xref: /openbmc/linux/kernel/time/ntp.c (revision 8497f696)
1 /*
2  * NTP state machine interfaces and logic.
3  *
4  * This code was mainly moved from kernel/timer.c and kernel/time.c
5  * Please see those files for relevant copyright info and historical
6  * changelogs.
7  */
8 #include <linux/capability.h>
9 #include <linux/clocksource.h>
10 #include <linux/workqueue.h>
11 #include <linux/hrtimer.h>
12 #include <linux/jiffies.h>
13 #include <linux/math64.h>
14 #include <linux/timex.h>
15 #include <linux/time.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 
19 #include "tick-internal.h"
20 
21 /*
22  * NTP timekeeping variables:
23  */
24 
25 DEFINE_SPINLOCK(ntp_lock);
26 
27 
28 /* USER_HZ period (usecs): */
29 unsigned long			tick_usec = TICK_USEC;
30 
31 /* ACTHZ period (nsecs): */
32 unsigned long			tick_nsec;
33 
34 static u64			tick_length;
35 static u64			tick_length_base;
36 
37 #define MAX_TICKADJ		500LL		/* usecs */
38 #define MAX_TICKADJ_SCALED \
39 	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
40 
41 /*
42  * phase-lock loop variables
43  */
44 
45 /*
46  * clock synchronization status
47  *
48  * (TIME_ERROR prevents overwriting the CMOS clock)
49  */
50 static int			time_state = TIME_OK;
51 
52 /* clock status bits:							*/
53 static int			time_status = STA_UNSYNC;
54 
55 /* TAI offset (secs):							*/
56 static long			time_tai;
57 
58 /* time adjustment (nsecs):						*/
59 static s64			time_offset;
60 
61 /* pll time constant:							*/
62 static long			time_constant = 2;
63 
64 /* maximum error (usecs):						*/
65 static long			time_maxerror = NTP_PHASE_LIMIT;
66 
67 /* estimated error (usecs):						*/
68 static long			time_esterror = NTP_PHASE_LIMIT;
69 
70 /* frequency offset (scaled nsecs/secs):				*/
71 static s64			time_freq;
72 
73 /* time at last adjustment (secs):					*/
74 static long			time_reftime;
75 
76 static long			time_adjust;
77 
78 /* constant (boot-param configurable) NTP tick adjustment (upscaled)	*/
79 static s64			ntp_tick_adj;
80 
81 #ifdef CONFIG_NTP_PPS
82 
83 /*
84  * The following variables are used when a pulse-per-second (PPS) signal
85  * is available. They establish the engineering parameters of the clock
86  * discipline loop when controlled by the PPS signal.
87  */
88 #define PPS_VALID	10	/* PPS signal watchdog max (s) */
89 #define PPS_POPCORN	4	/* popcorn spike threshold (shift) */
90 #define PPS_INTMIN	2	/* min freq interval (s) (shift) */
91 #define PPS_INTMAX	8	/* max freq interval (s) (shift) */
92 #define PPS_INTCOUNT	4	/* number of consecutive good intervals to
93 				   increase pps_shift or consecutive bad
94 				   intervals to decrease it */
95 #define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */
96 
97 static int pps_valid;		/* signal watchdog counter */
98 static long pps_tf[3];		/* phase median filter */
99 static long pps_jitter;		/* current jitter (ns) */
100 static struct timespec pps_fbase; /* beginning of the last freq interval */
101 static int pps_shift;		/* current interval duration (s) (shift) */
102 static int pps_intcnt;		/* interval counter */
103 static s64 pps_freq;		/* frequency offset (scaled ns/s) */
104 static long pps_stabil;		/* current stability (scaled ns/s) */
105 
106 /*
107  * PPS signal quality monitors
108  */
109 static long pps_calcnt;		/* calibration intervals */
110 static long pps_jitcnt;		/* jitter limit exceeded */
111 static long pps_stbcnt;		/* stability limit exceeded */
112 static long pps_errcnt;		/* calibration errors */
113 
114 
115 /* PPS kernel consumer compensates the whole phase error immediately.
116  * Otherwise, reduce the offset by a fixed factor times the time constant.
117  */
118 static inline s64 ntp_offset_chunk(s64 offset)
119 {
120 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
121 		return offset;
122 	else
123 		return shift_right(offset, SHIFT_PLL + time_constant);
124 }
125 
126 static inline void pps_reset_freq_interval(void)
127 {
128 	/* the PPS calibration interval may end
129 	   surprisingly early */
130 	pps_shift = PPS_INTMIN;
131 	pps_intcnt = 0;
132 }
133 
134 /**
135  * pps_clear - Clears the PPS state variables
136  *
137  * Must be called while holding a write on the ntp_lock
138  */
139 static inline void pps_clear(void)
140 {
141 	pps_reset_freq_interval();
142 	pps_tf[0] = 0;
143 	pps_tf[1] = 0;
144 	pps_tf[2] = 0;
145 	pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
146 	pps_freq = 0;
147 }
148 
149 /* Decrease pps_valid to indicate that another second has passed since
150  * the last PPS signal. When it reaches 0, indicate that PPS signal is
151  * missing.
152  *
153  * Must be called while holding a write on the ntp_lock
154  */
155 static inline void pps_dec_valid(void)
156 {
157 	if (pps_valid > 0)
158 		pps_valid--;
159 	else {
160 		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
161 				 STA_PPSWANDER | STA_PPSERROR);
162 		pps_clear();
163 	}
164 }
165 
166 static inline void pps_set_freq(s64 freq)
167 {
168 	pps_freq = freq;
169 }
170 
171 static inline int is_error_status(int status)
172 {
173 	return (time_status & (STA_UNSYNC|STA_CLOCKERR))
174 		/* PPS signal lost when either PPS time or
175 		 * PPS frequency synchronization requested
176 		 */
177 		|| ((time_status & (STA_PPSFREQ|STA_PPSTIME))
178 			&& !(time_status & STA_PPSSIGNAL))
179 		/* PPS jitter exceeded when
180 		 * PPS time synchronization requested */
181 		|| ((time_status & (STA_PPSTIME|STA_PPSJITTER))
182 			== (STA_PPSTIME|STA_PPSJITTER))
183 		/* PPS wander exceeded or calibration error when
184 		 * PPS frequency synchronization requested
185 		 */
186 		|| ((time_status & STA_PPSFREQ)
187 			&& (time_status & (STA_PPSWANDER|STA_PPSERROR)));
188 }
189 
190 static inline void pps_fill_timex(struct timex *txc)
191 {
192 	txc->ppsfreq	   = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
193 					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
194 	txc->jitter	   = pps_jitter;
195 	if (!(time_status & STA_NANO))
196 		txc->jitter /= NSEC_PER_USEC;
197 	txc->shift	   = pps_shift;
198 	txc->stabil	   = pps_stabil;
199 	txc->jitcnt	   = pps_jitcnt;
200 	txc->calcnt	   = pps_calcnt;
201 	txc->errcnt	   = pps_errcnt;
202 	txc->stbcnt	   = pps_stbcnt;
203 }
204 
205 #else /* !CONFIG_NTP_PPS */
206 
207 static inline s64 ntp_offset_chunk(s64 offset)
208 {
209 	return shift_right(offset, SHIFT_PLL + time_constant);
210 }
211 
212 static inline void pps_reset_freq_interval(void) {}
213 static inline void pps_clear(void) {}
214 static inline void pps_dec_valid(void) {}
215 static inline void pps_set_freq(s64 freq) {}
216 
217 static inline int is_error_status(int status)
218 {
219 	return status & (STA_UNSYNC|STA_CLOCKERR);
220 }
221 
222 static inline void pps_fill_timex(struct timex *txc)
223 {
224 	/* PPS is not implemented, so these are zero */
225 	txc->ppsfreq	   = 0;
226 	txc->jitter	   = 0;
227 	txc->shift	   = 0;
228 	txc->stabil	   = 0;
229 	txc->jitcnt	   = 0;
230 	txc->calcnt	   = 0;
231 	txc->errcnt	   = 0;
232 	txc->stbcnt	   = 0;
233 }
234 
235 #endif /* CONFIG_NTP_PPS */
236 
237 
238 /**
239  * ntp_synced - Returns 1 if the NTP status is not UNSYNC
240  *
241  */
242 static inline int ntp_synced(void)
243 {
244 	return !(time_status & STA_UNSYNC);
245 }
246 
247 
248 /*
249  * NTP methods:
250  */
251 
252 /*
253  * Update (tick_length, tick_length_base, tick_nsec), based
254  * on (tick_usec, ntp_tick_adj, time_freq):
255  */
256 static void ntp_update_frequency(void)
257 {
258 	u64 second_length;
259 	u64 new_base;
260 
261 	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
262 						<< NTP_SCALE_SHIFT;
263 
264 	second_length		+= ntp_tick_adj;
265 	second_length		+= time_freq;
266 
267 	tick_nsec		 = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
268 	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
269 
270 	/*
271 	 * Don't wait for the next second_overflow, apply
272 	 * the change to the tick length immediately:
273 	 */
274 	tick_length		+= new_base - tick_length_base;
275 	tick_length_base	 = new_base;
276 }
277 
278 static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
279 {
280 	time_status &= ~STA_MODE;
281 
282 	if (secs < MINSEC)
283 		return 0;
284 
285 	if (!(time_status & STA_FLL) && (secs <= MAXSEC))
286 		return 0;
287 
288 	time_status |= STA_MODE;
289 
290 	return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
291 }
292 
293 static void ntp_update_offset(long offset)
294 {
295 	s64 freq_adj;
296 	s64 offset64;
297 	long secs;
298 
299 	if (!(time_status & STA_PLL))
300 		return;
301 
302 	if (!(time_status & STA_NANO))
303 		offset *= NSEC_PER_USEC;
304 
305 	/*
306 	 * Scale the phase adjustment and
307 	 * clamp to the operating range.
308 	 */
309 	offset = min(offset, MAXPHASE);
310 	offset = max(offset, -MAXPHASE);
311 
312 	/*
313 	 * Select how the frequency is to be controlled
314 	 * and in which mode (PLL or FLL).
315 	 */
316 	secs = get_seconds() - time_reftime;
317 	if (unlikely(time_status & STA_FREQHOLD))
318 		secs = 0;
319 
320 	time_reftime = get_seconds();
321 
322 	offset64    = offset;
323 	freq_adj    = ntp_update_offset_fll(offset64, secs);
324 
325 	/*
326 	 * Clamp update interval to reduce PLL gain with low
327 	 * sampling rate (e.g. intermittent network connection)
328 	 * to avoid instability.
329 	 */
330 	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
331 		secs = 1 << (SHIFT_PLL + 1 + time_constant);
332 
333 	freq_adj    += (offset64 * secs) <<
334 			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
335 
336 	freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);
337 
338 	time_freq   = max(freq_adj, -MAXFREQ_SCALED);
339 
340 	time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
341 }
342 
343 /**
344  * ntp_clear - Clears the NTP state variables
345  */
346 void ntp_clear(void)
347 {
348 	unsigned long flags;
349 
350 	spin_lock_irqsave(&ntp_lock, flags);
351 
352 	time_adjust	= 0;		/* stop active adjtime() */
353 	time_status	|= STA_UNSYNC;
354 	time_maxerror	= NTP_PHASE_LIMIT;
355 	time_esterror	= NTP_PHASE_LIMIT;
356 
357 	ntp_update_frequency();
358 
359 	tick_length	= tick_length_base;
360 	time_offset	= 0;
361 
362 	/* Clear PPS state variables */
363 	pps_clear();
364 	spin_unlock_irqrestore(&ntp_lock, flags);
365 
366 }
367 
368 
369 u64 ntp_tick_length(void)
370 {
371 	unsigned long flags;
372 	s64 ret;
373 
374 	spin_lock_irqsave(&ntp_lock, flags);
375 	ret = tick_length;
376 	spin_unlock_irqrestore(&ntp_lock, flags);
377 	return ret;
378 }
379 
380 
381 /*
382  * this routine handles the overflow of the microsecond field
383  *
384  * The tricky bits of code to handle the accurate clock support
385  * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
386  * They were originally developed for SUN and DEC kernels.
387  * All the kudos should go to Dave for this stuff.
388  *
389  * Also handles leap second processing, and returns leap offset
390  */
391 int second_overflow(unsigned long secs)
392 {
393 	s64 delta;
394 	int leap = 0;
395 	unsigned long flags;
396 
397 	spin_lock_irqsave(&ntp_lock, flags);
398 
399 	/*
400 	 * Leap second processing. If in leap-insert state at the end of the
401 	 * day, the system clock is set back one second; if in leap-delete
402 	 * state, the system clock is set ahead one second.
403 	 */
404 	switch (time_state) {
405 	case TIME_OK:
406 		if (time_status & STA_INS)
407 			time_state = TIME_INS;
408 		else if (time_status & STA_DEL)
409 			time_state = TIME_DEL;
410 		break;
411 	case TIME_INS:
412 		if (secs % 86400 == 0) {
413 			leap = -1;
414 			time_state = TIME_OOP;
415 			time_tai++;
416 			printk(KERN_NOTICE
417 				"Clock: inserting leap second 23:59:60 UTC\n");
418 		}
419 		break;
420 	case TIME_DEL:
421 		if ((secs + 1) % 86400 == 0) {
422 			leap = 1;
423 			time_tai--;
424 			time_state = TIME_WAIT;
425 			printk(KERN_NOTICE
426 				"Clock: deleting leap second 23:59:59 UTC\n");
427 		}
428 		break;
429 	case TIME_OOP:
430 		time_state = TIME_WAIT;
431 		break;
432 
433 	case TIME_WAIT:
434 		if (!(time_status & (STA_INS | STA_DEL)))
435 			time_state = TIME_OK;
436 		break;
437 	}
438 
439 
440 	/* Bump the maxerror field */
441 	time_maxerror += MAXFREQ / NSEC_PER_USEC;
442 	if (time_maxerror > NTP_PHASE_LIMIT) {
443 		time_maxerror = NTP_PHASE_LIMIT;
444 		time_status |= STA_UNSYNC;
445 	}
446 
447 	/* Compute the phase adjustment for the next second */
448 	tick_length	 = tick_length_base;
449 
450 	delta		 = ntp_offset_chunk(time_offset);
451 	time_offset	-= delta;
452 	tick_length	+= delta;
453 
454 	/* Check PPS signal */
455 	pps_dec_valid();
456 
457 	if (!time_adjust)
458 		goto out;
459 
460 	if (time_adjust > MAX_TICKADJ) {
461 		time_adjust -= MAX_TICKADJ;
462 		tick_length += MAX_TICKADJ_SCALED;
463 		goto out;
464 	}
465 
466 	if (time_adjust < -MAX_TICKADJ) {
467 		time_adjust += MAX_TICKADJ;
468 		tick_length -= MAX_TICKADJ_SCALED;
469 		goto out;
470 	}
471 
472 	tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
473 							 << NTP_SCALE_SHIFT;
474 	time_adjust = 0;
475 
476 out:
477 	spin_unlock_irqrestore(&ntp_lock, flags);
478 
479 	return leap;
480 }
481 
482 #ifdef CONFIG_GENERIC_CMOS_UPDATE
483 
484 static void sync_cmos_clock(struct work_struct *work);
485 
486 static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
487 
488 static void sync_cmos_clock(struct work_struct *work)
489 {
490 	struct timespec now, next;
491 	int fail = 1;
492 
493 	/*
494 	 * If we have an externally synchronized Linux clock, then update
495 	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
496 	 * called as close as possible to 500 ms before the new second starts.
497 	 * This code is run on a timer.  If the clock is set, that timer
498 	 * may not expire at the correct time.  Thus, we adjust...
499 	 */
500 	if (!ntp_synced()) {
501 		/*
502 		 * Not synced, exit, do not restart a timer (if one is
503 		 * running, let it run out).
504 		 */
505 		return;
506 	}
507 
508 	getnstimeofday(&now);
509 	if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
510 		fail = update_persistent_clock(now);
511 
512 	next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
513 	if (next.tv_nsec <= 0)
514 		next.tv_nsec += NSEC_PER_SEC;
515 
516 	if (!fail)
517 		next.tv_sec = 659;
518 	else
519 		next.tv_sec = 0;
520 
521 	if (next.tv_nsec >= NSEC_PER_SEC) {
522 		next.tv_sec++;
523 		next.tv_nsec -= NSEC_PER_SEC;
524 	}
525 	schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next));
526 }
527 
528 static void notify_cmos_timer(void)
529 {
530 	schedule_delayed_work(&sync_cmos_work, 0);
531 }
532 
533 #else
534 static inline void notify_cmos_timer(void) { }
535 #endif
536 
537 
538 /*
539  * Propagate a new txc->status value into the NTP state:
540  */
541 static inline void process_adj_status(struct timex *txc, struct timespec *ts)
542 {
543 	if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
544 		time_state = TIME_OK;
545 		time_status = STA_UNSYNC;
546 		/* restart PPS frequency calibration */
547 		pps_reset_freq_interval();
548 	}
549 
550 	/*
551 	 * If we turn on PLL adjustments then reset the
552 	 * reference time to current time.
553 	 */
554 	if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
555 		time_reftime = get_seconds();
556 
557 	/* only set allowed bits */
558 	time_status &= STA_RONLY;
559 	time_status |= txc->status & ~STA_RONLY;
560 }
561 
562 /*
563  * Called with ntp_lock held, so we can access and modify
564  * all the global NTP state:
565  */
566 static inline void process_adjtimex_modes(struct timex *txc, struct timespec *ts)
567 {
568 	if (txc->modes & ADJ_STATUS)
569 		process_adj_status(txc, ts);
570 
571 	if (txc->modes & ADJ_NANO)
572 		time_status |= STA_NANO;
573 
574 	if (txc->modes & ADJ_MICRO)
575 		time_status &= ~STA_NANO;
576 
577 	if (txc->modes & ADJ_FREQUENCY) {
578 		time_freq = txc->freq * PPM_SCALE;
579 		time_freq = min(time_freq, MAXFREQ_SCALED);
580 		time_freq = max(time_freq, -MAXFREQ_SCALED);
581 		/* update pps_freq */
582 		pps_set_freq(time_freq);
583 	}
584 
585 	if (txc->modes & ADJ_MAXERROR)
586 		time_maxerror = txc->maxerror;
587 
588 	if (txc->modes & ADJ_ESTERROR)
589 		time_esterror = txc->esterror;
590 
591 	if (txc->modes & ADJ_TIMECONST) {
592 		time_constant = txc->constant;
593 		if (!(time_status & STA_NANO))
594 			time_constant += 4;
595 		time_constant = min(time_constant, (long)MAXTC);
596 		time_constant = max(time_constant, 0l);
597 	}
598 
599 	if (txc->modes & ADJ_TAI && txc->constant > 0)
600 		time_tai = txc->constant;
601 
602 	if (txc->modes & ADJ_OFFSET)
603 		ntp_update_offset(txc->offset);
604 
605 	if (txc->modes & ADJ_TICK)
606 		tick_usec = txc->tick;
607 
608 	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
609 		ntp_update_frequency();
610 }
611 
612 /*
613  * adjtimex mainly allows reading (and writing, if superuser) of
614  * kernel time-keeping variables. used by xntpd.
615  */
616 int do_adjtimex(struct timex *txc)
617 {
618 	struct timespec ts;
619 	int result;
620 
621 	/* Validate the data before disabling interrupts */
622 	if (txc->modes & ADJ_ADJTIME) {
623 		/* singleshot must not be used with any other mode bits */
624 		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
625 			return -EINVAL;
626 		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
627 		    !capable(CAP_SYS_TIME))
628 			return -EPERM;
629 	} else {
630 		/* In order to modify anything, you gotta be super-user! */
631 		 if (txc->modes && !capable(CAP_SYS_TIME))
632 			return -EPERM;
633 
634 		/*
635 		 * if the quartz is off by more than 10% then
636 		 * something is VERY wrong!
637 		 */
638 		if (txc->modes & ADJ_TICK &&
639 		    (txc->tick <  900000/USER_HZ ||
640 		     txc->tick > 1100000/USER_HZ))
641 			return -EINVAL;
642 	}
643 
644 	if (txc->modes & ADJ_SETOFFSET) {
645 		struct timespec delta;
646 		delta.tv_sec  = txc->time.tv_sec;
647 		delta.tv_nsec = txc->time.tv_usec;
648 		if (!capable(CAP_SYS_TIME))
649 			return -EPERM;
650 		if (!(txc->modes & ADJ_NANO))
651 			delta.tv_nsec *= 1000;
652 		result = timekeeping_inject_offset(&delta);
653 		if (result)
654 			return result;
655 	}
656 
657 	getnstimeofday(&ts);
658 
659 	spin_lock_irq(&ntp_lock);
660 
661 	if (txc->modes & ADJ_ADJTIME) {
662 		long save_adjust = time_adjust;
663 
664 		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
665 			/* adjtime() is independent from ntp_adjtime() */
666 			time_adjust = txc->offset;
667 			ntp_update_frequency();
668 		}
669 		txc->offset = save_adjust;
670 	} else {
671 
672 		/* If there are input parameters, then process them: */
673 		if (txc->modes)
674 			process_adjtimex_modes(txc, &ts);
675 
676 		txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
677 				  NTP_SCALE_SHIFT);
678 		if (!(time_status & STA_NANO))
679 			txc->offset /= NSEC_PER_USEC;
680 	}
681 
682 	result = time_state;	/* mostly `TIME_OK' */
683 	/* check for errors */
684 	if (is_error_status(time_status))
685 		result = TIME_ERROR;
686 
687 	txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
688 					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
689 	txc->maxerror	   = time_maxerror;
690 	txc->esterror	   = time_esterror;
691 	txc->status	   = time_status;
692 	txc->constant	   = time_constant;
693 	txc->precision	   = 1;
694 	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
695 	txc->tick	   = tick_usec;
696 	txc->tai	   = time_tai;
697 
698 	/* fill PPS status fields */
699 	pps_fill_timex(txc);
700 
701 	spin_unlock_irq(&ntp_lock);
702 
703 	txc->time.tv_sec = ts.tv_sec;
704 	txc->time.tv_usec = ts.tv_nsec;
705 	if (!(time_status & STA_NANO))
706 		txc->time.tv_usec /= NSEC_PER_USEC;
707 
708 	notify_cmos_timer();
709 
710 	return result;
711 }
712 
713 #ifdef	CONFIG_NTP_PPS
714 
715 /* actually struct pps_normtime is good old struct timespec, but it is
716  * semantically different (and it is the reason why it was invented):
717  * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
718  * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
719 struct pps_normtime {
720 	__kernel_time_t	sec;	/* seconds */
721 	long		nsec;	/* nanoseconds */
722 };
723 
724 /* normalize the timestamp so that nsec is in the
725    ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
726 static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
727 {
728 	struct pps_normtime norm = {
729 		.sec = ts.tv_sec,
730 		.nsec = ts.tv_nsec
731 	};
732 
733 	if (norm.nsec > (NSEC_PER_SEC >> 1)) {
734 		norm.nsec -= NSEC_PER_SEC;
735 		norm.sec++;
736 	}
737 
738 	return norm;
739 }
740 
741 /* get current phase correction and jitter */
742 static inline long pps_phase_filter_get(long *jitter)
743 {
744 	*jitter = pps_tf[0] - pps_tf[1];
745 	if (*jitter < 0)
746 		*jitter = -*jitter;
747 
748 	/* TODO: test various filters */
749 	return pps_tf[0];
750 }
751 
752 /* add the sample to the phase filter */
753 static inline void pps_phase_filter_add(long err)
754 {
755 	pps_tf[2] = pps_tf[1];
756 	pps_tf[1] = pps_tf[0];
757 	pps_tf[0] = err;
758 }
759 
760 /* decrease frequency calibration interval length.
761  * It is halved after four consecutive unstable intervals.
762  */
763 static inline void pps_dec_freq_interval(void)
764 {
765 	if (--pps_intcnt <= -PPS_INTCOUNT) {
766 		pps_intcnt = -PPS_INTCOUNT;
767 		if (pps_shift > PPS_INTMIN) {
768 			pps_shift--;
769 			pps_intcnt = 0;
770 		}
771 	}
772 }
773 
774 /* increase frequency calibration interval length.
775  * It is doubled after four consecutive stable intervals.
776  */
777 static inline void pps_inc_freq_interval(void)
778 {
779 	if (++pps_intcnt >= PPS_INTCOUNT) {
780 		pps_intcnt = PPS_INTCOUNT;
781 		if (pps_shift < PPS_INTMAX) {
782 			pps_shift++;
783 			pps_intcnt = 0;
784 		}
785 	}
786 }
787 
788 /* update clock frequency based on MONOTONIC_RAW clock PPS signal
789  * timestamps
790  *
791  * At the end of the calibration interval the difference between the
792  * first and last MONOTONIC_RAW clock timestamps divided by the length
793  * of the interval becomes the frequency update. If the interval was
794  * too long, the data are discarded.
795  * Returns the difference between old and new frequency values.
796  */
797 static long hardpps_update_freq(struct pps_normtime freq_norm)
798 {
799 	long delta, delta_mod;
800 	s64 ftemp;
801 
802 	/* check if the frequency interval was too long */
803 	if (freq_norm.sec > (2 << pps_shift)) {
804 		time_status |= STA_PPSERROR;
805 		pps_errcnt++;
806 		pps_dec_freq_interval();
807 		pr_err("hardpps: PPSERROR: interval too long - %ld s\n",
808 				freq_norm.sec);
809 		return 0;
810 	}
811 
812 	/* here the raw frequency offset and wander (stability) is
813 	 * calculated. If the wander is less than the wander threshold
814 	 * the interval is increased; otherwise it is decreased.
815 	 */
816 	ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
817 			freq_norm.sec);
818 	delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
819 	pps_freq = ftemp;
820 	if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
821 		pr_warning("hardpps: PPSWANDER: change=%ld\n", delta);
822 		time_status |= STA_PPSWANDER;
823 		pps_stbcnt++;
824 		pps_dec_freq_interval();
825 	} else {	/* good sample */
826 		pps_inc_freq_interval();
827 	}
828 
829 	/* the stability metric is calculated as the average of recent
830 	 * frequency changes, but is used only for performance
831 	 * monitoring
832 	 */
833 	delta_mod = delta;
834 	if (delta_mod < 0)
835 		delta_mod = -delta_mod;
836 	pps_stabil += (div_s64(((s64)delta_mod) <<
837 				(NTP_SCALE_SHIFT - SHIFT_USEC),
838 				NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
839 
840 	/* if enabled, the system clock frequency is updated */
841 	if ((time_status & STA_PPSFREQ) != 0 &&
842 	    (time_status & STA_FREQHOLD) == 0) {
843 		time_freq = pps_freq;
844 		ntp_update_frequency();
845 	}
846 
847 	return delta;
848 }
849 
850 /* correct REALTIME clock phase error against PPS signal */
851 static void hardpps_update_phase(long error)
852 {
853 	long correction = -error;
854 	long jitter;
855 
856 	/* add the sample to the median filter */
857 	pps_phase_filter_add(correction);
858 	correction = pps_phase_filter_get(&jitter);
859 
860 	/* Nominal jitter is due to PPS signal noise. If it exceeds the
861 	 * threshold, the sample is discarded; otherwise, if so enabled,
862 	 * the time offset is updated.
863 	 */
864 	if (jitter > (pps_jitter << PPS_POPCORN)) {
865 		pr_warning("hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
866 		       jitter, (pps_jitter << PPS_POPCORN));
867 		time_status |= STA_PPSJITTER;
868 		pps_jitcnt++;
869 	} else if (time_status & STA_PPSTIME) {
870 		/* correct the time using the phase offset */
871 		time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
872 				NTP_INTERVAL_FREQ);
873 		/* cancel running adjtime() */
874 		time_adjust = 0;
875 	}
876 	/* update jitter */
877 	pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
878 }
879 
880 /*
881  * hardpps() - discipline CPU clock oscillator to external PPS signal
882  *
883  * This routine is called at each PPS signal arrival in order to
884  * discipline the CPU clock oscillator to the PPS signal. It takes two
885  * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
886  * is used to correct clock phase error and the latter is used to
887  * correct the frequency.
888  *
889  * This code is based on David Mills's reference nanokernel
890  * implementation. It was mostly rewritten but keeps the same idea.
891  */
892 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
893 {
894 	struct pps_normtime pts_norm, freq_norm;
895 	unsigned long flags;
896 
897 	pts_norm = pps_normalize_ts(*phase_ts);
898 
899 	spin_lock_irqsave(&ntp_lock, flags);
900 
901 	/* clear the error bits, they will be set again if needed */
902 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
903 
904 	/* indicate signal presence */
905 	time_status |= STA_PPSSIGNAL;
906 	pps_valid = PPS_VALID;
907 
908 	/* when called for the first time,
909 	 * just start the frequency interval */
910 	if (unlikely(pps_fbase.tv_sec == 0)) {
911 		pps_fbase = *raw_ts;
912 		spin_unlock_irqrestore(&ntp_lock, flags);
913 		return;
914 	}
915 
916 	/* ok, now we have a base for frequency calculation */
917 	freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));
918 
919 	/* check that the signal is in the range
920 	 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
921 	if ((freq_norm.sec == 0) ||
922 			(freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
923 			(freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
924 		time_status |= STA_PPSJITTER;
925 		/* restart the frequency calibration interval */
926 		pps_fbase = *raw_ts;
927 		spin_unlock_irqrestore(&ntp_lock, flags);
928 		pr_err("hardpps: PPSJITTER: bad pulse\n");
929 		return;
930 	}
931 
932 	/* signal is ok */
933 
934 	/* check if the current frequency interval is finished */
935 	if (freq_norm.sec >= (1 << pps_shift)) {
936 		pps_calcnt++;
937 		/* restart the frequency calibration interval */
938 		pps_fbase = *raw_ts;
939 		hardpps_update_freq(freq_norm);
940 	}
941 
942 	hardpps_update_phase(pts_norm.nsec);
943 
944 	spin_unlock_irqrestore(&ntp_lock, flags);
945 }
946 EXPORT_SYMBOL(hardpps);
947 
948 #endif	/* CONFIG_NTP_PPS */
949 
950 static int __init ntp_tick_adj_setup(char *str)
951 {
952 	ntp_tick_adj = simple_strtol(str, NULL, 0);
953 	ntp_tick_adj <<= NTP_SCALE_SHIFT;
954 
955 	return 1;
956 }
957 
958 __setup("ntp_tick_adj=", ntp_tick_adj_setup);
959 
960 void __init ntp_init(void)
961 {
962 	ntp_clear();
963 }
964