xref: /openbmc/linux/kernel/time/ntp.c (revision 840ef8b7cc584a23c4f9d05352f4dbaf8e56e5ab)
1 /*
2  * NTP state machine interfaces and logic.
3  *
4  * This code was mainly moved from kernel/timer.c and kernel/time.c
5  * Please see those files for relevant copyright info and historical
6  * changelogs.
7  */
8 #include <linux/capability.h>
9 #include <linux/clocksource.h>
10 #include <linux/workqueue.h>
11 #include <linux/hrtimer.h>
12 #include <linux/jiffies.h>
13 #include <linux/math64.h>
14 #include <linux/timex.h>
15 #include <linux/time.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/rtc.h>
19 
20 #include "tick-internal.h"
21 
22 /*
23  * NTP timekeeping variables:
24  */
25 
26 DEFINE_RAW_SPINLOCK(ntp_lock);
27 
28 
29 /* USER_HZ period (usecs): */
30 unsigned long			tick_usec = TICK_USEC;
31 
32 /* SHIFTED_HZ period (nsecs): */
33 unsigned long			tick_nsec;
34 
35 static u64			tick_length;
36 static u64			tick_length_base;
37 
38 #define MAX_TICKADJ		500LL		/* usecs */
39 #define MAX_TICKADJ_SCALED \
40 	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
41 
42 /*
43  * phase-lock loop variables
44  */
45 
46 /*
47  * clock synchronization status
48  *
49  * (TIME_ERROR prevents overwriting the CMOS clock)
50  */
51 static int			time_state = TIME_OK;
52 
53 /* clock status bits:							*/
54 static int			time_status = STA_UNSYNC;
55 
56 /* TAI offset (secs):							*/
57 static long			time_tai;
58 
59 /* time adjustment (nsecs):						*/
60 static s64			time_offset;
61 
62 /* pll time constant:							*/
63 static long			time_constant = 2;
64 
65 /* maximum error (usecs):						*/
66 static long			time_maxerror = NTP_PHASE_LIMIT;
67 
68 /* estimated error (usecs):						*/
69 static long			time_esterror = NTP_PHASE_LIMIT;
70 
71 /* frequency offset (scaled nsecs/secs):				*/
72 static s64			time_freq;
73 
74 /* time at last adjustment (secs):					*/
75 static long			time_reftime;
76 
77 static long			time_adjust;
78 
79 /* constant (boot-param configurable) NTP tick adjustment (upscaled)	*/
80 static s64			ntp_tick_adj;
81 
82 #ifdef CONFIG_NTP_PPS
83 
84 /*
85  * The following variables are used when a pulse-per-second (PPS) signal
86  * is available. They establish the engineering parameters of the clock
87  * discipline loop when controlled by the PPS signal.
88  */
89 #define PPS_VALID	10	/* PPS signal watchdog max (s) */
90 #define PPS_POPCORN	4	/* popcorn spike threshold (shift) */
91 #define PPS_INTMIN	2	/* min freq interval (s) (shift) */
92 #define PPS_INTMAX	8	/* max freq interval (s) (shift) */
93 #define PPS_INTCOUNT	4	/* number of consecutive good intervals to
94 				   increase pps_shift or consecutive bad
95 				   intervals to decrease it */
96 #define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */
97 
98 static int pps_valid;		/* signal watchdog counter */
99 static long pps_tf[3];		/* phase median filter */
100 static long pps_jitter;		/* current jitter (ns) */
101 static struct timespec pps_fbase; /* beginning of the last freq interval */
102 static int pps_shift;		/* current interval duration (s) (shift) */
103 static int pps_intcnt;		/* interval counter */
104 static s64 pps_freq;		/* frequency offset (scaled ns/s) */
105 static long pps_stabil;		/* current stability (scaled ns/s) */
106 
107 /*
108  * PPS signal quality monitors
109  */
110 static long pps_calcnt;		/* calibration intervals */
111 static long pps_jitcnt;		/* jitter limit exceeded */
112 static long pps_stbcnt;		/* stability limit exceeded */
113 static long pps_errcnt;		/* calibration errors */
114 
115 
116 /* PPS kernel consumer compensates the whole phase error immediately.
117  * Otherwise, reduce the offset by a fixed factor times the time constant.
118  */
119 static inline s64 ntp_offset_chunk(s64 offset)
120 {
121 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
122 		return offset;
123 	else
124 		return shift_right(offset, SHIFT_PLL + time_constant);
125 }
126 
127 static inline void pps_reset_freq_interval(void)
128 {
129 	/* the PPS calibration interval may end
130 	   surprisingly early */
131 	pps_shift = PPS_INTMIN;
132 	pps_intcnt = 0;
133 }
134 
135 /**
136  * pps_clear - Clears the PPS state variables
137  *
138  * Must be called while holding a write on the ntp_lock
139  */
140 static inline void pps_clear(void)
141 {
142 	pps_reset_freq_interval();
143 	pps_tf[0] = 0;
144 	pps_tf[1] = 0;
145 	pps_tf[2] = 0;
146 	pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
147 	pps_freq = 0;
148 }
149 
150 /* Decrease pps_valid to indicate that another second has passed since
151  * the last PPS signal. When it reaches 0, indicate that PPS signal is
152  * missing.
153  *
154  * Must be called while holding a write on the ntp_lock
155  */
156 static inline void pps_dec_valid(void)
157 {
158 	if (pps_valid > 0)
159 		pps_valid--;
160 	else {
161 		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
162 				 STA_PPSWANDER | STA_PPSERROR);
163 		pps_clear();
164 	}
165 }
166 
167 static inline void pps_set_freq(s64 freq)
168 {
169 	pps_freq = freq;
170 }
171 
172 static inline int is_error_status(int status)
173 {
174 	return (time_status & (STA_UNSYNC|STA_CLOCKERR))
175 		/* PPS signal lost when either PPS time or
176 		 * PPS frequency synchronization requested
177 		 */
178 		|| ((time_status & (STA_PPSFREQ|STA_PPSTIME))
179 			&& !(time_status & STA_PPSSIGNAL))
180 		/* PPS jitter exceeded when
181 		 * PPS time synchronization requested */
182 		|| ((time_status & (STA_PPSTIME|STA_PPSJITTER))
183 			== (STA_PPSTIME|STA_PPSJITTER))
184 		/* PPS wander exceeded or calibration error when
185 		 * PPS frequency synchronization requested
186 		 */
187 		|| ((time_status & STA_PPSFREQ)
188 			&& (time_status & (STA_PPSWANDER|STA_PPSERROR)));
189 }
190 
191 static inline void pps_fill_timex(struct timex *txc)
192 {
193 	txc->ppsfreq	   = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
194 					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
195 	txc->jitter	   = pps_jitter;
196 	if (!(time_status & STA_NANO))
197 		txc->jitter /= NSEC_PER_USEC;
198 	txc->shift	   = pps_shift;
199 	txc->stabil	   = pps_stabil;
200 	txc->jitcnt	   = pps_jitcnt;
201 	txc->calcnt	   = pps_calcnt;
202 	txc->errcnt	   = pps_errcnt;
203 	txc->stbcnt	   = pps_stbcnt;
204 }
205 
206 #else /* !CONFIG_NTP_PPS */
207 
208 static inline s64 ntp_offset_chunk(s64 offset)
209 {
210 	return shift_right(offset, SHIFT_PLL + time_constant);
211 }
212 
213 static inline void pps_reset_freq_interval(void) {}
214 static inline void pps_clear(void) {}
215 static inline void pps_dec_valid(void) {}
216 static inline void pps_set_freq(s64 freq) {}
217 
218 static inline int is_error_status(int status)
219 {
220 	return status & (STA_UNSYNC|STA_CLOCKERR);
221 }
222 
223 static inline void pps_fill_timex(struct timex *txc)
224 {
225 	/* PPS is not implemented, so these are zero */
226 	txc->ppsfreq	   = 0;
227 	txc->jitter	   = 0;
228 	txc->shift	   = 0;
229 	txc->stabil	   = 0;
230 	txc->jitcnt	   = 0;
231 	txc->calcnt	   = 0;
232 	txc->errcnt	   = 0;
233 	txc->stbcnt	   = 0;
234 }
235 
236 #endif /* CONFIG_NTP_PPS */
237 
238 
239 /**
240  * ntp_synced - Returns 1 if the NTP status is not UNSYNC
241  *
242  */
243 static inline int ntp_synced(void)
244 {
245 	return !(time_status & STA_UNSYNC);
246 }
247 
248 
249 /*
250  * NTP methods:
251  */
252 
253 /*
254  * Update (tick_length, tick_length_base, tick_nsec), based
255  * on (tick_usec, ntp_tick_adj, time_freq):
256  */
257 static void ntp_update_frequency(void)
258 {
259 	u64 second_length;
260 	u64 new_base;
261 
262 	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
263 						<< NTP_SCALE_SHIFT;
264 
265 	second_length		+= ntp_tick_adj;
266 	second_length		+= time_freq;
267 
268 	tick_nsec		 = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
269 	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
270 
271 	/*
272 	 * Don't wait for the next second_overflow, apply
273 	 * the change to the tick length immediately:
274 	 */
275 	tick_length		+= new_base - tick_length_base;
276 	tick_length_base	 = new_base;
277 }
278 
279 static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
280 {
281 	time_status &= ~STA_MODE;
282 
283 	if (secs < MINSEC)
284 		return 0;
285 
286 	if (!(time_status & STA_FLL) && (secs <= MAXSEC))
287 		return 0;
288 
289 	time_status |= STA_MODE;
290 
291 	return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
292 }
293 
294 static void ntp_update_offset(long offset)
295 {
296 	s64 freq_adj;
297 	s64 offset64;
298 	long secs;
299 
300 	if (!(time_status & STA_PLL))
301 		return;
302 
303 	if (!(time_status & STA_NANO))
304 		offset *= NSEC_PER_USEC;
305 
306 	/*
307 	 * Scale the phase adjustment and
308 	 * clamp to the operating range.
309 	 */
310 	offset = min(offset, MAXPHASE);
311 	offset = max(offset, -MAXPHASE);
312 
313 	/*
314 	 * Select how the frequency is to be controlled
315 	 * and in which mode (PLL or FLL).
316 	 */
317 	secs = get_seconds() - time_reftime;
318 	if (unlikely(time_status & STA_FREQHOLD))
319 		secs = 0;
320 
321 	time_reftime = get_seconds();
322 
323 	offset64    = offset;
324 	freq_adj    = ntp_update_offset_fll(offset64, secs);
325 
326 	/*
327 	 * Clamp update interval to reduce PLL gain with low
328 	 * sampling rate (e.g. intermittent network connection)
329 	 * to avoid instability.
330 	 */
331 	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
332 		secs = 1 << (SHIFT_PLL + 1 + time_constant);
333 
334 	freq_adj    += (offset64 * secs) <<
335 			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
336 
337 	freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);
338 
339 	time_freq   = max(freq_adj, -MAXFREQ_SCALED);
340 
341 	time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
342 }
343 
344 /**
345  * ntp_clear - Clears the NTP state variables
346  */
347 void ntp_clear(void)
348 {
349 	unsigned long flags;
350 
351 	raw_spin_lock_irqsave(&ntp_lock, flags);
352 
353 	time_adjust	= 0;		/* stop active adjtime() */
354 	time_status	|= STA_UNSYNC;
355 	time_maxerror	= NTP_PHASE_LIMIT;
356 	time_esterror	= NTP_PHASE_LIMIT;
357 
358 	ntp_update_frequency();
359 
360 	tick_length	= tick_length_base;
361 	time_offset	= 0;
362 
363 	/* Clear PPS state variables */
364 	pps_clear();
365 	raw_spin_unlock_irqrestore(&ntp_lock, flags);
366 
367 }
368 
369 
370 u64 ntp_tick_length(void)
371 {
372 	unsigned long flags;
373 	s64 ret;
374 
375 	raw_spin_lock_irqsave(&ntp_lock, flags);
376 	ret = tick_length;
377 	raw_spin_unlock_irqrestore(&ntp_lock, flags);
378 	return ret;
379 }
380 
381 
382 /*
383  * this routine handles the overflow of the microsecond field
384  *
385  * The tricky bits of code to handle the accurate clock support
386  * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
387  * They were originally developed for SUN and DEC kernels.
388  * All the kudos should go to Dave for this stuff.
389  *
390  * Also handles leap second processing, and returns leap offset
391  */
392 int second_overflow(unsigned long secs)
393 {
394 	s64 delta;
395 	int leap = 0;
396 	unsigned long flags;
397 
398 	raw_spin_lock_irqsave(&ntp_lock, flags);
399 
400 	/*
401 	 * Leap second processing. If in leap-insert state at the end of the
402 	 * day, the system clock is set back one second; if in leap-delete
403 	 * state, the system clock is set ahead one second.
404 	 */
405 	switch (time_state) {
406 	case TIME_OK:
407 		if (time_status & STA_INS)
408 			time_state = TIME_INS;
409 		else if (time_status & STA_DEL)
410 			time_state = TIME_DEL;
411 		break;
412 	case TIME_INS:
413 		if (!(time_status & STA_INS))
414 			time_state = TIME_OK;
415 		else if (secs % 86400 == 0) {
416 			leap = -1;
417 			time_state = TIME_OOP;
418 			time_tai++;
419 			printk(KERN_NOTICE
420 				"Clock: inserting leap second 23:59:60 UTC\n");
421 		}
422 		break;
423 	case TIME_DEL:
424 		if (!(time_status & STA_DEL))
425 			time_state = TIME_OK;
426 		else if ((secs + 1) % 86400 == 0) {
427 			leap = 1;
428 			time_tai--;
429 			time_state = TIME_WAIT;
430 			printk(KERN_NOTICE
431 				"Clock: deleting leap second 23:59:59 UTC\n");
432 		}
433 		break;
434 	case TIME_OOP:
435 		time_state = TIME_WAIT;
436 		break;
437 
438 	case TIME_WAIT:
439 		if (!(time_status & (STA_INS | STA_DEL)))
440 			time_state = TIME_OK;
441 		break;
442 	}
443 
444 
445 	/* Bump the maxerror field */
446 	time_maxerror += MAXFREQ / NSEC_PER_USEC;
447 	if (time_maxerror > NTP_PHASE_LIMIT) {
448 		time_maxerror = NTP_PHASE_LIMIT;
449 		time_status |= STA_UNSYNC;
450 	}
451 
452 	/* Compute the phase adjustment for the next second */
453 	tick_length	 = tick_length_base;
454 
455 	delta		 = ntp_offset_chunk(time_offset);
456 	time_offset	-= delta;
457 	tick_length	+= delta;
458 
459 	/* Check PPS signal */
460 	pps_dec_valid();
461 
462 	if (!time_adjust)
463 		goto out;
464 
465 	if (time_adjust > MAX_TICKADJ) {
466 		time_adjust -= MAX_TICKADJ;
467 		tick_length += MAX_TICKADJ_SCALED;
468 		goto out;
469 	}
470 
471 	if (time_adjust < -MAX_TICKADJ) {
472 		time_adjust += MAX_TICKADJ;
473 		tick_length -= MAX_TICKADJ_SCALED;
474 		goto out;
475 	}
476 
477 	tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
478 							 << NTP_SCALE_SHIFT;
479 	time_adjust = 0;
480 
481 out:
482 	raw_spin_unlock_irqrestore(&ntp_lock, flags);
483 
484 	return leap;
485 }
486 
487 #if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
488 static void sync_cmos_clock(struct work_struct *work);
489 
490 static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
491 
492 static void sync_cmos_clock(struct work_struct *work)
493 {
494 	struct timespec now, next;
495 	int fail = 1;
496 
497 	/*
498 	 * If we have an externally synchronized Linux clock, then update
499 	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
500 	 * called as close as possible to 500 ms before the new second starts.
501 	 * This code is run on a timer.  If the clock is set, that timer
502 	 * may not expire at the correct time.  Thus, we adjust...
503 	 */
504 	if (!ntp_synced()) {
505 		/*
506 		 * Not synced, exit, do not restart a timer (if one is
507 		 * running, let it run out).
508 		 */
509 		return;
510 	}
511 
512 	getnstimeofday(&now);
513 	if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2) {
514 		struct timespec adjust = now;
515 
516 		fail = -ENODEV;
517 		if (persistent_clock_is_local)
518 			adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
519 #ifdef CONFIG_GENERIC_CMOS_UPDATE
520 		fail = update_persistent_clock(adjust);
521 #endif
522 #ifdef CONFIG_RTC_SYSTOHC
523 		if (fail == -ENODEV)
524 			fail = rtc_set_ntp_time(adjust);
525 #endif
526 	}
527 
528 	next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
529 	if (next.tv_nsec <= 0)
530 		next.tv_nsec += NSEC_PER_SEC;
531 
532 	if (!fail || fail == -ENODEV)
533 		next.tv_sec = 659;
534 	else
535 		next.tv_sec = 0;
536 
537 	if (next.tv_nsec >= NSEC_PER_SEC) {
538 		next.tv_sec++;
539 		next.tv_nsec -= NSEC_PER_SEC;
540 	}
541 	schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next));
542 }
543 
544 static void notify_cmos_timer(void)
545 {
546 	schedule_delayed_work(&sync_cmos_work, 0);
547 }
548 
549 #else
550 static inline void notify_cmos_timer(void) { }
551 #endif
552 
553 
554 /*
555  * Propagate a new txc->status value into the NTP state:
556  */
557 static inline void process_adj_status(struct timex *txc, struct timespec *ts)
558 {
559 	if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
560 		time_state = TIME_OK;
561 		time_status = STA_UNSYNC;
562 		/* restart PPS frequency calibration */
563 		pps_reset_freq_interval();
564 	}
565 
566 	/*
567 	 * If we turn on PLL adjustments then reset the
568 	 * reference time to current time.
569 	 */
570 	if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
571 		time_reftime = get_seconds();
572 
573 	/* only set allowed bits */
574 	time_status &= STA_RONLY;
575 	time_status |= txc->status & ~STA_RONLY;
576 }
577 
578 /*
579  * Called with ntp_lock held, so we can access and modify
580  * all the global NTP state:
581  */
582 static inline void process_adjtimex_modes(struct timex *txc, struct timespec *ts)
583 {
584 	if (txc->modes & ADJ_STATUS)
585 		process_adj_status(txc, ts);
586 
587 	if (txc->modes & ADJ_NANO)
588 		time_status |= STA_NANO;
589 
590 	if (txc->modes & ADJ_MICRO)
591 		time_status &= ~STA_NANO;
592 
593 	if (txc->modes & ADJ_FREQUENCY) {
594 		time_freq = txc->freq * PPM_SCALE;
595 		time_freq = min(time_freq, MAXFREQ_SCALED);
596 		time_freq = max(time_freq, -MAXFREQ_SCALED);
597 		/* update pps_freq */
598 		pps_set_freq(time_freq);
599 	}
600 
601 	if (txc->modes & ADJ_MAXERROR)
602 		time_maxerror = txc->maxerror;
603 
604 	if (txc->modes & ADJ_ESTERROR)
605 		time_esterror = txc->esterror;
606 
607 	if (txc->modes & ADJ_TIMECONST) {
608 		time_constant = txc->constant;
609 		if (!(time_status & STA_NANO))
610 			time_constant += 4;
611 		time_constant = min(time_constant, (long)MAXTC);
612 		time_constant = max(time_constant, 0l);
613 	}
614 
615 	if (txc->modes & ADJ_TAI && txc->constant > 0)
616 		time_tai = txc->constant;
617 
618 	if (txc->modes & ADJ_OFFSET)
619 		ntp_update_offset(txc->offset);
620 
621 	if (txc->modes & ADJ_TICK)
622 		tick_usec = txc->tick;
623 
624 	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
625 		ntp_update_frequency();
626 }
627 
628 /*
629  * adjtimex mainly allows reading (and writing, if superuser) of
630  * kernel time-keeping variables. used by xntpd.
631  */
632 int do_adjtimex(struct timex *txc)
633 {
634 	struct timespec ts;
635 	int result;
636 
637 	/* Validate the data before disabling interrupts */
638 	if (txc->modes & ADJ_ADJTIME) {
639 		/* singleshot must not be used with any other mode bits */
640 		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
641 			return -EINVAL;
642 		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
643 		    !capable(CAP_SYS_TIME))
644 			return -EPERM;
645 	} else {
646 		/* In order to modify anything, you gotta be super-user! */
647 		 if (txc->modes && !capable(CAP_SYS_TIME))
648 			return -EPERM;
649 
650 		/*
651 		 * if the quartz is off by more than 10% then
652 		 * something is VERY wrong!
653 		 */
654 		if (txc->modes & ADJ_TICK &&
655 		    (txc->tick <  900000/USER_HZ ||
656 		     txc->tick > 1100000/USER_HZ))
657 			return -EINVAL;
658 	}
659 
660 	if (txc->modes & ADJ_SETOFFSET) {
661 		struct timespec delta;
662 		delta.tv_sec  = txc->time.tv_sec;
663 		delta.tv_nsec = txc->time.tv_usec;
664 		if (!capable(CAP_SYS_TIME))
665 			return -EPERM;
666 		if (!(txc->modes & ADJ_NANO))
667 			delta.tv_nsec *= 1000;
668 		result = timekeeping_inject_offset(&delta);
669 		if (result)
670 			return result;
671 	}
672 
673 	getnstimeofday(&ts);
674 
675 	raw_spin_lock_irq(&ntp_lock);
676 
677 	if (txc->modes & ADJ_ADJTIME) {
678 		long save_adjust = time_adjust;
679 
680 		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
681 			/* adjtime() is independent from ntp_adjtime() */
682 			time_adjust = txc->offset;
683 			ntp_update_frequency();
684 		}
685 		txc->offset = save_adjust;
686 	} else {
687 
688 		/* If there are input parameters, then process them: */
689 		if (txc->modes)
690 			process_adjtimex_modes(txc, &ts);
691 
692 		txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
693 				  NTP_SCALE_SHIFT);
694 		if (!(time_status & STA_NANO))
695 			txc->offset /= NSEC_PER_USEC;
696 	}
697 
698 	result = time_state;	/* mostly `TIME_OK' */
699 	/* check for errors */
700 	if (is_error_status(time_status))
701 		result = TIME_ERROR;
702 
703 	txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
704 					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
705 	txc->maxerror	   = time_maxerror;
706 	txc->esterror	   = time_esterror;
707 	txc->status	   = time_status;
708 	txc->constant	   = time_constant;
709 	txc->precision	   = 1;
710 	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
711 	txc->tick	   = tick_usec;
712 	txc->tai	   = time_tai;
713 
714 	/* fill PPS status fields */
715 	pps_fill_timex(txc);
716 
717 	raw_spin_unlock_irq(&ntp_lock);
718 
719 	txc->time.tv_sec = ts.tv_sec;
720 	txc->time.tv_usec = ts.tv_nsec;
721 	if (!(time_status & STA_NANO))
722 		txc->time.tv_usec /= NSEC_PER_USEC;
723 
724 	notify_cmos_timer();
725 
726 	return result;
727 }
728 
729 #ifdef	CONFIG_NTP_PPS
730 
731 /* actually struct pps_normtime is good old struct timespec, but it is
732  * semantically different (and it is the reason why it was invented):
733  * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
734  * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
735 struct pps_normtime {
736 	__kernel_time_t	sec;	/* seconds */
737 	long		nsec;	/* nanoseconds */
738 };
739 
740 /* normalize the timestamp so that nsec is in the
741    ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
742 static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
743 {
744 	struct pps_normtime norm = {
745 		.sec = ts.tv_sec,
746 		.nsec = ts.tv_nsec
747 	};
748 
749 	if (norm.nsec > (NSEC_PER_SEC >> 1)) {
750 		norm.nsec -= NSEC_PER_SEC;
751 		norm.sec++;
752 	}
753 
754 	return norm;
755 }
756 
757 /* get current phase correction and jitter */
758 static inline long pps_phase_filter_get(long *jitter)
759 {
760 	*jitter = pps_tf[0] - pps_tf[1];
761 	if (*jitter < 0)
762 		*jitter = -*jitter;
763 
764 	/* TODO: test various filters */
765 	return pps_tf[0];
766 }
767 
768 /* add the sample to the phase filter */
769 static inline void pps_phase_filter_add(long err)
770 {
771 	pps_tf[2] = pps_tf[1];
772 	pps_tf[1] = pps_tf[0];
773 	pps_tf[0] = err;
774 }
775 
776 /* decrease frequency calibration interval length.
777  * It is halved after four consecutive unstable intervals.
778  */
779 static inline void pps_dec_freq_interval(void)
780 {
781 	if (--pps_intcnt <= -PPS_INTCOUNT) {
782 		pps_intcnt = -PPS_INTCOUNT;
783 		if (pps_shift > PPS_INTMIN) {
784 			pps_shift--;
785 			pps_intcnt = 0;
786 		}
787 	}
788 }
789 
790 /* increase frequency calibration interval length.
791  * It is doubled after four consecutive stable intervals.
792  */
793 static inline void pps_inc_freq_interval(void)
794 {
795 	if (++pps_intcnt >= PPS_INTCOUNT) {
796 		pps_intcnt = PPS_INTCOUNT;
797 		if (pps_shift < PPS_INTMAX) {
798 			pps_shift++;
799 			pps_intcnt = 0;
800 		}
801 	}
802 }
803 
804 /* update clock frequency based on MONOTONIC_RAW clock PPS signal
805  * timestamps
806  *
807  * At the end of the calibration interval the difference between the
808  * first and last MONOTONIC_RAW clock timestamps divided by the length
809  * of the interval becomes the frequency update. If the interval was
810  * too long, the data are discarded.
811  * Returns the difference between old and new frequency values.
812  */
813 static long hardpps_update_freq(struct pps_normtime freq_norm)
814 {
815 	long delta, delta_mod;
816 	s64 ftemp;
817 
818 	/* check if the frequency interval was too long */
819 	if (freq_norm.sec > (2 << pps_shift)) {
820 		time_status |= STA_PPSERROR;
821 		pps_errcnt++;
822 		pps_dec_freq_interval();
823 		pr_err("hardpps: PPSERROR: interval too long - %ld s\n",
824 				freq_norm.sec);
825 		return 0;
826 	}
827 
828 	/* here the raw frequency offset and wander (stability) is
829 	 * calculated. If the wander is less than the wander threshold
830 	 * the interval is increased; otherwise it is decreased.
831 	 */
832 	ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
833 			freq_norm.sec);
834 	delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
835 	pps_freq = ftemp;
836 	if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
837 		pr_warning("hardpps: PPSWANDER: change=%ld\n", delta);
838 		time_status |= STA_PPSWANDER;
839 		pps_stbcnt++;
840 		pps_dec_freq_interval();
841 	} else {	/* good sample */
842 		pps_inc_freq_interval();
843 	}
844 
845 	/* the stability metric is calculated as the average of recent
846 	 * frequency changes, but is used only for performance
847 	 * monitoring
848 	 */
849 	delta_mod = delta;
850 	if (delta_mod < 0)
851 		delta_mod = -delta_mod;
852 	pps_stabil += (div_s64(((s64)delta_mod) <<
853 				(NTP_SCALE_SHIFT - SHIFT_USEC),
854 				NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
855 
856 	/* if enabled, the system clock frequency is updated */
857 	if ((time_status & STA_PPSFREQ) != 0 &&
858 	    (time_status & STA_FREQHOLD) == 0) {
859 		time_freq = pps_freq;
860 		ntp_update_frequency();
861 	}
862 
863 	return delta;
864 }
865 
866 /* correct REALTIME clock phase error against PPS signal */
867 static void hardpps_update_phase(long error)
868 {
869 	long correction = -error;
870 	long jitter;
871 
872 	/* add the sample to the median filter */
873 	pps_phase_filter_add(correction);
874 	correction = pps_phase_filter_get(&jitter);
875 
876 	/* Nominal jitter is due to PPS signal noise. If it exceeds the
877 	 * threshold, the sample is discarded; otherwise, if so enabled,
878 	 * the time offset is updated.
879 	 */
880 	if (jitter > (pps_jitter << PPS_POPCORN)) {
881 		pr_warning("hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
882 		       jitter, (pps_jitter << PPS_POPCORN));
883 		time_status |= STA_PPSJITTER;
884 		pps_jitcnt++;
885 	} else if (time_status & STA_PPSTIME) {
886 		/* correct the time using the phase offset */
887 		time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
888 				NTP_INTERVAL_FREQ);
889 		/* cancel running adjtime() */
890 		time_adjust = 0;
891 	}
892 	/* update jitter */
893 	pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
894 }
895 
896 /*
897  * hardpps() - discipline CPU clock oscillator to external PPS signal
898  *
899  * This routine is called at each PPS signal arrival in order to
900  * discipline the CPU clock oscillator to the PPS signal. It takes two
901  * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
902  * is used to correct clock phase error and the latter is used to
903  * correct the frequency.
904  *
905  * This code is based on David Mills's reference nanokernel
906  * implementation. It was mostly rewritten but keeps the same idea.
907  */
908 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
909 {
910 	struct pps_normtime pts_norm, freq_norm;
911 	unsigned long flags;
912 
913 	pts_norm = pps_normalize_ts(*phase_ts);
914 
915 	raw_spin_lock_irqsave(&ntp_lock, flags);
916 
917 	/* clear the error bits, they will be set again if needed */
918 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
919 
920 	/* indicate signal presence */
921 	time_status |= STA_PPSSIGNAL;
922 	pps_valid = PPS_VALID;
923 
924 	/* when called for the first time,
925 	 * just start the frequency interval */
926 	if (unlikely(pps_fbase.tv_sec == 0)) {
927 		pps_fbase = *raw_ts;
928 		raw_spin_unlock_irqrestore(&ntp_lock, flags);
929 		return;
930 	}
931 
932 	/* ok, now we have a base for frequency calculation */
933 	freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));
934 
935 	/* check that the signal is in the range
936 	 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
937 	if ((freq_norm.sec == 0) ||
938 			(freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
939 			(freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
940 		time_status |= STA_PPSJITTER;
941 		/* restart the frequency calibration interval */
942 		pps_fbase = *raw_ts;
943 		raw_spin_unlock_irqrestore(&ntp_lock, flags);
944 		pr_err("hardpps: PPSJITTER: bad pulse\n");
945 		return;
946 	}
947 
948 	/* signal is ok */
949 
950 	/* check if the current frequency interval is finished */
951 	if (freq_norm.sec >= (1 << pps_shift)) {
952 		pps_calcnt++;
953 		/* restart the frequency calibration interval */
954 		pps_fbase = *raw_ts;
955 		hardpps_update_freq(freq_norm);
956 	}
957 
958 	hardpps_update_phase(pts_norm.nsec);
959 
960 	raw_spin_unlock_irqrestore(&ntp_lock, flags);
961 }
962 EXPORT_SYMBOL(hardpps);
963 
964 #endif	/* CONFIG_NTP_PPS */
965 
966 static int __init ntp_tick_adj_setup(char *str)
967 {
968 	ntp_tick_adj = simple_strtol(str, NULL, 0);
969 	ntp_tick_adj <<= NTP_SCALE_SHIFT;
970 
971 	return 1;
972 }
973 
974 __setup("ntp_tick_adj=", ntp_tick_adj_setup);
975 
976 void __init ntp_init(void)
977 {
978 	ntp_clear();
979 }
980