1 /*
2  * Implement CPU time clocks for the POSIX clock interface.
3  */
4 
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
11 #include <trace/events/timer.h>
12 #include <linux/random.h>
13 #include <linux/tick.h>
14 #include <linux/workqueue.h>
15 
16 /*
17  * Called after updating RLIMIT_CPU to run cpu timer and update
18  * tsk->signal->cputime_expires expiration cache if necessary. Needs
19  * siglock protection since other code may update expiration cache as
20  * well.
21  */
22 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
23 {
24 	cputime_t cputime = secs_to_cputime(rlim_new);
25 
26 	spin_lock_irq(&task->sighand->siglock);
27 	set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL);
28 	spin_unlock_irq(&task->sighand->siglock);
29 }
30 
31 static int check_clock(const clockid_t which_clock)
32 {
33 	int error = 0;
34 	struct task_struct *p;
35 	const pid_t pid = CPUCLOCK_PID(which_clock);
36 
37 	if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
38 		return -EINVAL;
39 
40 	if (pid == 0)
41 		return 0;
42 
43 	rcu_read_lock();
44 	p = find_task_by_vpid(pid);
45 	if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
46 		   same_thread_group(p, current) : has_group_leader_pid(p))) {
47 		error = -EINVAL;
48 	}
49 	rcu_read_unlock();
50 
51 	return error;
52 }
53 
54 static inline unsigned long long
55 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
56 {
57 	unsigned long long ret;
58 
59 	ret = 0;		/* high half always zero when .cpu used */
60 	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
61 		ret = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
62 	} else {
63 		ret = cputime_to_expires(timespec_to_cputime(tp));
64 	}
65 	return ret;
66 }
67 
68 static void sample_to_timespec(const clockid_t which_clock,
69 			       unsigned long long expires,
70 			       struct timespec *tp)
71 {
72 	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
73 		*tp = ns_to_timespec(expires);
74 	else
75 		cputime_to_timespec((__force cputime_t)expires, tp);
76 }
77 
78 /*
79  * Update expiry time from increment, and increase overrun count,
80  * given the current clock sample.
81  */
82 static void bump_cpu_timer(struct k_itimer *timer,
83 			   unsigned long long now)
84 {
85 	int i;
86 	unsigned long long delta, incr;
87 
88 	if (timer->it.cpu.incr == 0)
89 		return;
90 
91 	if (now < timer->it.cpu.expires)
92 		return;
93 
94 	incr = timer->it.cpu.incr;
95 	delta = now + incr - timer->it.cpu.expires;
96 
97 	/* Don't use (incr*2 < delta), incr*2 might overflow. */
98 	for (i = 0; incr < delta - incr; i++)
99 		incr = incr << 1;
100 
101 	for (; i >= 0; incr >>= 1, i--) {
102 		if (delta < incr)
103 			continue;
104 
105 		timer->it.cpu.expires += incr;
106 		timer->it_overrun += 1 << i;
107 		delta -= incr;
108 	}
109 }
110 
111 /**
112  * task_cputime_zero - Check a task_cputime struct for all zero fields.
113  *
114  * @cputime:	The struct to compare.
115  *
116  * Checks @cputime to see if all fields are zero.  Returns true if all fields
117  * are zero, false if any field is nonzero.
118  */
119 static inline int task_cputime_zero(const struct task_cputime *cputime)
120 {
121 	if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
122 		return 1;
123 	return 0;
124 }
125 
126 static inline unsigned long long prof_ticks(struct task_struct *p)
127 {
128 	cputime_t utime, stime;
129 
130 	task_cputime(p, &utime, &stime);
131 
132 	return cputime_to_expires(utime + stime);
133 }
134 static inline unsigned long long virt_ticks(struct task_struct *p)
135 {
136 	cputime_t utime;
137 
138 	task_cputime(p, &utime, NULL);
139 
140 	return cputime_to_expires(utime);
141 }
142 
143 static int
144 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
145 {
146 	int error = check_clock(which_clock);
147 	if (!error) {
148 		tp->tv_sec = 0;
149 		tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
150 		if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
151 			/*
152 			 * If sched_clock is using a cycle counter, we
153 			 * don't have any idea of its true resolution
154 			 * exported, but it is much more than 1s/HZ.
155 			 */
156 			tp->tv_nsec = 1;
157 		}
158 	}
159 	return error;
160 }
161 
162 static int
163 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
164 {
165 	/*
166 	 * You can never reset a CPU clock, but we check for other errors
167 	 * in the call before failing with EPERM.
168 	 */
169 	int error = check_clock(which_clock);
170 	if (error == 0) {
171 		error = -EPERM;
172 	}
173 	return error;
174 }
175 
176 
177 /*
178  * Sample a per-thread clock for the given task.
179  */
180 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
181 			    unsigned long long *sample)
182 {
183 	switch (CPUCLOCK_WHICH(which_clock)) {
184 	default:
185 		return -EINVAL;
186 	case CPUCLOCK_PROF:
187 		*sample = prof_ticks(p);
188 		break;
189 	case CPUCLOCK_VIRT:
190 		*sample = virt_ticks(p);
191 		break;
192 	case CPUCLOCK_SCHED:
193 		*sample = task_sched_runtime(p);
194 		break;
195 	}
196 	return 0;
197 }
198 
199 static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
200 {
201 	if (b->utime > a->utime)
202 		a->utime = b->utime;
203 
204 	if (b->stime > a->stime)
205 		a->stime = b->stime;
206 
207 	if (b->sum_exec_runtime > a->sum_exec_runtime)
208 		a->sum_exec_runtime = b->sum_exec_runtime;
209 }
210 
211 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
212 {
213 	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
214 	struct task_cputime sum;
215 	unsigned long flags;
216 
217 	if (!cputimer->running) {
218 		/*
219 		 * The POSIX timer interface allows for absolute time expiry
220 		 * values through the TIMER_ABSTIME flag, therefore we have
221 		 * to synchronize the timer to the clock every time we start
222 		 * it.
223 		 */
224 		thread_group_cputime(tsk, &sum);
225 		raw_spin_lock_irqsave(&cputimer->lock, flags);
226 		cputimer->running = 1;
227 		update_gt_cputime(&cputimer->cputime, &sum);
228 	} else
229 		raw_spin_lock_irqsave(&cputimer->lock, flags);
230 	*times = cputimer->cputime;
231 	raw_spin_unlock_irqrestore(&cputimer->lock, flags);
232 }
233 
234 /*
235  * Sample a process (thread group) clock for the given group_leader task.
236  * Must be called with task sighand lock held for safe while_each_thread()
237  * traversal.
238  */
239 static int cpu_clock_sample_group(const clockid_t which_clock,
240 				  struct task_struct *p,
241 				  unsigned long long *sample)
242 {
243 	struct task_cputime cputime;
244 
245 	switch (CPUCLOCK_WHICH(which_clock)) {
246 	default:
247 		return -EINVAL;
248 	case CPUCLOCK_PROF:
249 		thread_group_cputime(p, &cputime);
250 		*sample = cputime_to_expires(cputime.utime + cputime.stime);
251 		break;
252 	case CPUCLOCK_VIRT:
253 		thread_group_cputime(p, &cputime);
254 		*sample = cputime_to_expires(cputime.utime);
255 		break;
256 	case CPUCLOCK_SCHED:
257 		thread_group_cputime(p, &cputime);
258 		*sample = cputime.sum_exec_runtime;
259 		break;
260 	}
261 	return 0;
262 }
263 
264 static int posix_cpu_clock_get_task(struct task_struct *tsk,
265 				    const clockid_t which_clock,
266 				    struct timespec *tp)
267 {
268 	int err = -EINVAL;
269 	unsigned long long rtn;
270 
271 	if (CPUCLOCK_PERTHREAD(which_clock)) {
272 		if (same_thread_group(tsk, current))
273 			err = cpu_clock_sample(which_clock, tsk, &rtn);
274 	} else {
275 		if (tsk == current || thread_group_leader(tsk))
276 			err = cpu_clock_sample_group(which_clock, tsk, &rtn);
277 	}
278 
279 	if (!err)
280 		sample_to_timespec(which_clock, rtn, tp);
281 
282 	return err;
283 }
284 
285 
286 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
287 {
288 	const pid_t pid = CPUCLOCK_PID(which_clock);
289 	int err = -EINVAL;
290 
291 	if (pid == 0) {
292 		/*
293 		 * Special case constant value for our own clocks.
294 		 * We don't have to do any lookup to find ourselves.
295 		 */
296 		err = posix_cpu_clock_get_task(current, which_clock, tp);
297 	} else {
298 		/*
299 		 * Find the given PID, and validate that the caller
300 		 * should be able to see it.
301 		 */
302 		struct task_struct *p;
303 		rcu_read_lock();
304 		p = find_task_by_vpid(pid);
305 		if (p)
306 			err = posix_cpu_clock_get_task(p, which_clock, tp);
307 		rcu_read_unlock();
308 	}
309 
310 	return err;
311 }
312 
313 
314 /*
315  * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
316  * This is called from sys_timer_create() and do_cpu_nanosleep() with the
317  * new timer already all-zeros initialized.
318  */
319 static int posix_cpu_timer_create(struct k_itimer *new_timer)
320 {
321 	int ret = 0;
322 	const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
323 	struct task_struct *p;
324 
325 	if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
326 		return -EINVAL;
327 
328 	INIT_LIST_HEAD(&new_timer->it.cpu.entry);
329 
330 	rcu_read_lock();
331 	if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
332 		if (pid == 0) {
333 			p = current;
334 		} else {
335 			p = find_task_by_vpid(pid);
336 			if (p && !same_thread_group(p, current))
337 				p = NULL;
338 		}
339 	} else {
340 		if (pid == 0) {
341 			p = current->group_leader;
342 		} else {
343 			p = find_task_by_vpid(pid);
344 			if (p && !has_group_leader_pid(p))
345 				p = NULL;
346 		}
347 	}
348 	new_timer->it.cpu.task = p;
349 	if (p) {
350 		get_task_struct(p);
351 	} else {
352 		ret = -EINVAL;
353 	}
354 	rcu_read_unlock();
355 
356 	return ret;
357 }
358 
359 /*
360  * Clean up a CPU-clock timer that is about to be destroyed.
361  * This is called from timer deletion with the timer already locked.
362  * If we return TIMER_RETRY, it's necessary to release the timer's lock
363  * and try again.  (This happens when the timer is in the middle of firing.)
364  */
365 static int posix_cpu_timer_del(struct k_itimer *timer)
366 {
367 	int ret = 0;
368 	unsigned long flags;
369 	struct sighand_struct *sighand;
370 	struct task_struct *p = timer->it.cpu.task;
371 
372 	WARN_ON_ONCE(p == NULL);
373 
374 	/*
375 	 * Protect against sighand release/switch in exit/exec and process/
376 	 * thread timer list entry concurrent read/writes.
377 	 */
378 	sighand = lock_task_sighand(p, &flags);
379 	if (unlikely(sighand == NULL)) {
380 		/*
381 		 * We raced with the reaping of the task.
382 		 * The deletion should have cleared us off the list.
383 		 */
384 		WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
385 	} else {
386 		if (timer->it.cpu.firing)
387 			ret = TIMER_RETRY;
388 		else
389 			list_del(&timer->it.cpu.entry);
390 
391 		unlock_task_sighand(p, &flags);
392 	}
393 
394 	if (!ret)
395 		put_task_struct(p);
396 
397 	return ret;
398 }
399 
400 static void cleanup_timers_list(struct list_head *head)
401 {
402 	struct cpu_timer_list *timer, *next;
403 
404 	list_for_each_entry_safe(timer, next, head, entry)
405 		list_del_init(&timer->entry);
406 }
407 
408 /*
409  * Clean out CPU timers still ticking when a thread exited.  The task
410  * pointer is cleared, and the expiry time is replaced with the residual
411  * time for later timer_gettime calls to return.
412  * This must be called with the siglock held.
413  */
414 static void cleanup_timers(struct list_head *head)
415 {
416 	cleanup_timers_list(head);
417 	cleanup_timers_list(++head);
418 	cleanup_timers_list(++head);
419 }
420 
421 /*
422  * These are both called with the siglock held, when the current thread
423  * is being reaped.  When the final (leader) thread in the group is reaped,
424  * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
425  */
426 void posix_cpu_timers_exit(struct task_struct *tsk)
427 {
428 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
429 						sizeof(unsigned long long));
430 	cleanup_timers(tsk->cpu_timers);
431 
432 }
433 void posix_cpu_timers_exit_group(struct task_struct *tsk)
434 {
435 	cleanup_timers(tsk->signal->cpu_timers);
436 }
437 
438 static inline int expires_gt(cputime_t expires, cputime_t new_exp)
439 {
440 	return expires == 0 || expires > new_exp;
441 }
442 
443 /*
444  * Insert the timer on the appropriate list before any timers that
445  * expire later.  This must be called with the sighand lock held.
446  */
447 static void arm_timer(struct k_itimer *timer)
448 {
449 	struct task_struct *p = timer->it.cpu.task;
450 	struct list_head *head, *listpos;
451 	struct task_cputime *cputime_expires;
452 	struct cpu_timer_list *const nt = &timer->it.cpu;
453 	struct cpu_timer_list *next;
454 
455 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
456 		head = p->cpu_timers;
457 		cputime_expires = &p->cputime_expires;
458 	} else {
459 		head = p->signal->cpu_timers;
460 		cputime_expires = &p->signal->cputime_expires;
461 	}
462 	head += CPUCLOCK_WHICH(timer->it_clock);
463 
464 	listpos = head;
465 	list_for_each_entry(next, head, entry) {
466 		if (nt->expires < next->expires)
467 			break;
468 		listpos = &next->entry;
469 	}
470 	list_add(&nt->entry, listpos);
471 
472 	if (listpos == head) {
473 		unsigned long long exp = nt->expires;
474 
475 		/*
476 		 * We are the new earliest-expiring POSIX 1.b timer, hence
477 		 * need to update expiration cache. Take into account that
478 		 * for process timers we share expiration cache with itimers
479 		 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
480 		 */
481 
482 		switch (CPUCLOCK_WHICH(timer->it_clock)) {
483 		case CPUCLOCK_PROF:
484 			if (expires_gt(cputime_expires->prof_exp, expires_to_cputime(exp)))
485 				cputime_expires->prof_exp = expires_to_cputime(exp);
486 			break;
487 		case CPUCLOCK_VIRT:
488 			if (expires_gt(cputime_expires->virt_exp, expires_to_cputime(exp)))
489 				cputime_expires->virt_exp = expires_to_cputime(exp);
490 			break;
491 		case CPUCLOCK_SCHED:
492 			if (cputime_expires->sched_exp == 0 ||
493 			    cputime_expires->sched_exp > exp)
494 				cputime_expires->sched_exp = exp;
495 			break;
496 		}
497 	}
498 }
499 
500 /*
501  * The timer is locked, fire it and arrange for its reload.
502  */
503 static void cpu_timer_fire(struct k_itimer *timer)
504 {
505 	if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
506 		/*
507 		 * User don't want any signal.
508 		 */
509 		timer->it.cpu.expires = 0;
510 	} else if (unlikely(timer->sigq == NULL)) {
511 		/*
512 		 * This a special case for clock_nanosleep,
513 		 * not a normal timer from sys_timer_create.
514 		 */
515 		wake_up_process(timer->it_process);
516 		timer->it.cpu.expires = 0;
517 	} else if (timer->it.cpu.incr == 0) {
518 		/*
519 		 * One-shot timer.  Clear it as soon as it's fired.
520 		 */
521 		posix_timer_event(timer, 0);
522 		timer->it.cpu.expires = 0;
523 	} else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
524 		/*
525 		 * The signal did not get queued because the signal
526 		 * was ignored, so we won't get any callback to
527 		 * reload the timer.  But we need to keep it
528 		 * ticking in case the signal is deliverable next time.
529 		 */
530 		posix_cpu_timer_schedule(timer);
531 	}
532 }
533 
534 /*
535  * Sample a process (thread group) timer for the given group_leader task.
536  * Must be called with task sighand lock held for safe while_each_thread()
537  * traversal.
538  */
539 static int cpu_timer_sample_group(const clockid_t which_clock,
540 				  struct task_struct *p,
541 				  unsigned long long *sample)
542 {
543 	struct task_cputime cputime;
544 
545 	thread_group_cputimer(p, &cputime);
546 	switch (CPUCLOCK_WHICH(which_clock)) {
547 	default:
548 		return -EINVAL;
549 	case CPUCLOCK_PROF:
550 		*sample = cputime_to_expires(cputime.utime + cputime.stime);
551 		break;
552 	case CPUCLOCK_VIRT:
553 		*sample = cputime_to_expires(cputime.utime);
554 		break;
555 	case CPUCLOCK_SCHED:
556 		*sample = cputime.sum_exec_runtime;
557 		break;
558 	}
559 	return 0;
560 }
561 
562 #ifdef CONFIG_NO_HZ_FULL
563 static void nohz_kick_work_fn(struct work_struct *work)
564 {
565 	tick_nohz_full_kick_all();
566 }
567 
568 static DECLARE_WORK(nohz_kick_work, nohz_kick_work_fn);
569 
570 /*
571  * We need the IPIs to be sent from sane process context.
572  * The posix cpu timers are always set with irqs disabled.
573  */
574 static void posix_cpu_timer_kick_nohz(void)
575 {
576 	if (context_tracking_is_enabled())
577 		schedule_work(&nohz_kick_work);
578 }
579 
580 bool posix_cpu_timers_can_stop_tick(struct task_struct *tsk)
581 {
582 	if (!task_cputime_zero(&tsk->cputime_expires))
583 		return false;
584 
585 	if (tsk->signal->cputimer.running)
586 		return false;
587 
588 	return true;
589 }
590 #else
591 static inline void posix_cpu_timer_kick_nohz(void) { }
592 #endif
593 
594 /*
595  * Guts of sys_timer_settime for CPU timers.
596  * This is called with the timer locked and interrupts disabled.
597  * If we return TIMER_RETRY, it's necessary to release the timer's lock
598  * and try again.  (This happens when the timer is in the middle of firing.)
599  */
600 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
601 			       struct itimerspec *new, struct itimerspec *old)
602 {
603 	unsigned long flags;
604 	struct sighand_struct *sighand;
605 	struct task_struct *p = timer->it.cpu.task;
606 	unsigned long long old_expires, new_expires, old_incr, val;
607 	int ret;
608 
609 	WARN_ON_ONCE(p == NULL);
610 
611 	new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
612 
613 	/*
614 	 * Protect against sighand release/switch in exit/exec and p->cpu_timers
615 	 * and p->signal->cpu_timers read/write in arm_timer()
616 	 */
617 	sighand = lock_task_sighand(p, &flags);
618 	/*
619 	 * If p has just been reaped, we can no
620 	 * longer get any information about it at all.
621 	 */
622 	if (unlikely(sighand == NULL)) {
623 		return -ESRCH;
624 	}
625 
626 	/*
627 	 * Disarm any old timer after extracting its expiry time.
628 	 */
629 	WARN_ON_ONCE(!irqs_disabled());
630 
631 	ret = 0;
632 	old_incr = timer->it.cpu.incr;
633 	old_expires = timer->it.cpu.expires;
634 	if (unlikely(timer->it.cpu.firing)) {
635 		timer->it.cpu.firing = -1;
636 		ret = TIMER_RETRY;
637 	} else
638 		list_del_init(&timer->it.cpu.entry);
639 
640 	/*
641 	 * We need to sample the current value to convert the new
642 	 * value from to relative and absolute, and to convert the
643 	 * old value from absolute to relative.  To set a process
644 	 * timer, we need a sample to balance the thread expiry
645 	 * times (in arm_timer).  With an absolute time, we must
646 	 * check if it's already passed.  In short, we need a sample.
647 	 */
648 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
649 		cpu_clock_sample(timer->it_clock, p, &val);
650 	} else {
651 		cpu_timer_sample_group(timer->it_clock, p, &val);
652 	}
653 
654 	if (old) {
655 		if (old_expires == 0) {
656 			old->it_value.tv_sec = 0;
657 			old->it_value.tv_nsec = 0;
658 		} else {
659 			/*
660 			 * Update the timer in case it has
661 			 * overrun already.  If it has,
662 			 * we'll report it as having overrun
663 			 * and with the next reloaded timer
664 			 * already ticking, though we are
665 			 * swallowing that pending
666 			 * notification here to install the
667 			 * new setting.
668 			 */
669 			bump_cpu_timer(timer, val);
670 			if (val < timer->it.cpu.expires) {
671 				old_expires = timer->it.cpu.expires - val;
672 				sample_to_timespec(timer->it_clock,
673 						   old_expires,
674 						   &old->it_value);
675 			} else {
676 				old->it_value.tv_nsec = 1;
677 				old->it_value.tv_sec = 0;
678 			}
679 		}
680 	}
681 
682 	if (unlikely(ret)) {
683 		/*
684 		 * We are colliding with the timer actually firing.
685 		 * Punt after filling in the timer's old value, and
686 		 * disable this firing since we are already reporting
687 		 * it as an overrun (thanks to bump_cpu_timer above).
688 		 */
689 		unlock_task_sighand(p, &flags);
690 		goto out;
691 	}
692 
693 	if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
694 		new_expires += val;
695 	}
696 
697 	/*
698 	 * Install the new expiry time (or zero).
699 	 * For a timer with no notification action, we don't actually
700 	 * arm the timer (we'll just fake it for timer_gettime).
701 	 */
702 	timer->it.cpu.expires = new_expires;
703 	if (new_expires != 0 && val < new_expires) {
704 		arm_timer(timer);
705 	}
706 
707 	unlock_task_sighand(p, &flags);
708 	/*
709 	 * Install the new reload setting, and
710 	 * set up the signal and overrun bookkeeping.
711 	 */
712 	timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
713 						&new->it_interval);
714 
715 	/*
716 	 * This acts as a modification timestamp for the timer,
717 	 * so any automatic reload attempt will punt on seeing
718 	 * that we have reset the timer manually.
719 	 */
720 	timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
721 		~REQUEUE_PENDING;
722 	timer->it_overrun_last = 0;
723 	timer->it_overrun = -1;
724 
725 	if (new_expires != 0 && !(val < new_expires)) {
726 		/*
727 		 * The designated time already passed, so we notify
728 		 * immediately, even if the thread never runs to
729 		 * accumulate more time on this clock.
730 		 */
731 		cpu_timer_fire(timer);
732 	}
733 
734 	ret = 0;
735  out:
736 	if (old) {
737 		sample_to_timespec(timer->it_clock,
738 				   old_incr, &old->it_interval);
739 	}
740 	if (!ret)
741 		posix_cpu_timer_kick_nohz();
742 	return ret;
743 }
744 
745 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
746 {
747 	unsigned long long now;
748 	struct task_struct *p = timer->it.cpu.task;
749 
750 	WARN_ON_ONCE(p == NULL);
751 
752 	/*
753 	 * Easy part: convert the reload time.
754 	 */
755 	sample_to_timespec(timer->it_clock,
756 			   timer->it.cpu.incr, &itp->it_interval);
757 
758 	if (timer->it.cpu.expires == 0) {	/* Timer not armed at all.  */
759 		itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
760 		return;
761 	}
762 
763 	/*
764 	 * Sample the clock to take the difference with the expiry time.
765 	 */
766 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
767 		cpu_clock_sample(timer->it_clock, p, &now);
768 	} else {
769 		struct sighand_struct *sighand;
770 		unsigned long flags;
771 
772 		/*
773 		 * Protect against sighand release/switch in exit/exec and
774 		 * also make timer sampling safe if it ends up calling
775 		 * thread_group_cputime().
776 		 */
777 		sighand = lock_task_sighand(p, &flags);
778 		if (unlikely(sighand == NULL)) {
779 			/*
780 			 * The process has been reaped.
781 			 * We can't even collect a sample any more.
782 			 * Call the timer disarmed, nothing else to do.
783 			 */
784 			timer->it.cpu.expires = 0;
785 			sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
786 					   &itp->it_value);
787 		} else {
788 			cpu_timer_sample_group(timer->it_clock, p, &now);
789 			unlock_task_sighand(p, &flags);
790 		}
791 	}
792 
793 	if (now < timer->it.cpu.expires) {
794 		sample_to_timespec(timer->it_clock,
795 				   timer->it.cpu.expires - now,
796 				   &itp->it_value);
797 	} else {
798 		/*
799 		 * The timer should have expired already, but the firing
800 		 * hasn't taken place yet.  Say it's just about to expire.
801 		 */
802 		itp->it_value.tv_nsec = 1;
803 		itp->it_value.tv_sec = 0;
804 	}
805 }
806 
807 static unsigned long long
808 check_timers_list(struct list_head *timers,
809 		  struct list_head *firing,
810 		  unsigned long long curr)
811 {
812 	int maxfire = 20;
813 
814 	while (!list_empty(timers)) {
815 		struct cpu_timer_list *t;
816 
817 		t = list_first_entry(timers, struct cpu_timer_list, entry);
818 
819 		if (!--maxfire || curr < t->expires)
820 			return t->expires;
821 
822 		t->firing = 1;
823 		list_move_tail(&t->entry, firing);
824 	}
825 
826 	return 0;
827 }
828 
829 /*
830  * Check for any per-thread CPU timers that have fired and move them off
831  * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
832  * tsk->it_*_expires values to reflect the remaining thread CPU timers.
833  */
834 static void check_thread_timers(struct task_struct *tsk,
835 				struct list_head *firing)
836 {
837 	struct list_head *timers = tsk->cpu_timers;
838 	struct signal_struct *const sig = tsk->signal;
839 	struct task_cputime *tsk_expires = &tsk->cputime_expires;
840 	unsigned long long expires;
841 	unsigned long soft;
842 
843 	expires = check_timers_list(timers, firing, prof_ticks(tsk));
844 	tsk_expires->prof_exp = expires_to_cputime(expires);
845 
846 	expires = check_timers_list(++timers, firing, virt_ticks(tsk));
847 	tsk_expires->virt_exp = expires_to_cputime(expires);
848 
849 	tsk_expires->sched_exp = check_timers_list(++timers, firing,
850 						   tsk->se.sum_exec_runtime);
851 
852 	/*
853 	 * Check for the special case thread timers.
854 	 */
855 	soft = ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
856 	if (soft != RLIM_INFINITY) {
857 		unsigned long hard =
858 			ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
859 
860 		if (hard != RLIM_INFINITY &&
861 		    tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
862 			/*
863 			 * At the hard limit, we just die.
864 			 * No need to calculate anything else now.
865 			 */
866 			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
867 			return;
868 		}
869 		if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
870 			/*
871 			 * At the soft limit, send a SIGXCPU every second.
872 			 */
873 			if (soft < hard) {
874 				soft += USEC_PER_SEC;
875 				sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
876 			}
877 			printk(KERN_INFO
878 				"RT Watchdog Timeout: %s[%d]\n",
879 				tsk->comm, task_pid_nr(tsk));
880 			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
881 		}
882 	}
883 }
884 
885 static void stop_process_timers(struct signal_struct *sig)
886 {
887 	struct thread_group_cputimer *cputimer = &sig->cputimer;
888 	unsigned long flags;
889 
890 	raw_spin_lock_irqsave(&cputimer->lock, flags);
891 	cputimer->running = 0;
892 	raw_spin_unlock_irqrestore(&cputimer->lock, flags);
893 }
894 
895 static u32 onecputick;
896 
897 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
898 			     unsigned long long *expires,
899 			     unsigned long long cur_time, int signo)
900 {
901 	if (!it->expires)
902 		return;
903 
904 	if (cur_time >= it->expires) {
905 		if (it->incr) {
906 			it->expires += it->incr;
907 			it->error += it->incr_error;
908 			if (it->error >= onecputick) {
909 				it->expires -= cputime_one_jiffy;
910 				it->error -= onecputick;
911 			}
912 		} else {
913 			it->expires = 0;
914 		}
915 
916 		trace_itimer_expire(signo == SIGPROF ?
917 				    ITIMER_PROF : ITIMER_VIRTUAL,
918 				    tsk->signal->leader_pid, cur_time);
919 		__group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
920 	}
921 
922 	if (it->expires && (!*expires || it->expires < *expires)) {
923 		*expires = it->expires;
924 	}
925 }
926 
927 /*
928  * Check for any per-thread CPU timers that have fired and move them
929  * off the tsk->*_timers list onto the firing list.  Per-thread timers
930  * have already been taken off.
931  */
932 static void check_process_timers(struct task_struct *tsk,
933 				 struct list_head *firing)
934 {
935 	struct signal_struct *const sig = tsk->signal;
936 	unsigned long long utime, ptime, virt_expires, prof_expires;
937 	unsigned long long sum_sched_runtime, sched_expires;
938 	struct list_head *timers = sig->cpu_timers;
939 	struct task_cputime cputime;
940 	unsigned long soft;
941 
942 	/*
943 	 * Collect the current process totals.
944 	 */
945 	thread_group_cputimer(tsk, &cputime);
946 	utime = cputime_to_expires(cputime.utime);
947 	ptime = utime + cputime_to_expires(cputime.stime);
948 	sum_sched_runtime = cputime.sum_exec_runtime;
949 
950 	prof_expires = check_timers_list(timers, firing, ptime);
951 	virt_expires = check_timers_list(++timers, firing, utime);
952 	sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
953 
954 	/*
955 	 * Check for the special case process timers.
956 	 */
957 	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
958 			 SIGPROF);
959 	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
960 			 SIGVTALRM);
961 	soft = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
962 	if (soft != RLIM_INFINITY) {
963 		unsigned long psecs = cputime_to_secs(ptime);
964 		unsigned long hard =
965 			ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
966 		cputime_t x;
967 		if (psecs >= hard) {
968 			/*
969 			 * At the hard limit, we just die.
970 			 * No need to calculate anything else now.
971 			 */
972 			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
973 			return;
974 		}
975 		if (psecs >= soft) {
976 			/*
977 			 * At the soft limit, send a SIGXCPU every second.
978 			 */
979 			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
980 			if (soft < hard) {
981 				soft++;
982 				sig->rlim[RLIMIT_CPU].rlim_cur = soft;
983 			}
984 		}
985 		x = secs_to_cputime(soft);
986 		if (!prof_expires || x < prof_expires) {
987 			prof_expires = x;
988 		}
989 	}
990 
991 	sig->cputime_expires.prof_exp = expires_to_cputime(prof_expires);
992 	sig->cputime_expires.virt_exp = expires_to_cputime(virt_expires);
993 	sig->cputime_expires.sched_exp = sched_expires;
994 	if (task_cputime_zero(&sig->cputime_expires))
995 		stop_process_timers(sig);
996 }
997 
998 /*
999  * This is called from the signal code (via do_schedule_next_timer)
1000  * when the last timer signal was delivered and we have to reload the timer.
1001  */
1002 void posix_cpu_timer_schedule(struct k_itimer *timer)
1003 {
1004 	struct sighand_struct *sighand;
1005 	unsigned long flags;
1006 	struct task_struct *p = timer->it.cpu.task;
1007 	unsigned long long now;
1008 
1009 	WARN_ON_ONCE(p == NULL);
1010 
1011 	/*
1012 	 * Fetch the current sample and update the timer's expiry time.
1013 	 */
1014 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1015 		cpu_clock_sample(timer->it_clock, p, &now);
1016 		bump_cpu_timer(timer, now);
1017 		if (unlikely(p->exit_state))
1018 			goto out;
1019 
1020 		/* Protect timer list r/w in arm_timer() */
1021 		sighand = lock_task_sighand(p, &flags);
1022 		if (!sighand)
1023 			goto out;
1024 	} else {
1025 		/*
1026 		 * Protect arm_timer() and timer sampling in case of call to
1027 		 * thread_group_cputime().
1028 		 */
1029 		sighand = lock_task_sighand(p, &flags);
1030 		if (unlikely(sighand == NULL)) {
1031 			/*
1032 			 * The process has been reaped.
1033 			 * We can't even collect a sample any more.
1034 			 */
1035 			timer->it.cpu.expires = 0;
1036 			goto out;
1037 		} else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1038 			unlock_task_sighand(p, &flags);
1039 			/* Optimizations: if the process is dying, no need to rearm */
1040 			goto out;
1041 		}
1042 		cpu_timer_sample_group(timer->it_clock, p, &now);
1043 		bump_cpu_timer(timer, now);
1044 		/* Leave the sighand locked for the call below.  */
1045 	}
1046 
1047 	/*
1048 	 * Now re-arm for the new expiry time.
1049 	 */
1050 	WARN_ON_ONCE(!irqs_disabled());
1051 	arm_timer(timer);
1052 	unlock_task_sighand(p, &flags);
1053 
1054 	/* Kick full dynticks CPUs in case they need to tick on the new timer */
1055 	posix_cpu_timer_kick_nohz();
1056 out:
1057 	timer->it_overrun_last = timer->it_overrun;
1058 	timer->it_overrun = -1;
1059 	++timer->it_requeue_pending;
1060 }
1061 
1062 /**
1063  * task_cputime_expired - Compare two task_cputime entities.
1064  *
1065  * @sample:	The task_cputime structure to be checked for expiration.
1066  * @expires:	Expiration times, against which @sample will be checked.
1067  *
1068  * Checks @sample against @expires to see if any field of @sample has expired.
1069  * Returns true if any field of the former is greater than the corresponding
1070  * field of the latter if the latter field is set.  Otherwise returns false.
1071  */
1072 static inline int task_cputime_expired(const struct task_cputime *sample,
1073 					const struct task_cputime *expires)
1074 {
1075 	if (expires->utime && sample->utime >= expires->utime)
1076 		return 1;
1077 	if (expires->stime && sample->utime + sample->stime >= expires->stime)
1078 		return 1;
1079 	if (expires->sum_exec_runtime != 0 &&
1080 	    sample->sum_exec_runtime >= expires->sum_exec_runtime)
1081 		return 1;
1082 	return 0;
1083 }
1084 
1085 /**
1086  * fastpath_timer_check - POSIX CPU timers fast path.
1087  *
1088  * @tsk:	The task (thread) being checked.
1089  *
1090  * Check the task and thread group timers.  If both are zero (there are no
1091  * timers set) return false.  Otherwise snapshot the task and thread group
1092  * timers and compare them with the corresponding expiration times.  Return
1093  * true if a timer has expired, else return false.
1094  */
1095 static inline int fastpath_timer_check(struct task_struct *tsk)
1096 {
1097 	struct signal_struct *sig;
1098 	cputime_t utime, stime;
1099 
1100 	task_cputime(tsk, &utime, &stime);
1101 
1102 	if (!task_cputime_zero(&tsk->cputime_expires)) {
1103 		struct task_cputime task_sample = {
1104 			.utime = utime,
1105 			.stime = stime,
1106 			.sum_exec_runtime = tsk->se.sum_exec_runtime
1107 		};
1108 
1109 		if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1110 			return 1;
1111 	}
1112 
1113 	sig = tsk->signal;
1114 	if (sig->cputimer.running) {
1115 		struct task_cputime group_sample;
1116 
1117 		raw_spin_lock(&sig->cputimer.lock);
1118 		group_sample = sig->cputimer.cputime;
1119 		raw_spin_unlock(&sig->cputimer.lock);
1120 
1121 		if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1122 			return 1;
1123 	}
1124 
1125 	return 0;
1126 }
1127 
1128 /*
1129  * This is called from the timer interrupt handler.  The irq handler has
1130  * already updated our counts.  We need to check if any timers fire now.
1131  * Interrupts are disabled.
1132  */
1133 void run_posix_cpu_timers(struct task_struct *tsk)
1134 {
1135 	LIST_HEAD(firing);
1136 	struct k_itimer *timer, *next;
1137 	unsigned long flags;
1138 
1139 	WARN_ON_ONCE(!irqs_disabled());
1140 
1141 	/*
1142 	 * The fast path checks that there are no expired thread or thread
1143 	 * group timers.  If that's so, just return.
1144 	 */
1145 	if (!fastpath_timer_check(tsk))
1146 		return;
1147 
1148 	if (!lock_task_sighand(tsk, &flags))
1149 		return;
1150 	/*
1151 	 * Here we take off tsk->signal->cpu_timers[N] and
1152 	 * tsk->cpu_timers[N] all the timers that are firing, and
1153 	 * put them on the firing list.
1154 	 */
1155 	check_thread_timers(tsk, &firing);
1156 	/*
1157 	 * If there are any active process wide timers (POSIX 1.b, itimers,
1158 	 * RLIMIT_CPU) cputimer must be running.
1159 	 */
1160 	if (tsk->signal->cputimer.running)
1161 		check_process_timers(tsk, &firing);
1162 
1163 	/*
1164 	 * We must release these locks before taking any timer's lock.
1165 	 * There is a potential race with timer deletion here, as the
1166 	 * siglock now protects our private firing list.  We have set
1167 	 * the firing flag in each timer, so that a deletion attempt
1168 	 * that gets the timer lock before we do will give it up and
1169 	 * spin until we've taken care of that timer below.
1170 	 */
1171 	unlock_task_sighand(tsk, &flags);
1172 
1173 	/*
1174 	 * Now that all the timers on our list have the firing flag,
1175 	 * no one will touch their list entries but us.  We'll take
1176 	 * each timer's lock before clearing its firing flag, so no
1177 	 * timer call will interfere.
1178 	 */
1179 	list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1180 		int cpu_firing;
1181 
1182 		spin_lock(&timer->it_lock);
1183 		list_del_init(&timer->it.cpu.entry);
1184 		cpu_firing = timer->it.cpu.firing;
1185 		timer->it.cpu.firing = 0;
1186 		/*
1187 		 * The firing flag is -1 if we collided with a reset
1188 		 * of the timer, which already reported this
1189 		 * almost-firing as an overrun.  So don't generate an event.
1190 		 */
1191 		if (likely(cpu_firing >= 0))
1192 			cpu_timer_fire(timer);
1193 		spin_unlock(&timer->it_lock);
1194 	}
1195 }
1196 
1197 /*
1198  * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1199  * The tsk->sighand->siglock must be held by the caller.
1200  */
1201 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1202 			   cputime_t *newval, cputime_t *oldval)
1203 {
1204 	unsigned long long now;
1205 
1206 	WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
1207 	cpu_timer_sample_group(clock_idx, tsk, &now);
1208 
1209 	if (oldval) {
1210 		/*
1211 		 * We are setting itimer. The *oldval is absolute and we update
1212 		 * it to be relative, *newval argument is relative and we update
1213 		 * it to be absolute.
1214 		 */
1215 		if (*oldval) {
1216 			if (*oldval <= now) {
1217 				/* Just about to fire. */
1218 				*oldval = cputime_one_jiffy;
1219 			} else {
1220 				*oldval -= now;
1221 			}
1222 		}
1223 
1224 		if (!*newval)
1225 			goto out;
1226 		*newval += now;
1227 	}
1228 
1229 	/*
1230 	 * Update expiration cache if we are the earliest timer, or eventually
1231 	 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1232 	 */
1233 	switch (clock_idx) {
1234 	case CPUCLOCK_PROF:
1235 		if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1236 			tsk->signal->cputime_expires.prof_exp = *newval;
1237 		break;
1238 	case CPUCLOCK_VIRT:
1239 		if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1240 			tsk->signal->cputime_expires.virt_exp = *newval;
1241 		break;
1242 	}
1243 out:
1244 	posix_cpu_timer_kick_nohz();
1245 }
1246 
1247 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1248 			    struct timespec *rqtp, struct itimerspec *it)
1249 {
1250 	struct k_itimer timer;
1251 	int error;
1252 
1253 	/*
1254 	 * Set up a temporary timer and then wait for it to go off.
1255 	 */
1256 	memset(&timer, 0, sizeof timer);
1257 	spin_lock_init(&timer.it_lock);
1258 	timer.it_clock = which_clock;
1259 	timer.it_overrun = -1;
1260 	error = posix_cpu_timer_create(&timer);
1261 	timer.it_process = current;
1262 	if (!error) {
1263 		static struct itimerspec zero_it;
1264 
1265 		memset(it, 0, sizeof *it);
1266 		it->it_value = *rqtp;
1267 
1268 		spin_lock_irq(&timer.it_lock);
1269 		error = posix_cpu_timer_set(&timer, flags, it, NULL);
1270 		if (error) {
1271 			spin_unlock_irq(&timer.it_lock);
1272 			return error;
1273 		}
1274 
1275 		while (!signal_pending(current)) {
1276 			if (timer.it.cpu.expires == 0) {
1277 				/*
1278 				 * Our timer fired and was reset, below
1279 				 * deletion can not fail.
1280 				 */
1281 				posix_cpu_timer_del(&timer);
1282 				spin_unlock_irq(&timer.it_lock);
1283 				return 0;
1284 			}
1285 
1286 			/*
1287 			 * Block until cpu_timer_fire (or a signal) wakes us.
1288 			 */
1289 			__set_current_state(TASK_INTERRUPTIBLE);
1290 			spin_unlock_irq(&timer.it_lock);
1291 			schedule();
1292 			spin_lock_irq(&timer.it_lock);
1293 		}
1294 
1295 		/*
1296 		 * We were interrupted by a signal.
1297 		 */
1298 		sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1299 		error = posix_cpu_timer_set(&timer, 0, &zero_it, it);
1300 		if (!error) {
1301 			/*
1302 			 * Timer is now unarmed, deletion can not fail.
1303 			 */
1304 			posix_cpu_timer_del(&timer);
1305 		}
1306 		spin_unlock_irq(&timer.it_lock);
1307 
1308 		while (error == TIMER_RETRY) {
1309 			/*
1310 			 * We need to handle case when timer was or is in the
1311 			 * middle of firing. In other cases we already freed
1312 			 * resources.
1313 			 */
1314 			spin_lock_irq(&timer.it_lock);
1315 			error = posix_cpu_timer_del(&timer);
1316 			spin_unlock_irq(&timer.it_lock);
1317 		}
1318 
1319 		if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1320 			/*
1321 			 * It actually did fire already.
1322 			 */
1323 			return 0;
1324 		}
1325 
1326 		error = -ERESTART_RESTARTBLOCK;
1327 	}
1328 
1329 	return error;
1330 }
1331 
1332 static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1333 
1334 static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1335 			    struct timespec *rqtp, struct timespec __user *rmtp)
1336 {
1337 	struct restart_block *restart_block = &current->restart_block;
1338 	struct itimerspec it;
1339 	int error;
1340 
1341 	/*
1342 	 * Diagnose required errors first.
1343 	 */
1344 	if (CPUCLOCK_PERTHREAD(which_clock) &&
1345 	    (CPUCLOCK_PID(which_clock) == 0 ||
1346 	     CPUCLOCK_PID(which_clock) == current->pid))
1347 		return -EINVAL;
1348 
1349 	error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1350 
1351 	if (error == -ERESTART_RESTARTBLOCK) {
1352 
1353 		if (flags & TIMER_ABSTIME)
1354 			return -ERESTARTNOHAND;
1355 		/*
1356 		 * Report back to the user the time still remaining.
1357 		 */
1358 		if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1359 			return -EFAULT;
1360 
1361 		restart_block->fn = posix_cpu_nsleep_restart;
1362 		restart_block->nanosleep.clockid = which_clock;
1363 		restart_block->nanosleep.rmtp = rmtp;
1364 		restart_block->nanosleep.expires = timespec_to_ns(rqtp);
1365 	}
1366 	return error;
1367 }
1368 
1369 static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1370 {
1371 	clockid_t which_clock = restart_block->nanosleep.clockid;
1372 	struct timespec t;
1373 	struct itimerspec it;
1374 	int error;
1375 
1376 	t = ns_to_timespec(restart_block->nanosleep.expires);
1377 
1378 	error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1379 
1380 	if (error == -ERESTART_RESTARTBLOCK) {
1381 		struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
1382 		/*
1383 		 * Report back to the user the time still remaining.
1384 		 */
1385 		if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1386 			return -EFAULT;
1387 
1388 		restart_block->nanosleep.expires = timespec_to_ns(&t);
1389 	}
1390 	return error;
1391 
1392 }
1393 
1394 #define PROCESS_CLOCK	MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1395 #define THREAD_CLOCK	MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1396 
1397 static int process_cpu_clock_getres(const clockid_t which_clock,
1398 				    struct timespec *tp)
1399 {
1400 	return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1401 }
1402 static int process_cpu_clock_get(const clockid_t which_clock,
1403 				 struct timespec *tp)
1404 {
1405 	return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1406 }
1407 static int process_cpu_timer_create(struct k_itimer *timer)
1408 {
1409 	timer->it_clock = PROCESS_CLOCK;
1410 	return posix_cpu_timer_create(timer);
1411 }
1412 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1413 			      struct timespec *rqtp,
1414 			      struct timespec __user *rmtp)
1415 {
1416 	return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1417 }
1418 static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1419 {
1420 	return -EINVAL;
1421 }
1422 static int thread_cpu_clock_getres(const clockid_t which_clock,
1423 				   struct timespec *tp)
1424 {
1425 	return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1426 }
1427 static int thread_cpu_clock_get(const clockid_t which_clock,
1428 				struct timespec *tp)
1429 {
1430 	return posix_cpu_clock_get(THREAD_CLOCK, tp);
1431 }
1432 static int thread_cpu_timer_create(struct k_itimer *timer)
1433 {
1434 	timer->it_clock = THREAD_CLOCK;
1435 	return posix_cpu_timer_create(timer);
1436 }
1437 
1438 struct k_clock clock_posix_cpu = {
1439 	.clock_getres	= posix_cpu_clock_getres,
1440 	.clock_set	= posix_cpu_clock_set,
1441 	.clock_get	= posix_cpu_clock_get,
1442 	.timer_create	= posix_cpu_timer_create,
1443 	.nsleep		= posix_cpu_nsleep,
1444 	.nsleep_restart	= posix_cpu_nsleep_restart,
1445 	.timer_set	= posix_cpu_timer_set,
1446 	.timer_del	= posix_cpu_timer_del,
1447 	.timer_get	= posix_cpu_timer_get,
1448 };
1449 
1450 static __init int init_posix_cpu_timers(void)
1451 {
1452 	struct k_clock process = {
1453 		.clock_getres	= process_cpu_clock_getres,
1454 		.clock_get	= process_cpu_clock_get,
1455 		.timer_create	= process_cpu_timer_create,
1456 		.nsleep		= process_cpu_nsleep,
1457 		.nsleep_restart	= process_cpu_nsleep_restart,
1458 	};
1459 	struct k_clock thread = {
1460 		.clock_getres	= thread_cpu_clock_getres,
1461 		.clock_get	= thread_cpu_clock_get,
1462 		.timer_create	= thread_cpu_timer_create,
1463 	};
1464 	struct timespec ts;
1465 
1466 	posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1467 	posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1468 
1469 	cputime_to_timespec(cputime_one_jiffy, &ts);
1470 	onecputick = ts.tv_nsec;
1471 	WARN_ON(ts.tv_sec != 0);
1472 
1473 	return 0;
1474 }
1475 __initcall(init_posix_cpu_timers);
1476