xref: /openbmc/linux/kernel/time/ntp.c (revision d7a3d85e)
1 /*
2  * NTP state machine interfaces and logic.
3  *
4  * This code was mainly moved from kernel/timer.c and kernel/time.c
5  * Please see those files for relevant copyright info and historical
6  * changelogs.
7  */
8 #include <linux/capability.h>
9 #include <linux/clocksource.h>
10 #include <linux/workqueue.h>
11 #include <linux/hrtimer.h>
12 #include <linux/jiffies.h>
13 #include <linux/math64.h>
14 #include <linux/timex.h>
15 #include <linux/time.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/rtc.h>
19 
20 #include "ntp_internal.h"
21 
22 /*
23  * NTP timekeeping variables:
24  *
25  * Note: All of the NTP state is protected by the timekeeping locks.
26  */
27 
28 
29 /* USER_HZ period (usecs): */
30 unsigned long			tick_usec = TICK_USEC;
31 
32 /* SHIFTED_HZ period (nsecs): */
33 unsigned long			tick_nsec;
34 
35 static u64			tick_length;
36 static u64			tick_length_base;
37 
38 #define MAX_TICKADJ		500LL		/* usecs */
39 #define MAX_TICKADJ_SCALED \
40 	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
41 
42 /*
43  * phase-lock loop variables
44  */
45 
46 /*
47  * clock synchronization status
48  *
49  * (TIME_ERROR prevents overwriting the CMOS clock)
50  */
51 static int			time_state = TIME_OK;
52 
53 /* clock status bits:							*/
54 static int			time_status = STA_UNSYNC;
55 
56 /* time adjustment (nsecs):						*/
57 static s64			time_offset;
58 
59 /* pll time constant:							*/
60 static long			time_constant = 2;
61 
62 /* maximum error (usecs):						*/
63 static long			time_maxerror = NTP_PHASE_LIMIT;
64 
65 /* estimated error (usecs):						*/
66 static long			time_esterror = NTP_PHASE_LIMIT;
67 
68 /* frequency offset (scaled nsecs/secs):				*/
69 static s64			time_freq;
70 
71 /* time at last adjustment (secs):					*/
72 static long			time_reftime;
73 
74 static long			time_adjust;
75 
76 /* constant (boot-param configurable) NTP tick adjustment (upscaled)	*/
77 static s64			ntp_tick_adj;
78 
79 #ifdef CONFIG_NTP_PPS
80 
81 /*
82  * The following variables are used when a pulse-per-second (PPS) signal
83  * is available. They establish the engineering parameters of the clock
84  * discipline loop when controlled by the PPS signal.
85  */
86 #define PPS_VALID	10	/* PPS signal watchdog max (s) */
87 #define PPS_POPCORN	4	/* popcorn spike threshold (shift) */
88 #define PPS_INTMIN	2	/* min freq interval (s) (shift) */
89 #define PPS_INTMAX	8	/* max freq interval (s) (shift) */
90 #define PPS_INTCOUNT	4	/* number of consecutive good intervals to
91 				   increase pps_shift or consecutive bad
92 				   intervals to decrease it */
93 #define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */
94 
95 static int pps_valid;		/* signal watchdog counter */
96 static long pps_tf[3];		/* phase median filter */
97 static long pps_jitter;		/* current jitter (ns) */
98 static struct timespec pps_fbase; /* beginning of the last freq interval */
99 static int pps_shift;		/* current interval duration (s) (shift) */
100 static int pps_intcnt;		/* interval counter */
101 static s64 pps_freq;		/* frequency offset (scaled ns/s) */
102 static long pps_stabil;		/* current stability (scaled ns/s) */
103 
104 /*
105  * PPS signal quality monitors
106  */
107 static long pps_calcnt;		/* calibration intervals */
108 static long pps_jitcnt;		/* jitter limit exceeded */
109 static long pps_stbcnt;		/* stability limit exceeded */
110 static long pps_errcnt;		/* calibration errors */
111 
112 
113 /* PPS kernel consumer compensates the whole phase error immediately.
114  * Otherwise, reduce the offset by a fixed factor times the time constant.
115  */
116 static inline s64 ntp_offset_chunk(s64 offset)
117 {
118 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
119 		return offset;
120 	else
121 		return shift_right(offset, SHIFT_PLL + time_constant);
122 }
123 
124 static inline void pps_reset_freq_interval(void)
125 {
126 	/* the PPS calibration interval may end
127 	   surprisingly early */
128 	pps_shift = PPS_INTMIN;
129 	pps_intcnt = 0;
130 }
131 
132 /**
133  * pps_clear - Clears the PPS state variables
134  */
135 static inline void pps_clear(void)
136 {
137 	pps_reset_freq_interval();
138 	pps_tf[0] = 0;
139 	pps_tf[1] = 0;
140 	pps_tf[2] = 0;
141 	pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
142 	pps_freq = 0;
143 }
144 
145 /* Decrease pps_valid to indicate that another second has passed since
146  * the last PPS signal. When it reaches 0, indicate that PPS signal is
147  * missing.
148  */
149 static inline void pps_dec_valid(void)
150 {
151 	if (pps_valid > 0)
152 		pps_valid--;
153 	else {
154 		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
155 				 STA_PPSWANDER | STA_PPSERROR);
156 		pps_clear();
157 	}
158 }
159 
160 static inline void pps_set_freq(s64 freq)
161 {
162 	pps_freq = freq;
163 }
164 
165 static inline int is_error_status(int status)
166 {
167 	return (status & (STA_UNSYNC|STA_CLOCKERR))
168 		/* PPS signal lost when either PPS time or
169 		 * PPS frequency synchronization requested
170 		 */
171 		|| ((status & (STA_PPSFREQ|STA_PPSTIME))
172 			&& !(status & STA_PPSSIGNAL))
173 		/* PPS jitter exceeded when
174 		 * PPS time synchronization requested */
175 		|| ((status & (STA_PPSTIME|STA_PPSJITTER))
176 			== (STA_PPSTIME|STA_PPSJITTER))
177 		/* PPS wander exceeded or calibration error when
178 		 * PPS frequency synchronization requested
179 		 */
180 		|| ((status & STA_PPSFREQ)
181 			&& (status & (STA_PPSWANDER|STA_PPSERROR)));
182 }
183 
184 static inline void pps_fill_timex(struct timex *txc)
185 {
186 	txc->ppsfreq	   = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
187 					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
188 	txc->jitter	   = pps_jitter;
189 	if (!(time_status & STA_NANO))
190 		txc->jitter /= NSEC_PER_USEC;
191 	txc->shift	   = pps_shift;
192 	txc->stabil	   = pps_stabil;
193 	txc->jitcnt	   = pps_jitcnt;
194 	txc->calcnt	   = pps_calcnt;
195 	txc->errcnt	   = pps_errcnt;
196 	txc->stbcnt	   = pps_stbcnt;
197 }
198 
199 #else /* !CONFIG_NTP_PPS */
200 
201 static inline s64 ntp_offset_chunk(s64 offset)
202 {
203 	return shift_right(offset, SHIFT_PLL + time_constant);
204 }
205 
206 static inline void pps_reset_freq_interval(void) {}
207 static inline void pps_clear(void) {}
208 static inline void pps_dec_valid(void) {}
209 static inline void pps_set_freq(s64 freq) {}
210 
211 static inline int is_error_status(int status)
212 {
213 	return status & (STA_UNSYNC|STA_CLOCKERR);
214 }
215 
216 static inline void pps_fill_timex(struct timex *txc)
217 {
218 	/* PPS is not implemented, so these are zero */
219 	txc->ppsfreq	   = 0;
220 	txc->jitter	   = 0;
221 	txc->shift	   = 0;
222 	txc->stabil	   = 0;
223 	txc->jitcnt	   = 0;
224 	txc->calcnt	   = 0;
225 	txc->errcnt	   = 0;
226 	txc->stbcnt	   = 0;
227 }
228 
229 #endif /* CONFIG_NTP_PPS */
230 
231 
232 /**
233  * ntp_synced - Returns 1 if the NTP status is not UNSYNC
234  *
235  */
236 static inline int ntp_synced(void)
237 {
238 	return !(time_status & STA_UNSYNC);
239 }
240 
241 
242 /*
243  * NTP methods:
244  */
245 
246 /*
247  * Update (tick_length, tick_length_base, tick_nsec), based
248  * on (tick_usec, ntp_tick_adj, time_freq):
249  */
250 static void ntp_update_frequency(void)
251 {
252 	u64 second_length;
253 	u64 new_base;
254 
255 	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
256 						<< NTP_SCALE_SHIFT;
257 
258 	second_length		+= ntp_tick_adj;
259 	second_length		+= time_freq;
260 
261 	tick_nsec		 = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
262 	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
263 
264 	/*
265 	 * Don't wait for the next second_overflow, apply
266 	 * the change to the tick length immediately:
267 	 */
268 	tick_length		+= new_base - tick_length_base;
269 	tick_length_base	 = new_base;
270 }
271 
272 static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
273 {
274 	time_status &= ~STA_MODE;
275 
276 	if (secs < MINSEC)
277 		return 0;
278 
279 	if (!(time_status & STA_FLL) && (secs <= MAXSEC))
280 		return 0;
281 
282 	time_status |= STA_MODE;
283 
284 	return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
285 }
286 
287 static void ntp_update_offset(long offset)
288 {
289 	s64 freq_adj;
290 	s64 offset64;
291 	long secs;
292 
293 	if (!(time_status & STA_PLL))
294 		return;
295 
296 	if (!(time_status & STA_NANO))
297 		offset *= NSEC_PER_USEC;
298 
299 	/*
300 	 * Scale the phase adjustment and
301 	 * clamp to the operating range.
302 	 */
303 	offset = min(offset, MAXPHASE);
304 	offset = max(offset, -MAXPHASE);
305 
306 	/*
307 	 * Select how the frequency is to be controlled
308 	 * and in which mode (PLL or FLL).
309 	 */
310 	secs = get_seconds() - time_reftime;
311 	if (unlikely(time_status & STA_FREQHOLD))
312 		secs = 0;
313 
314 	time_reftime = get_seconds();
315 
316 	offset64    = offset;
317 	freq_adj    = ntp_update_offset_fll(offset64, secs);
318 
319 	/*
320 	 * Clamp update interval to reduce PLL gain with low
321 	 * sampling rate (e.g. intermittent network connection)
322 	 * to avoid instability.
323 	 */
324 	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
325 		secs = 1 << (SHIFT_PLL + 1 + time_constant);
326 
327 	freq_adj    += (offset64 * secs) <<
328 			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
329 
330 	freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);
331 
332 	time_freq   = max(freq_adj, -MAXFREQ_SCALED);
333 
334 	time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
335 }
336 
337 /**
338  * ntp_clear - Clears the NTP state variables
339  */
340 void ntp_clear(void)
341 {
342 	time_adjust	= 0;		/* stop active adjtime() */
343 	time_status	|= STA_UNSYNC;
344 	time_maxerror	= NTP_PHASE_LIMIT;
345 	time_esterror	= NTP_PHASE_LIMIT;
346 
347 	ntp_update_frequency();
348 
349 	tick_length	= tick_length_base;
350 	time_offset	= 0;
351 
352 	/* Clear PPS state variables */
353 	pps_clear();
354 }
355 
356 
357 u64 ntp_tick_length(void)
358 {
359 	return tick_length;
360 }
361 
362 
363 /*
364  * this routine handles the overflow of the microsecond field
365  *
366  * The tricky bits of code to handle the accurate clock support
367  * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
368  * They were originally developed for SUN and DEC kernels.
369  * All the kudos should go to Dave for this stuff.
370  *
371  * Also handles leap second processing, and returns leap offset
372  */
373 int second_overflow(unsigned long secs)
374 {
375 	s64 delta;
376 	int leap = 0;
377 
378 	/*
379 	 * Leap second processing. If in leap-insert state at the end of the
380 	 * day, the system clock is set back one second; if in leap-delete
381 	 * state, the system clock is set ahead one second.
382 	 */
383 	switch (time_state) {
384 	case TIME_OK:
385 		if (time_status & STA_INS)
386 			time_state = TIME_INS;
387 		else if (time_status & STA_DEL)
388 			time_state = TIME_DEL;
389 		break;
390 	case TIME_INS:
391 		if (!(time_status & STA_INS))
392 			time_state = TIME_OK;
393 		else if (secs % 86400 == 0) {
394 			leap = -1;
395 			time_state = TIME_OOP;
396 			printk(KERN_NOTICE
397 				"Clock: inserting leap second 23:59:60 UTC\n");
398 		}
399 		break;
400 	case TIME_DEL:
401 		if (!(time_status & STA_DEL))
402 			time_state = TIME_OK;
403 		else if ((secs + 1) % 86400 == 0) {
404 			leap = 1;
405 			time_state = TIME_WAIT;
406 			printk(KERN_NOTICE
407 				"Clock: deleting leap second 23:59:59 UTC\n");
408 		}
409 		break;
410 	case TIME_OOP:
411 		time_state = TIME_WAIT;
412 		break;
413 
414 	case TIME_WAIT:
415 		if (!(time_status & (STA_INS | STA_DEL)))
416 			time_state = TIME_OK;
417 		break;
418 	}
419 
420 
421 	/* Bump the maxerror field */
422 	time_maxerror += MAXFREQ / NSEC_PER_USEC;
423 	if (time_maxerror > NTP_PHASE_LIMIT) {
424 		time_maxerror = NTP_PHASE_LIMIT;
425 		time_status |= STA_UNSYNC;
426 	}
427 
428 	/* Compute the phase adjustment for the next second */
429 	tick_length	 = tick_length_base;
430 
431 	delta		 = ntp_offset_chunk(time_offset);
432 	time_offset	-= delta;
433 	tick_length	+= delta;
434 
435 	/* Check PPS signal */
436 	pps_dec_valid();
437 
438 	if (!time_adjust)
439 		goto out;
440 
441 	if (time_adjust > MAX_TICKADJ) {
442 		time_adjust -= MAX_TICKADJ;
443 		tick_length += MAX_TICKADJ_SCALED;
444 		goto out;
445 	}
446 
447 	if (time_adjust < -MAX_TICKADJ) {
448 		time_adjust += MAX_TICKADJ;
449 		tick_length -= MAX_TICKADJ_SCALED;
450 		goto out;
451 	}
452 
453 	tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
454 							 << NTP_SCALE_SHIFT;
455 	time_adjust = 0;
456 
457 out:
458 	return leap;
459 }
460 
461 #ifdef CONFIG_GENERIC_CMOS_UPDATE
462 int __weak update_persistent_clock64(struct timespec64 now64)
463 {
464 	struct timespec now;
465 
466 	now = timespec64_to_timespec(now64);
467 	return update_persistent_clock(now);
468 }
469 #endif
470 
471 #if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
472 static void sync_cmos_clock(struct work_struct *work);
473 
474 static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
475 
476 static void sync_cmos_clock(struct work_struct *work)
477 {
478 	struct timespec64 now;
479 	struct timespec next;
480 	int fail = 1;
481 
482 	/*
483 	 * If we have an externally synchronized Linux clock, then update
484 	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
485 	 * called as close as possible to 500 ms before the new second starts.
486 	 * This code is run on a timer.  If the clock is set, that timer
487 	 * may not expire at the correct time.  Thus, we adjust...
488 	 * We want the clock to be within a couple of ticks from the target.
489 	 */
490 	if (!ntp_synced()) {
491 		/*
492 		 * Not synced, exit, do not restart a timer (if one is
493 		 * running, let it run out).
494 		 */
495 		return;
496 	}
497 
498 	getnstimeofday64(&now);
499 	if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec * 5) {
500 		struct timespec64 adjust = now;
501 
502 		fail = -ENODEV;
503 		if (persistent_clock_is_local)
504 			adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
505 #ifdef CONFIG_GENERIC_CMOS_UPDATE
506 		fail = update_persistent_clock64(adjust);
507 #endif
508 
509 #ifdef CONFIG_RTC_SYSTOHC
510 		if (fail == -ENODEV)
511 			fail = rtc_set_ntp_time(adjust);
512 #endif
513 	}
514 
515 	next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
516 	if (next.tv_nsec <= 0)
517 		next.tv_nsec += NSEC_PER_SEC;
518 
519 	if (!fail || fail == -ENODEV)
520 		next.tv_sec = 659;
521 	else
522 		next.tv_sec = 0;
523 
524 	if (next.tv_nsec >= NSEC_PER_SEC) {
525 		next.tv_sec++;
526 		next.tv_nsec -= NSEC_PER_SEC;
527 	}
528 	queue_delayed_work(system_power_efficient_wq,
529 			   &sync_cmos_work, timespec_to_jiffies(&next));
530 }
531 
532 void ntp_notify_cmos_timer(void)
533 {
534 	queue_delayed_work(system_power_efficient_wq, &sync_cmos_work, 0);
535 }
536 
537 #else
538 void ntp_notify_cmos_timer(void) { }
539 #endif
540 
541 
542 /*
543  * Propagate a new txc->status value into the NTP state:
544  */
545 static inline void process_adj_status(struct timex *txc, struct timespec64 *ts)
546 {
547 	if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
548 		time_state = TIME_OK;
549 		time_status = STA_UNSYNC;
550 		/* restart PPS frequency calibration */
551 		pps_reset_freq_interval();
552 	}
553 
554 	/*
555 	 * If we turn on PLL adjustments then reset the
556 	 * reference time to current time.
557 	 */
558 	if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
559 		time_reftime = get_seconds();
560 
561 	/* only set allowed bits */
562 	time_status &= STA_RONLY;
563 	time_status |= txc->status & ~STA_RONLY;
564 }
565 
566 
567 static inline void process_adjtimex_modes(struct timex *txc,
568 						struct timespec64 *ts,
569 						s32 *time_tai)
570 {
571 	if (txc->modes & ADJ_STATUS)
572 		process_adj_status(txc, ts);
573 
574 	if (txc->modes & ADJ_NANO)
575 		time_status |= STA_NANO;
576 
577 	if (txc->modes & ADJ_MICRO)
578 		time_status &= ~STA_NANO;
579 
580 	if (txc->modes & ADJ_FREQUENCY) {
581 		time_freq = txc->freq * PPM_SCALE;
582 		time_freq = min(time_freq, MAXFREQ_SCALED);
583 		time_freq = max(time_freq, -MAXFREQ_SCALED);
584 		/* update pps_freq */
585 		pps_set_freq(time_freq);
586 	}
587 
588 	if (txc->modes & ADJ_MAXERROR)
589 		time_maxerror = txc->maxerror;
590 
591 	if (txc->modes & ADJ_ESTERROR)
592 		time_esterror = txc->esterror;
593 
594 	if (txc->modes & ADJ_TIMECONST) {
595 		time_constant = txc->constant;
596 		if (!(time_status & STA_NANO))
597 			time_constant += 4;
598 		time_constant = min(time_constant, (long)MAXTC);
599 		time_constant = max(time_constant, 0l);
600 	}
601 
602 	if (txc->modes & ADJ_TAI && txc->constant > 0)
603 		*time_tai = txc->constant;
604 
605 	if (txc->modes & ADJ_OFFSET)
606 		ntp_update_offset(txc->offset);
607 
608 	if (txc->modes & ADJ_TICK)
609 		tick_usec = txc->tick;
610 
611 	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
612 		ntp_update_frequency();
613 }
614 
615 
616 
617 /**
618  * ntp_validate_timex - Ensures the timex is ok for use in do_adjtimex
619  */
620 int ntp_validate_timex(struct timex *txc)
621 {
622 	if (txc->modes & ADJ_ADJTIME) {
623 		/* singleshot must not be used with any other mode bits */
624 		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
625 			return -EINVAL;
626 		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
627 		    !capable(CAP_SYS_TIME))
628 			return -EPERM;
629 	} else {
630 		/* In order to modify anything, you gotta be super-user! */
631 		 if (txc->modes && !capable(CAP_SYS_TIME))
632 			return -EPERM;
633 		/*
634 		 * if the quartz is off by more than 10% then
635 		 * something is VERY wrong!
636 		 */
637 		if (txc->modes & ADJ_TICK &&
638 		    (txc->tick <  900000/USER_HZ ||
639 		     txc->tick > 1100000/USER_HZ))
640 			return -EINVAL;
641 	}
642 
643 	if ((txc->modes & ADJ_SETOFFSET) && (!capable(CAP_SYS_TIME)))
644 		return -EPERM;
645 
646 	/*
647 	 * Check for potential multiplication overflows that can
648 	 * only happen on 64-bit systems:
649 	 */
650 	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
651 		if (LLONG_MIN / PPM_SCALE > txc->freq)
652 			return -EINVAL;
653 		if (LLONG_MAX / PPM_SCALE < txc->freq)
654 			return -EINVAL;
655 	}
656 
657 	return 0;
658 }
659 
660 
661 /*
662  * adjtimex mainly allows reading (and writing, if superuser) of
663  * kernel time-keeping variables. used by xntpd.
664  */
665 int __do_adjtimex(struct timex *txc, struct timespec64 *ts, s32 *time_tai)
666 {
667 	int result;
668 
669 	if (txc->modes & ADJ_ADJTIME) {
670 		long save_adjust = time_adjust;
671 
672 		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
673 			/* adjtime() is independent from ntp_adjtime() */
674 			time_adjust = txc->offset;
675 			ntp_update_frequency();
676 		}
677 		txc->offset = save_adjust;
678 	} else {
679 
680 		/* If there are input parameters, then process them: */
681 		if (txc->modes)
682 			process_adjtimex_modes(txc, ts, time_tai);
683 
684 		txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
685 				  NTP_SCALE_SHIFT);
686 		if (!(time_status & STA_NANO))
687 			txc->offset /= NSEC_PER_USEC;
688 	}
689 
690 	result = time_state;	/* mostly `TIME_OK' */
691 	/* check for errors */
692 	if (is_error_status(time_status))
693 		result = TIME_ERROR;
694 
695 	txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
696 					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
697 	txc->maxerror	   = time_maxerror;
698 	txc->esterror	   = time_esterror;
699 	txc->status	   = time_status;
700 	txc->constant	   = time_constant;
701 	txc->precision	   = 1;
702 	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
703 	txc->tick	   = tick_usec;
704 	txc->tai	   = *time_tai;
705 
706 	/* fill PPS status fields */
707 	pps_fill_timex(txc);
708 
709 	txc->time.tv_sec = (time_t)ts->tv_sec;
710 	txc->time.tv_usec = ts->tv_nsec;
711 	if (!(time_status & STA_NANO))
712 		txc->time.tv_usec /= NSEC_PER_USEC;
713 
714 	return result;
715 }
716 
717 #ifdef	CONFIG_NTP_PPS
718 
719 /* actually struct pps_normtime is good old struct timespec, but it is
720  * semantically different (and it is the reason why it was invented):
721  * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
722  * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
723 struct pps_normtime {
724 	__kernel_time_t	sec;	/* seconds */
725 	long		nsec;	/* nanoseconds */
726 };
727 
728 /* normalize the timestamp so that nsec is in the
729    ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
730 static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
731 {
732 	struct pps_normtime norm = {
733 		.sec = ts.tv_sec,
734 		.nsec = ts.tv_nsec
735 	};
736 
737 	if (norm.nsec > (NSEC_PER_SEC >> 1)) {
738 		norm.nsec -= NSEC_PER_SEC;
739 		norm.sec++;
740 	}
741 
742 	return norm;
743 }
744 
745 /* get current phase correction and jitter */
746 static inline long pps_phase_filter_get(long *jitter)
747 {
748 	*jitter = pps_tf[0] - pps_tf[1];
749 	if (*jitter < 0)
750 		*jitter = -*jitter;
751 
752 	/* TODO: test various filters */
753 	return pps_tf[0];
754 }
755 
756 /* add the sample to the phase filter */
757 static inline void pps_phase_filter_add(long err)
758 {
759 	pps_tf[2] = pps_tf[1];
760 	pps_tf[1] = pps_tf[0];
761 	pps_tf[0] = err;
762 }
763 
764 /* decrease frequency calibration interval length.
765  * It is halved after four consecutive unstable intervals.
766  */
767 static inline void pps_dec_freq_interval(void)
768 {
769 	if (--pps_intcnt <= -PPS_INTCOUNT) {
770 		pps_intcnt = -PPS_INTCOUNT;
771 		if (pps_shift > PPS_INTMIN) {
772 			pps_shift--;
773 			pps_intcnt = 0;
774 		}
775 	}
776 }
777 
778 /* increase frequency calibration interval length.
779  * It is doubled after four consecutive stable intervals.
780  */
781 static inline void pps_inc_freq_interval(void)
782 {
783 	if (++pps_intcnt >= PPS_INTCOUNT) {
784 		pps_intcnt = PPS_INTCOUNT;
785 		if (pps_shift < PPS_INTMAX) {
786 			pps_shift++;
787 			pps_intcnt = 0;
788 		}
789 	}
790 }
791 
792 /* update clock frequency based on MONOTONIC_RAW clock PPS signal
793  * timestamps
794  *
795  * At the end of the calibration interval the difference between the
796  * first and last MONOTONIC_RAW clock timestamps divided by the length
797  * of the interval becomes the frequency update. If the interval was
798  * too long, the data are discarded.
799  * Returns the difference between old and new frequency values.
800  */
801 static long hardpps_update_freq(struct pps_normtime freq_norm)
802 {
803 	long delta, delta_mod;
804 	s64 ftemp;
805 
806 	/* check if the frequency interval was too long */
807 	if (freq_norm.sec > (2 << pps_shift)) {
808 		time_status |= STA_PPSERROR;
809 		pps_errcnt++;
810 		pps_dec_freq_interval();
811 		printk_deferred(KERN_ERR
812 			"hardpps: PPSERROR: interval too long - %ld s\n",
813 			freq_norm.sec);
814 		return 0;
815 	}
816 
817 	/* here the raw frequency offset and wander (stability) is
818 	 * calculated. If the wander is less than the wander threshold
819 	 * the interval is increased; otherwise it is decreased.
820 	 */
821 	ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
822 			freq_norm.sec);
823 	delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
824 	pps_freq = ftemp;
825 	if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
826 		printk_deferred(KERN_WARNING
827 				"hardpps: PPSWANDER: change=%ld\n", delta);
828 		time_status |= STA_PPSWANDER;
829 		pps_stbcnt++;
830 		pps_dec_freq_interval();
831 	} else {	/* good sample */
832 		pps_inc_freq_interval();
833 	}
834 
835 	/* the stability metric is calculated as the average of recent
836 	 * frequency changes, but is used only for performance
837 	 * monitoring
838 	 */
839 	delta_mod = delta;
840 	if (delta_mod < 0)
841 		delta_mod = -delta_mod;
842 	pps_stabil += (div_s64(((s64)delta_mod) <<
843 				(NTP_SCALE_SHIFT - SHIFT_USEC),
844 				NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
845 
846 	/* if enabled, the system clock frequency is updated */
847 	if ((time_status & STA_PPSFREQ) != 0 &&
848 	    (time_status & STA_FREQHOLD) == 0) {
849 		time_freq = pps_freq;
850 		ntp_update_frequency();
851 	}
852 
853 	return delta;
854 }
855 
856 /* correct REALTIME clock phase error against PPS signal */
857 static void hardpps_update_phase(long error)
858 {
859 	long correction = -error;
860 	long jitter;
861 
862 	/* add the sample to the median filter */
863 	pps_phase_filter_add(correction);
864 	correction = pps_phase_filter_get(&jitter);
865 
866 	/* Nominal jitter is due to PPS signal noise. If it exceeds the
867 	 * threshold, the sample is discarded; otherwise, if so enabled,
868 	 * the time offset is updated.
869 	 */
870 	if (jitter > (pps_jitter << PPS_POPCORN)) {
871 		printk_deferred(KERN_WARNING
872 				"hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
873 				jitter, (pps_jitter << PPS_POPCORN));
874 		time_status |= STA_PPSJITTER;
875 		pps_jitcnt++;
876 	} else if (time_status & STA_PPSTIME) {
877 		/* correct the time using the phase offset */
878 		time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
879 				NTP_INTERVAL_FREQ);
880 		/* cancel running adjtime() */
881 		time_adjust = 0;
882 	}
883 	/* update jitter */
884 	pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
885 }
886 
887 /*
888  * __hardpps() - discipline CPU clock oscillator to external PPS signal
889  *
890  * This routine is called at each PPS signal arrival in order to
891  * discipline the CPU clock oscillator to the PPS signal. It takes two
892  * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
893  * is used to correct clock phase error and the latter is used to
894  * correct the frequency.
895  *
896  * This code is based on David Mills's reference nanokernel
897  * implementation. It was mostly rewritten but keeps the same idea.
898  */
899 void __hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
900 {
901 	struct pps_normtime pts_norm, freq_norm;
902 
903 	pts_norm = pps_normalize_ts(*phase_ts);
904 
905 	/* clear the error bits, they will be set again if needed */
906 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
907 
908 	/* indicate signal presence */
909 	time_status |= STA_PPSSIGNAL;
910 	pps_valid = PPS_VALID;
911 
912 	/* when called for the first time,
913 	 * just start the frequency interval */
914 	if (unlikely(pps_fbase.tv_sec == 0)) {
915 		pps_fbase = *raw_ts;
916 		return;
917 	}
918 
919 	/* ok, now we have a base for frequency calculation */
920 	freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));
921 
922 	/* check that the signal is in the range
923 	 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
924 	if ((freq_norm.sec == 0) ||
925 			(freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
926 			(freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
927 		time_status |= STA_PPSJITTER;
928 		/* restart the frequency calibration interval */
929 		pps_fbase = *raw_ts;
930 		printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
931 		return;
932 	}
933 
934 	/* signal is ok */
935 
936 	/* check if the current frequency interval is finished */
937 	if (freq_norm.sec >= (1 << pps_shift)) {
938 		pps_calcnt++;
939 		/* restart the frequency calibration interval */
940 		pps_fbase = *raw_ts;
941 		hardpps_update_freq(freq_norm);
942 	}
943 
944 	hardpps_update_phase(pts_norm.nsec);
945 
946 }
947 #endif	/* CONFIG_NTP_PPS */
948 
949 static int __init ntp_tick_adj_setup(char *str)
950 {
951 	int rc = kstrtol(str, 0, (long *)&ntp_tick_adj);
952 
953 	if (rc)
954 		return rc;
955 	ntp_tick_adj <<= NTP_SCALE_SHIFT;
956 
957 	return 1;
958 }
959 
960 __setup("ntp_tick_adj=", ntp_tick_adj_setup);
961 
962 void __init ntp_init(void)
963 {
964 	ntp_clear();
965 }
966