xref: /openbmc/linux/kernel/time/ntp.c (revision b1a792601f264df7172a728f1a83a05b6b399dfb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NTP state machine interfaces and logic.
4  *
5  * This code was mainly moved from kernel/timer.c and kernel/time.c
6  * Please see those files for relevant copyright info and historical
7  * changelogs.
8  */
9 #include <linux/capability.h>
10 #include <linux/clocksource.h>
11 #include <linux/workqueue.h>
12 #include <linux/hrtimer.h>
13 #include <linux/jiffies.h>
14 #include <linux/math64.h>
15 #include <linux/timex.h>
16 #include <linux/time.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/rtc.h>
20 #include <linux/audit.h>
21 
22 #include "ntp_internal.h"
23 #include "timekeeping_internal.h"
24 
25 
26 /*
27  * NTP timekeeping variables:
28  *
29  * Note: All of the NTP state is protected by the timekeeping locks.
30  */
31 
32 
33 /* USER_HZ period (usecs): */
34 unsigned long			tick_usec = USER_TICK_USEC;
35 
36 /* SHIFTED_HZ period (nsecs): */
37 unsigned long			tick_nsec;
38 
39 static u64			tick_length;
40 static u64			tick_length_base;
41 
42 #define SECS_PER_DAY		86400
43 #define MAX_TICKADJ		500LL		/* usecs */
44 #define MAX_TICKADJ_SCALED \
45 	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
46 #define MAX_TAI_OFFSET		100000
47 
48 /*
49  * phase-lock loop variables
50  */
51 
52 /*
53  * clock synchronization status
54  *
55  * (TIME_ERROR prevents overwriting the CMOS clock)
56  */
57 static int			time_state = TIME_OK;
58 
59 /* clock status bits:							*/
60 static int			time_status = STA_UNSYNC;
61 
62 /* time adjustment (nsecs):						*/
63 static s64			time_offset;
64 
65 /* pll time constant:							*/
66 static long			time_constant = 2;
67 
68 /* maximum error (usecs):						*/
69 static long			time_maxerror = NTP_PHASE_LIMIT;
70 
71 /* estimated error (usecs):						*/
72 static long			time_esterror = NTP_PHASE_LIMIT;
73 
74 /* frequency offset (scaled nsecs/secs):				*/
75 static s64			time_freq;
76 
77 /* time at last adjustment (secs):					*/
78 static time64_t		time_reftime;
79 
80 static long			time_adjust;
81 
82 /* constant (boot-param configurable) NTP tick adjustment (upscaled)	*/
83 static s64			ntp_tick_adj;
84 
85 /* second value of the next pending leapsecond, or TIME64_MAX if no leap */
86 static time64_t			ntp_next_leap_sec = TIME64_MAX;
87 
88 #ifdef CONFIG_NTP_PPS
89 
90 /*
91  * The following variables are used when a pulse-per-second (PPS) signal
92  * is available. They establish the engineering parameters of the clock
93  * discipline loop when controlled by the PPS signal.
94  */
95 #define PPS_VALID	10	/* PPS signal watchdog max (s) */
96 #define PPS_POPCORN	4	/* popcorn spike threshold (shift) */
97 #define PPS_INTMIN	2	/* min freq interval (s) (shift) */
98 #define PPS_INTMAX	8	/* max freq interval (s) (shift) */
99 #define PPS_INTCOUNT	4	/* number of consecutive good intervals to
100 				   increase pps_shift or consecutive bad
101 				   intervals to decrease it */
102 #define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */
103 
104 static int pps_valid;		/* signal watchdog counter */
105 static long pps_tf[3];		/* phase median filter */
106 static long pps_jitter;		/* current jitter (ns) */
107 static struct timespec64 pps_fbase; /* beginning of the last freq interval */
108 static int pps_shift;		/* current interval duration (s) (shift) */
109 static int pps_intcnt;		/* interval counter */
110 static s64 pps_freq;		/* frequency offset (scaled ns/s) */
111 static long pps_stabil;		/* current stability (scaled ns/s) */
112 
113 /*
114  * PPS signal quality monitors
115  */
116 static long pps_calcnt;		/* calibration intervals */
117 static long pps_jitcnt;		/* jitter limit exceeded */
118 static long pps_stbcnt;		/* stability limit exceeded */
119 static long pps_errcnt;		/* calibration errors */
120 
121 
122 /* PPS kernel consumer compensates the whole phase error immediately.
123  * Otherwise, reduce the offset by a fixed factor times the time constant.
124  */
125 static inline s64 ntp_offset_chunk(s64 offset)
126 {
127 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
128 		return offset;
129 	else
130 		return shift_right(offset, SHIFT_PLL + time_constant);
131 }
132 
133 static inline void pps_reset_freq_interval(void)
134 {
135 	/* the PPS calibration interval may end
136 	   surprisingly early */
137 	pps_shift = PPS_INTMIN;
138 	pps_intcnt = 0;
139 }
140 
141 /**
142  * pps_clear - Clears the PPS state variables
143  */
144 static inline void pps_clear(void)
145 {
146 	pps_reset_freq_interval();
147 	pps_tf[0] = 0;
148 	pps_tf[1] = 0;
149 	pps_tf[2] = 0;
150 	pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
151 	pps_freq = 0;
152 }
153 
154 /* Decrease pps_valid to indicate that another second has passed since
155  * the last PPS signal. When it reaches 0, indicate that PPS signal is
156  * missing.
157  */
158 static inline void pps_dec_valid(void)
159 {
160 	if (pps_valid > 0)
161 		pps_valid--;
162 	else {
163 		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
164 				 STA_PPSWANDER | STA_PPSERROR);
165 		pps_clear();
166 	}
167 }
168 
169 static inline void pps_set_freq(s64 freq)
170 {
171 	pps_freq = freq;
172 }
173 
174 static inline int is_error_status(int status)
175 {
176 	return (status & (STA_UNSYNC|STA_CLOCKERR))
177 		/* PPS signal lost when either PPS time or
178 		 * PPS frequency synchronization requested
179 		 */
180 		|| ((status & (STA_PPSFREQ|STA_PPSTIME))
181 			&& !(status & STA_PPSSIGNAL))
182 		/* PPS jitter exceeded when
183 		 * PPS time synchronization requested */
184 		|| ((status & (STA_PPSTIME|STA_PPSJITTER))
185 			== (STA_PPSTIME|STA_PPSJITTER))
186 		/* PPS wander exceeded or calibration error when
187 		 * PPS frequency synchronization requested
188 		 */
189 		|| ((status & STA_PPSFREQ)
190 			&& (status & (STA_PPSWANDER|STA_PPSERROR)));
191 }
192 
193 static inline void pps_fill_timex(struct __kernel_timex *txc)
194 {
195 	txc->ppsfreq	   = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
196 					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
197 	txc->jitter	   = pps_jitter;
198 	if (!(time_status & STA_NANO))
199 		txc->jitter = pps_jitter / NSEC_PER_USEC;
200 	txc->shift	   = pps_shift;
201 	txc->stabil	   = pps_stabil;
202 	txc->jitcnt	   = pps_jitcnt;
203 	txc->calcnt	   = pps_calcnt;
204 	txc->errcnt	   = pps_errcnt;
205 	txc->stbcnt	   = pps_stbcnt;
206 }
207 
208 #else /* !CONFIG_NTP_PPS */
209 
210 static inline s64 ntp_offset_chunk(s64 offset)
211 {
212 	return shift_right(offset, SHIFT_PLL + time_constant);
213 }
214 
215 static inline void pps_reset_freq_interval(void) {}
216 static inline void pps_clear(void) {}
217 static inline void pps_dec_valid(void) {}
218 static inline void pps_set_freq(s64 freq) {}
219 
220 static inline int is_error_status(int status)
221 {
222 	return status & (STA_UNSYNC|STA_CLOCKERR);
223 }
224 
225 static inline void pps_fill_timex(struct __kernel_timex *txc)
226 {
227 	/* PPS is not implemented, so these are zero */
228 	txc->ppsfreq	   = 0;
229 	txc->jitter	   = 0;
230 	txc->shift	   = 0;
231 	txc->stabil	   = 0;
232 	txc->jitcnt	   = 0;
233 	txc->calcnt	   = 0;
234 	txc->errcnt	   = 0;
235 	txc->stbcnt	   = 0;
236 }
237 
238 #endif /* CONFIG_NTP_PPS */
239 
240 
241 /**
242  * ntp_synced - Returns 1 if the NTP status is not UNSYNC
243  *
244  */
245 static inline int ntp_synced(void)
246 {
247 	return !(time_status & STA_UNSYNC);
248 }
249 
250 
251 /*
252  * NTP methods:
253  */
254 
255 /*
256  * Update (tick_length, tick_length_base, tick_nsec), based
257  * on (tick_usec, ntp_tick_adj, time_freq):
258  */
259 static void ntp_update_frequency(void)
260 {
261 	u64 second_length;
262 	u64 new_base;
263 
264 	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
265 						<< NTP_SCALE_SHIFT;
266 
267 	second_length		+= ntp_tick_adj;
268 	second_length		+= time_freq;
269 
270 	tick_nsec		 = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
271 	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
272 
273 	/*
274 	 * Don't wait for the next second_overflow, apply
275 	 * the change to the tick length immediately:
276 	 */
277 	tick_length		+= new_base - tick_length_base;
278 	tick_length_base	 = new_base;
279 }
280 
281 static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
282 {
283 	time_status &= ~STA_MODE;
284 
285 	if (secs < MINSEC)
286 		return 0;
287 
288 	if (!(time_status & STA_FLL) && (secs <= MAXSEC))
289 		return 0;
290 
291 	time_status |= STA_MODE;
292 
293 	return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
294 }
295 
296 static void ntp_update_offset(long offset)
297 {
298 	s64 freq_adj;
299 	s64 offset64;
300 	long secs;
301 
302 	if (!(time_status & STA_PLL))
303 		return;
304 
305 	if (!(time_status & STA_NANO)) {
306 		/* Make sure the multiplication below won't overflow */
307 		offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC);
308 		offset *= NSEC_PER_USEC;
309 	}
310 
311 	/*
312 	 * Scale the phase adjustment and
313 	 * clamp to the operating range.
314 	 */
315 	offset = clamp(offset, -MAXPHASE, MAXPHASE);
316 
317 	/*
318 	 * Select how the frequency is to be controlled
319 	 * and in which mode (PLL or FLL).
320 	 */
321 	secs = (long)(__ktime_get_real_seconds() - time_reftime);
322 	if (unlikely(time_status & STA_FREQHOLD))
323 		secs = 0;
324 
325 	time_reftime = __ktime_get_real_seconds();
326 
327 	offset64    = offset;
328 	freq_adj    = ntp_update_offset_fll(offset64, secs);
329 
330 	/*
331 	 * Clamp update interval to reduce PLL gain with low
332 	 * sampling rate (e.g. intermittent network connection)
333 	 * to avoid instability.
334 	 */
335 	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
336 		secs = 1 << (SHIFT_PLL + 1 + time_constant);
337 
338 	freq_adj    += (offset64 * secs) <<
339 			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
340 
341 	freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);
342 
343 	time_freq   = max(freq_adj, -MAXFREQ_SCALED);
344 
345 	time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
346 }
347 
348 /**
349  * ntp_clear - Clears the NTP state variables
350  */
351 void ntp_clear(void)
352 {
353 	time_adjust	= 0;		/* stop active adjtime() */
354 	time_status	|= STA_UNSYNC;
355 	time_maxerror	= NTP_PHASE_LIMIT;
356 	time_esterror	= NTP_PHASE_LIMIT;
357 
358 	ntp_update_frequency();
359 
360 	tick_length	= tick_length_base;
361 	time_offset	= 0;
362 
363 	ntp_next_leap_sec = TIME64_MAX;
364 	/* Clear PPS state variables */
365 	pps_clear();
366 }
367 
368 
369 u64 ntp_tick_length(void)
370 {
371 	return tick_length;
372 }
373 
374 /**
375  * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
376  *
377  * Provides the time of the next leapsecond against CLOCK_REALTIME in
378  * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
379  */
380 ktime_t ntp_get_next_leap(void)
381 {
382 	ktime_t ret;
383 
384 	if ((time_state == TIME_INS) && (time_status & STA_INS))
385 		return ktime_set(ntp_next_leap_sec, 0);
386 	ret = KTIME_MAX;
387 	return ret;
388 }
389 
390 /*
391  * this routine handles the overflow of the microsecond field
392  *
393  * The tricky bits of code to handle the accurate clock support
394  * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
395  * They were originally developed for SUN and DEC kernels.
396  * All the kudos should go to Dave for this stuff.
397  *
398  * Also handles leap second processing, and returns leap offset
399  */
400 int second_overflow(time64_t secs)
401 {
402 	s64 delta;
403 	int leap = 0;
404 	s32 rem;
405 
406 	/*
407 	 * Leap second processing. If in leap-insert state at the end of the
408 	 * day, the system clock is set back one second; if in leap-delete
409 	 * state, the system clock is set ahead one second.
410 	 */
411 	switch (time_state) {
412 	case TIME_OK:
413 		if (time_status & STA_INS) {
414 			time_state = TIME_INS;
415 			div_s64_rem(secs, SECS_PER_DAY, &rem);
416 			ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
417 		} else if (time_status & STA_DEL) {
418 			time_state = TIME_DEL;
419 			div_s64_rem(secs + 1, SECS_PER_DAY, &rem);
420 			ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
421 		}
422 		break;
423 	case TIME_INS:
424 		if (!(time_status & STA_INS)) {
425 			ntp_next_leap_sec = TIME64_MAX;
426 			time_state = TIME_OK;
427 		} else if (secs == ntp_next_leap_sec) {
428 			leap = -1;
429 			time_state = TIME_OOP;
430 			printk(KERN_NOTICE
431 				"Clock: inserting leap second 23:59:60 UTC\n");
432 		}
433 		break;
434 	case TIME_DEL:
435 		if (!(time_status & STA_DEL)) {
436 			ntp_next_leap_sec = TIME64_MAX;
437 			time_state = TIME_OK;
438 		} else if (secs == ntp_next_leap_sec) {
439 			leap = 1;
440 			ntp_next_leap_sec = TIME64_MAX;
441 			time_state = TIME_WAIT;
442 			printk(KERN_NOTICE
443 				"Clock: deleting leap second 23:59:59 UTC\n");
444 		}
445 		break;
446 	case TIME_OOP:
447 		ntp_next_leap_sec = TIME64_MAX;
448 		time_state = TIME_WAIT;
449 		break;
450 	case TIME_WAIT:
451 		if (!(time_status & (STA_INS | STA_DEL)))
452 			time_state = TIME_OK;
453 		break;
454 	}
455 
456 
457 	/* Bump the maxerror field */
458 	time_maxerror += MAXFREQ / NSEC_PER_USEC;
459 	if (time_maxerror > NTP_PHASE_LIMIT) {
460 		time_maxerror = NTP_PHASE_LIMIT;
461 		time_status |= STA_UNSYNC;
462 	}
463 
464 	/* Compute the phase adjustment for the next second */
465 	tick_length	 = tick_length_base;
466 
467 	delta		 = ntp_offset_chunk(time_offset);
468 	time_offset	-= delta;
469 	tick_length	+= delta;
470 
471 	/* Check PPS signal */
472 	pps_dec_valid();
473 
474 	if (!time_adjust)
475 		goto out;
476 
477 	if (time_adjust > MAX_TICKADJ) {
478 		time_adjust -= MAX_TICKADJ;
479 		tick_length += MAX_TICKADJ_SCALED;
480 		goto out;
481 	}
482 
483 	if (time_adjust < -MAX_TICKADJ) {
484 		time_adjust += MAX_TICKADJ;
485 		tick_length -= MAX_TICKADJ_SCALED;
486 		goto out;
487 	}
488 
489 	tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
490 							 << NTP_SCALE_SHIFT;
491 	time_adjust = 0;
492 
493 out:
494 	return leap;
495 }
496 
497 #if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
498 static void sync_hw_clock(struct work_struct *work);
499 static DECLARE_WORK(sync_work, sync_hw_clock);
500 static struct hrtimer sync_hrtimer;
501 #define SYNC_PERIOD_NS (11ULL * 60 * NSEC_PER_SEC)
502 
503 static enum hrtimer_restart sync_timer_callback(struct hrtimer *timer)
504 {
505 	queue_work(system_freezable_power_efficient_wq, &sync_work);
506 
507 	return HRTIMER_NORESTART;
508 }
509 
510 static void sched_sync_hw_clock(unsigned long offset_nsec, bool retry)
511 {
512 	ktime_t exp = ktime_set(ktime_get_real_seconds(), 0);
513 
514 	if (retry)
515 		exp = ktime_add_ns(exp, 2ULL * NSEC_PER_SEC - offset_nsec);
516 	else
517 		exp = ktime_add_ns(exp, SYNC_PERIOD_NS - offset_nsec);
518 
519 	hrtimer_start(&sync_hrtimer, exp, HRTIMER_MODE_ABS);
520 }
521 
522 /*
523  * Check whether @now is correct versus the required time to update the RTC
524  * and calculate the value which needs to be written to the RTC so that the
525  * next seconds increment of the RTC after the write is aligned with the next
526  * seconds increment of clock REALTIME.
527  *
528  * tsched     t1 write(t2.tv_sec - 1sec))	t2 RTC increments seconds
529  *
530  * t2.tv_nsec == 0
531  * tsched = t2 - set_offset_nsec
532  * newval = t2 - NSEC_PER_SEC
533  *
534  * ==> neval = tsched + set_offset_nsec - NSEC_PER_SEC
535  *
536  * As the execution of this code is not guaranteed to happen exactly at
537  * tsched this allows it to happen within a fuzzy region:
538  *
539  *	abs(now - tsched) < FUZZ
540  *
541  * If @now is not inside the allowed window the function returns false.
542  */
543 static inline bool rtc_tv_nsec_ok(unsigned long set_offset_nsec,
544 				  struct timespec64 *to_set,
545 				  const struct timespec64 *now)
546 {
547 	/* Allowed error in tv_nsec, arbitarily set to 5 jiffies in ns. */
548 	const unsigned long TIME_SET_NSEC_FUZZ = TICK_NSEC * 5;
549 	struct timespec64 delay = {.tv_sec = -1,
550 				   .tv_nsec = set_offset_nsec};
551 
552 	*to_set = timespec64_add(*now, delay);
553 
554 	if (to_set->tv_nsec < TIME_SET_NSEC_FUZZ) {
555 		to_set->tv_nsec = 0;
556 		return true;
557 	}
558 
559 	if (to_set->tv_nsec > NSEC_PER_SEC - TIME_SET_NSEC_FUZZ) {
560 		to_set->tv_sec++;
561 		to_set->tv_nsec = 0;
562 		return true;
563 	}
564 	return false;
565 }
566 
567 #ifdef CONFIG_GENERIC_CMOS_UPDATE
568 int __weak update_persistent_clock64(struct timespec64 now64)
569 {
570 	return -ENODEV;
571 }
572 #else
573 static inline int update_persistent_clock64(struct timespec64 now64)
574 {
575 	return -ENODEV;
576 }
577 #endif
578 
579 #ifdef CONFIG_RTC_SYSTOHC
580 /* Save NTP synchronized time to the RTC */
581 static int update_rtc(struct timespec64 *to_set, unsigned long *offset_nsec)
582 {
583 	struct rtc_device *rtc;
584 	struct rtc_time tm;
585 	int err = -ENODEV;
586 
587 	rtc = rtc_class_open(CONFIG_RTC_SYSTOHC_DEVICE);
588 	if (!rtc)
589 		return -ENODEV;
590 
591 	if (!rtc->ops || !rtc->ops->set_time)
592 		goto out_close;
593 
594 	/* First call might not have the correct offset */
595 	if (*offset_nsec == rtc->set_offset_nsec) {
596 		rtc_time64_to_tm(to_set->tv_sec, &tm);
597 		err = rtc_set_time(rtc, &tm);
598 	} else {
599 		/* Store the update offset and let the caller try again */
600 		*offset_nsec = rtc->set_offset_nsec;
601 		err = -EAGAIN;
602 	}
603 out_close:
604 	rtc_class_close(rtc);
605 	return err;
606 }
607 #else
608 static inline int update_rtc(struct timespec64 *to_set, unsigned long *offset_nsec)
609 {
610 	return -ENODEV;
611 }
612 #endif
613 
614 /*
615  * If we have an externally synchronized Linux clock, then update RTC clock
616  * accordingly every ~11 minutes. Generally RTCs can only store second
617  * precision, but many RTCs will adjust the phase of their second tick to
618  * match the moment of update. This infrastructure arranges to call to the RTC
619  * set at the correct moment to phase synchronize the RTC second tick over
620  * with the kernel clock.
621  */
622 static void sync_hw_clock(struct work_struct *work)
623 {
624 	/*
625 	 * The default synchronization offset is 500ms for the deprecated
626 	 * update_persistent_clock64() under the assumption that it uses
627 	 * the infamous CMOS clock (MC146818).
628 	 */
629 	static unsigned long offset_nsec = NSEC_PER_SEC / 2;
630 	struct timespec64 now, to_set;
631 	int res = -EAGAIN;
632 
633 	/*
634 	 * Don't update if STA_UNSYNC is set and if ntp_notify_cmos_timer()
635 	 * managed to schedule the work between the timer firing and the
636 	 * work being able to rearm the timer. Wait for the timer to expire.
637 	 */
638 	if (!ntp_synced() || hrtimer_is_queued(&sync_hrtimer))
639 		return;
640 
641 	ktime_get_real_ts64(&now);
642 	/* If @now is not in the allowed window, try again */
643 	if (!rtc_tv_nsec_ok(offset_nsec, &to_set, &now))
644 		goto rearm;
645 
646 	/* Take timezone adjusted RTCs into account */
647 	if (persistent_clock_is_local)
648 		to_set.tv_sec -= (sys_tz.tz_minuteswest * 60);
649 
650 	/* Try the legacy RTC first. */
651 	res = update_persistent_clock64(to_set);
652 	if (res != -ENODEV)
653 		goto rearm;
654 
655 	/* Try the RTC class */
656 	res = update_rtc(&to_set, &offset_nsec);
657 	if (res == -ENODEV)
658 		return;
659 rearm:
660 	sched_sync_hw_clock(offset_nsec, res != 0);
661 }
662 
663 void ntp_notify_cmos_timer(void)
664 {
665 	/*
666 	 * When the work is currently executed but has not yet the timer
667 	 * rearmed this queues the work immediately again. No big issue,
668 	 * just a pointless work scheduled.
669 	 */
670 	if (ntp_synced() && !hrtimer_is_queued(&sync_hrtimer))
671 		queue_work(system_freezable_power_efficient_wq, &sync_work);
672 }
673 
674 static void __init ntp_init_cmos_sync(void)
675 {
676 	hrtimer_init(&sync_hrtimer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
677 	sync_hrtimer.function = sync_timer_callback;
678 }
679 #else /* CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) */
680 static inline void __init ntp_init_cmos_sync(void) { }
681 #endif /* !CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) */
682 
683 /*
684  * Propagate a new txc->status value into the NTP state:
685  */
686 static inline void process_adj_status(const struct __kernel_timex *txc)
687 {
688 	if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
689 		time_state = TIME_OK;
690 		time_status = STA_UNSYNC;
691 		ntp_next_leap_sec = TIME64_MAX;
692 		/* restart PPS frequency calibration */
693 		pps_reset_freq_interval();
694 	}
695 
696 	/*
697 	 * If we turn on PLL adjustments then reset the
698 	 * reference time to current time.
699 	 */
700 	if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
701 		time_reftime = __ktime_get_real_seconds();
702 
703 	/* only set allowed bits */
704 	time_status &= STA_RONLY;
705 	time_status |= txc->status & ~STA_RONLY;
706 }
707 
708 
709 static inline void process_adjtimex_modes(const struct __kernel_timex *txc,
710 					  s32 *time_tai)
711 {
712 	if (txc->modes & ADJ_STATUS)
713 		process_adj_status(txc);
714 
715 	if (txc->modes & ADJ_NANO)
716 		time_status |= STA_NANO;
717 
718 	if (txc->modes & ADJ_MICRO)
719 		time_status &= ~STA_NANO;
720 
721 	if (txc->modes & ADJ_FREQUENCY) {
722 		time_freq = txc->freq * PPM_SCALE;
723 		time_freq = min(time_freq, MAXFREQ_SCALED);
724 		time_freq = max(time_freq, -MAXFREQ_SCALED);
725 		/* update pps_freq */
726 		pps_set_freq(time_freq);
727 	}
728 
729 	if (txc->modes & ADJ_MAXERROR)
730 		time_maxerror = txc->maxerror;
731 
732 	if (txc->modes & ADJ_ESTERROR)
733 		time_esterror = txc->esterror;
734 
735 	if (txc->modes & ADJ_TIMECONST) {
736 		time_constant = txc->constant;
737 		if (!(time_status & STA_NANO))
738 			time_constant += 4;
739 		time_constant = min(time_constant, (long)MAXTC);
740 		time_constant = max(time_constant, 0l);
741 	}
742 
743 	if (txc->modes & ADJ_TAI &&
744 			txc->constant >= 0 && txc->constant <= MAX_TAI_OFFSET)
745 		*time_tai = txc->constant;
746 
747 	if (txc->modes & ADJ_OFFSET)
748 		ntp_update_offset(txc->offset);
749 
750 	if (txc->modes & ADJ_TICK)
751 		tick_usec = txc->tick;
752 
753 	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
754 		ntp_update_frequency();
755 }
756 
757 
758 /*
759  * adjtimex mainly allows reading (and writing, if superuser) of
760  * kernel time-keeping variables. used by xntpd.
761  */
762 int __do_adjtimex(struct __kernel_timex *txc, const struct timespec64 *ts,
763 		  s32 *time_tai, struct audit_ntp_data *ad)
764 {
765 	int result;
766 
767 	if (txc->modes & ADJ_ADJTIME) {
768 		long save_adjust = time_adjust;
769 
770 		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
771 			/* adjtime() is independent from ntp_adjtime() */
772 			time_adjust = txc->offset;
773 			ntp_update_frequency();
774 
775 			audit_ntp_set_old(ad, AUDIT_NTP_ADJUST,	save_adjust);
776 			audit_ntp_set_new(ad, AUDIT_NTP_ADJUST,	time_adjust);
777 		}
778 		txc->offset = save_adjust;
779 	} else {
780 		/* If there are input parameters, then process them: */
781 		if (txc->modes) {
782 			audit_ntp_set_old(ad, AUDIT_NTP_OFFSET,	time_offset);
783 			audit_ntp_set_old(ad, AUDIT_NTP_FREQ,	time_freq);
784 			audit_ntp_set_old(ad, AUDIT_NTP_STATUS,	time_status);
785 			audit_ntp_set_old(ad, AUDIT_NTP_TAI,	*time_tai);
786 			audit_ntp_set_old(ad, AUDIT_NTP_TICK,	tick_usec);
787 
788 			process_adjtimex_modes(txc, time_tai);
789 
790 			audit_ntp_set_new(ad, AUDIT_NTP_OFFSET,	time_offset);
791 			audit_ntp_set_new(ad, AUDIT_NTP_FREQ,	time_freq);
792 			audit_ntp_set_new(ad, AUDIT_NTP_STATUS,	time_status);
793 			audit_ntp_set_new(ad, AUDIT_NTP_TAI,	*time_tai);
794 			audit_ntp_set_new(ad, AUDIT_NTP_TICK,	tick_usec);
795 		}
796 
797 		txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
798 				  NTP_SCALE_SHIFT);
799 		if (!(time_status & STA_NANO))
800 			txc->offset = (u32)txc->offset / NSEC_PER_USEC;
801 	}
802 
803 	result = time_state;	/* mostly `TIME_OK' */
804 	/* check for errors */
805 	if (is_error_status(time_status))
806 		result = TIME_ERROR;
807 
808 	txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
809 					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
810 	txc->maxerror	   = time_maxerror;
811 	txc->esterror	   = time_esterror;
812 	txc->status	   = time_status;
813 	txc->constant	   = time_constant;
814 	txc->precision	   = 1;
815 	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
816 	txc->tick	   = tick_usec;
817 	txc->tai	   = *time_tai;
818 
819 	/* fill PPS status fields */
820 	pps_fill_timex(txc);
821 
822 	txc->time.tv_sec = ts->tv_sec;
823 	txc->time.tv_usec = ts->tv_nsec;
824 	if (!(time_status & STA_NANO))
825 		txc->time.tv_usec = ts->tv_nsec / NSEC_PER_USEC;
826 
827 	/* Handle leapsec adjustments */
828 	if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) {
829 		if ((time_state == TIME_INS) && (time_status & STA_INS)) {
830 			result = TIME_OOP;
831 			txc->tai++;
832 			txc->time.tv_sec--;
833 		}
834 		if ((time_state == TIME_DEL) && (time_status & STA_DEL)) {
835 			result = TIME_WAIT;
836 			txc->tai--;
837 			txc->time.tv_sec++;
838 		}
839 		if ((time_state == TIME_OOP) &&
840 					(ts->tv_sec == ntp_next_leap_sec)) {
841 			result = TIME_WAIT;
842 		}
843 	}
844 
845 	return result;
846 }
847 
848 #ifdef	CONFIG_NTP_PPS
849 
850 /* actually struct pps_normtime is good old struct timespec, but it is
851  * semantically different (and it is the reason why it was invented):
852  * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
853  * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
854 struct pps_normtime {
855 	s64		sec;	/* seconds */
856 	long		nsec;	/* nanoseconds */
857 };
858 
859 /* normalize the timestamp so that nsec is in the
860    ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
861 static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
862 {
863 	struct pps_normtime norm = {
864 		.sec = ts.tv_sec,
865 		.nsec = ts.tv_nsec
866 	};
867 
868 	if (norm.nsec > (NSEC_PER_SEC >> 1)) {
869 		norm.nsec -= NSEC_PER_SEC;
870 		norm.sec++;
871 	}
872 
873 	return norm;
874 }
875 
876 /* get current phase correction and jitter */
877 static inline long pps_phase_filter_get(long *jitter)
878 {
879 	*jitter = pps_tf[0] - pps_tf[1];
880 	if (*jitter < 0)
881 		*jitter = -*jitter;
882 
883 	/* TODO: test various filters */
884 	return pps_tf[0];
885 }
886 
887 /* add the sample to the phase filter */
888 static inline void pps_phase_filter_add(long err)
889 {
890 	pps_tf[2] = pps_tf[1];
891 	pps_tf[1] = pps_tf[0];
892 	pps_tf[0] = err;
893 }
894 
895 /* decrease frequency calibration interval length.
896  * It is halved after four consecutive unstable intervals.
897  */
898 static inline void pps_dec_freq_interval(void)
899 {
900 	if (--pps_intcnt <= -PPS_INTCOUNT) {
901 		pps_intcnt = -PPS_INTCOUNT;
902 		if (pps_shift > PPS_INTMIN) {
903 			pps_shift--;
904 			pps_intcnt = 0;
905 		}
906 	}
907 }
908 
909 /* increase frequency calibration interval length.
910  * It is doubled after four consecutive stable intervals.
911  */
912 static inline void pps_inc_freq_interval(void)
913 {
914 	if (++pps_intcnt >= PPS_INTCOUNT) {
915 		pps_intcnt = PPS_INTCOUNT;
916 		if (pps_shift < PPS_INTMAX) {
917 			pps_shift++;
918 			pps_intcnt = 0;
919 		}
920 	}
921 }
922 
923 /* update clock frequency based on MONOTONIC_RAW clock PPS signal
924  * timestamps
925  *
926  * At the end of the calibration interval the difference between the
927  * first and last MONOTONIC_RAW clock timestamps divided by the length
928  * of the interval becomes the frequency update. If the interval was
929  * too long, the data are discarded.
930  * Returns the difference between old and new frequency values.
931  */
932 static long hardpps_update_freq(struct pps_normtime freq_norm)
933 {
934 	long delta, delta_mod;
935 	s64 ftemp;
936 
937 	/* check if the frequency interval was too long */
938 	if (freq_norm.sec > (2 << pps_shift)) {
939 		time_status |= STA_PPSERROR;
940 		pps_errcnt++;
941 		pps_dec_freq_interval();
942 		printk_deferred(KERN_ERR
943 			"hardpps: PPSERROR: interval too long - %lld s\n",
944 			freq_norm.sec);
945 		return 0;
946 	}
947 
948 	/* here the raw frequency offset and wander (stability) is
949 	 * calculated. If the wander is less than the wander threshold
950 	 * the interval is increased; otherwise it is decreased.
951 	 */
952 	ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
953 			freq_norm.sec);
954 	delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
955 	pps_freq = ftemp;
956 	if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
957 		printk_deferred(KERN_WARNING
958 				"hardpps: PPSWANDER: change=%ld\n", delta);
959 		time_status |= STA_PPSWANDER;
960 		pps_stbcnt++;
961 		pps_dec_freq_interval();
962 	} else {	/* good sample */
963 		pps_inc_freq_interval();
964 	}
965 
966 	/* the stability metric is calculated as the average of recent
967 	 * frequency changes, but is used only for performance
968 	 * monitoring
969 	 */
970 	delta_mod = delta;
971 	if (delta_mod < 0)
972 		delta_mod = -delta_mod;
973 	pps_stabil += (div_s64(((s64)delta_mod) <<
974 				(NTP_SCALE_SHIFT - SHIFT_USEC),
975 				NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
976 
977 	/* if enabled, the system clock frequency is updated */
978 	if ((time_status & STA_PPSFREQ) != 0 &&
979 	    (time_status & STA_FREQHOLD) == 0) {
980 		time_freq = pps_freq;
981 		ntp_update_frequency();
982 	}
983 
984 	return delta;
985 }
986 
987 /* correct REALTIME clock phase error against PPS signal */
988 static void hardpps_update_phase(long error)
989 {
990 	long correction = -error;
991 	long jitter;
992 
993 	/* add the sample to the median filter */
994 	pps_phase_filter_add(correction);
995 	correction = pps_phase_filter_get(&jitter);
996 
997 	/* Nominal jitter is due to PPS signal noise. If it exceeds the
998 	 * threshold, the sample is discarded; otherwise, if so enabled,
999 	 * the time offset is updated.
1000 	 */
1001 	if (jitter > (pps_jitter << PPS_POPCORN)) {
1002 		printk_deferred(KERN_WARNING
1003 				"hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
1004 				jitter, (pps_jitter << PPS_POPCORN));
1005 		time_status |= STA_PPSJITTER;
1006 		pps_jitcnt++;
1007 	} else if (time_status & STA_PPSTIME) {
1008 		/* correct the time using the phase offset */
1009 		time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
1010 				NTP_INTERVAL_FREQ);
1011 		/* cancel running adjtime() */
1012 		time_adjust = 0;
1013 	}
1014 	/* update jitter */
1015 	pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
1016 }
1017 
1018 /*
1019  * __hardpps() - discipline CPU clock oscillator to external PPS signal
1020  *
1021  * This routine is called at each PPS signal arrival in order to
1022  * discipline the CPU clock oscillator to the PPS signal. It takes two
1023  * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
1024  * is used to correct clock phase error and the latter is used to
1025  * correct the frequency.
1026  *
1027  * This code is based on David Mills's reference nanokernel
1028  * implementation. It was mostly rewritten but keeps the same idea.
1029  */
1030 void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
1031 {
1032 	struct pps_normtime pts_norm, freq_norm;
1033 
1034 	pts_norm = pps_normalize_ts(*phase_ts);
1035 
1036 	/* clear the error bits, they will be set again if needed */
1037 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1038 
1039 	/* indicate signal presence */
1040 	time_status |= STA_PPSSIGNAL;
1041 	pps_valid = PPS_VALID;
1042 
1043 	/* when called for the first time,
1044 	 * just start the frequency interval */
1045 	if (unlikely(pps_fbase.tv_sec == 0)) {
1046 		pps_fbase = *raw_ts;
1047 		return;
1048 	}
1049 
1050 	/* ok, now we have a base for frequency calculation */
1051 	freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, pps_fbase));
1052 
1053 	/* check that the signal is in the range
1054 	 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
1055 	if ((freq_norm.sec == 0) ||
1056 			(freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
1057 			(freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
1058 		time_status |= STA_PPSJITTER;
1059 		/* restart the frequency calibration interval */
1060 		pps_fbase = *raw_ts;
1061 		printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
1062 		return;
1063 	}
1064 
1065 	/* signal is ok */
1066 
1067 	/* check if the current frequency interval is finished */
1068 	if (freq_norm.sec >= (1 << pps_shift)) {
1069 		pps_calcnt++;
1070 		/* restart the frequency calibration interval */
1071 		pps_fbase = *raw_ts;
1072 		hardpps_update_freq(freq_norm);
1073 	}
1074 
1075 	hardpps_update_phase(pts_norm.nsec);
1076 
1077 }
1078 #endif	/* CONFIG_NTP_PPS */
1079 
1080 static int __init ntp_tick_adj_setup(char *str)
1081 {
1082 	int rc = kstrtos64(str, 0, &ntp_tick_adj);
1083 	if (rc)
1084 		return rc;
1085 
1086 	ntp_tick_adj <<= NTP_SCALE_SHIFT;
1087 	return 1;
1088 }
1089 
1090 __setup("ntp_tick_adj=", ntp_tick_adj_setup);
1091 
1092 void __init ntp_init(void)
1093 {
1094 	ntp_clear();
1095 	ntp_init_cmos_sync();
1096 }
1097