restart_block = ¤t->restart_block; 1356 struct itimerspec it; 1357 int error; 1358 1359 /* 1360 * Diagnose required errors first. 1361 */ 1362 if (CPUCLOCK_PERTHREAD(which_clock) && 1363 (CPUCLOCK_PID(which_clock) == 0 || 1364 CPUCLOCK_PID(which_clock) == current->pid)) 1365 return -EINVAL; 1366 1367 error = do_cpu_nanosleep(which_clock, flags, rqtp, &it); 1368 1369 if (error == -ERESTART_RESTARTBLOCK) { 1370 1371 if (flags & TIMER_ABSTIME) 1372 return -ERESTARTNOHAND; 1373 /* 1374 * Report back to the user the time still remaining. 1375 */ 1376 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp)) 1377 return -EFAULT; 1378 1379 restart_block->fn = posix_cpu_nsleep_restart; 1380 restart_block->nanosleep.clockid = which_clock; 1381 restart_block->nanosleep.rmtp = rmtp; 1382 restart_block->nanosleep.expires = timespec_to_ns(rqtp); 1383 } 1384 return error; 1385 } 1386 1387 static long posix_cpu_nsleep_restart(struct restart_block *restart_block) 1388 { 1389 clockid_t which_clock = restart_block->nanosleep.clockid; 1390 struct timespec t; 1391 struct itimerspec it; 1392 int error; 1393 1394 t = ns_to_timespec(restart_block->nanosleep.expires); 1395 1396 error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it); 1397 1398 if (error == -ERESTART_RESTARTBLOCK) { 1399 struct timespec __user *rmtp = restart_block->nanosleep.rmtp; 1400 /* 1401 * Report back to the user the time still remaining. 1402 */ 1403 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp)) 1404 return -EFAULT; 1405 1406 restart_block->nanosleep.expires = timespec_to_ns(&t); 1407 } 1408 return error; 1409 1410 } 1411 1412 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED) 1413 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED) 1414 1415 static int process_cpu_clock_getres(const clockid_t which_clock, 1416 struct timespec *tp) 1417 { 1418 return posix_cpu_clock_getres(PROCESS_CLOCK, tp); 1419 } 1420 static int process_cpu_clock_get(const clockid_t which_clock, 1421 struct timespec *tp) 1422 { 1423 return posix_cpu_clock_get(PROCESS_CLOCK, tp); 1424 } 1425 static int process_cpu_timer_create(struct k_itimer *timer) 1426 { 1427 timer->it_clock = PROCESS_CLOCK; 1428 return posix_cpu_timer_create(timer); 1429 } 1430 static int process_cpu_nsleep(const clockid_t which_clock, int flags, 1431 struct timespec *rqtp, 1432 struct timespec __user *rmtp) 1433 { 1434 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp); 1435 } 1436 static long process_cpu_nsleep_restart(struct restart_block *restart_block) 1437 { 1438 return -EINVAL; 1439 } 1440 static int thread_cpu_clock_getres(const clockid_t which_clock, 1441 struct timespec *tp) 1442 { 1443 return posix_cpu_clock_getres(THREAD_CLOCK, tp); 1444 } 1445 static int thread_cpu_clock_get(const clockid_t which_clock, 1446 struct timespec *tp) 1447 { 1448 return posix_cpu_clock_get(THREAD_CLOCK, tp); 1449 } 1450 static int thread_cpu_timer_create(struct k_itimer *timer) 1451 { 1452 timer->it_clock = THREAD_CLOCK; 1453 return posix_cpu_timer_create(timer); 1454 } 1455 1456 struct k_clock clock_posix_cpu = { 1457 .clock_getres = posix_cpu_clock_getres, 1458 .clock_set = posix_cpu_clock_set, 1459 .clock_get = posix_cpu_clock_get, 1460 .timer_create = posix_cpu_timer_create, 1461 .nsleep = posix_cpu_nsleep, 1462 .nsleep_restart = posix_cpu_nsleep_restart, 1463 .timer_set = posix_cpu_timer_set, 1464 .timer_del = posix_cpu_timer_del, 1465 .timer_get = posix_cpu_timer_get, 1466 }; 1467 1468 static __init int init_posix_cpu_timers(void) 1469 { 1470 struct k_clock process = { 1471 .clock_getres = process_cpu_clock_getres, 1472 .clock_get = process_cpu_clock_get, 1473 .timer_create = process_cpu_timer_create, 1474 .nsleep = process_cpu_nsleep, 1475 .nsleep_restart = process_cpu_nsleep_restart, 1476 }; 1477 struct k_clock thread = { 1478 .clock_getres = thread_cpu_clock_getres, 1479 .clock_get = thread_cpu_clock_get, 1480 .timer_create = thread_cpu_timer_create, 1481 }; 1482 struct timespec ts; 1483 1484 posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process); 1485 posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread); 1486 1487 cputime_to_timespec(cputime_one_jiffy, &ts); 1488 onecputick = ts.tv_nsec; 1489 WARN_ON(ts.tv_sec != 0); 1490 1491 return 0; 1492 } 1493 __initcall(init_posix_cpu_timers); 1494