xref: /openbmc/linux/kernel/time/ntp.c (revision 6a0abce4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NTP state machine interfaces and logic.
4  *
5  * This code was mainly moved from kernel/timer.c and kernel/time.c
6  * Please see those files for relevant copyright info and historical
7  * changelogs.
8  */
9 #include <linux/capability.h>
10 #include <linux/clocksource.h>
11 #include <linux/workqueue.h>
12 #include <linux/hrtimer.h>
13 #include <linux/jiffies.h>
14 #include <linux/math64.h>
15 #include <linux/timex.h>
16 #include <linux/time.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/rtc.h>
20 
21 #include "ntp_internal.h"
22 #include "timekeeping_internal.h"
23 
24 
25 /*
26  * NTP timekeeping variables:
27  *
28  * Note: All of the NTP state is protected by the timekeeping locks.
29  */
30 
31 
32 /* USER_HZ period (usecs): */
33 unsigned long			tick_usec = USER_TICK_USEC;
34 
35 /* SHIFTED_HZ period (nsecs): */
36 unsigned long			tick_nsec;
37 
38 static u64			tick_length;
39 static u64			tick_length_base;
40 
41 #define SECS_PER_DAY		86400
42 #define MAX_TICKADJ		500LL		/* usecs */
43 #define MAX_TICKADJ_SCALED \
44 	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
45 
46 /*
47  * phase-lock loop variables
48  */
49 
50 /*
51  * clock synchronization status
52  *
53  * (TIME_ERROR prevents overwriting the CMOS clock)
54  */
55 static int			time_state = TIME_OK;
56 
57 /* clock status bits:							*/
58 static int			time_status = STA_UNSYNC;
59 
60 /* time adjustment (nsecs):						*/
61 static s64			time_offset;
62 
63 /* pll time constant:							*/
64 static long			time_constant = 2;
65 
66 /* maximum error (usecs):						*/
67 static long			time_maxerror = NTP_PHASE_LIMIT;
68 
69 /* estimated error (usecs):						*/
70 static long			time_esterror = NTP_PHASE_LIMIT;
71 
72 /* frequency offset (scaled nsecs/secs):				*/
73 static s64			time_freq;
74 
75 /* time at last adjustment (secs):					*/
76 static time64_t		time_reftime;
77 
78 static long			time_adjust;
79 
80 /* constant (boot-param configurable) NTP tick adjustment (upscaled)	*/
81 static s64			ntp_tick_adj;
82 
83 /* second value of the next pending leapsecond, or TIME64_MAX if no leap */
84 static time64_t			ntp_next_leap_sec = TIME64_MAX;
85 
86 #ifdef CONFIG_NTP_PPS
87 
88 /*
89  * The following variables are used when a pulse-per-second (PPS) signal
90  * is available. They establish the engineering parameters of the clock
91  * discipline loop when controlled by the PPS signal.
92  */
93 #define PPS_VALID	10	/* PPS signal watchdog max (s) */
94 #define PPS_POPCORN	4	/* popcorn spike threshold (shift) */
95 #define PPS_INTMIN	2	/* min freq interval (s) (shift) */
96 #define PPS_INTMAX	8	/* max freq interval (s) (shift) */
97 #define PPS_INTCOUNT	4	/* number of consecutive good intervals to
98 				   increase pps_shift or consecutive bad
99 				   intervals to decrease it */
100 #define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */
101 
102 static int pps_valid;		/* signal watchdog counter */
103 static long pps_tf[3];		/* phase median filter */
104 static long pps_jitter;		/* current jitter (ns) */
105 static struct timespec64 pps_fbase; /* beginning of the last freq interval */
106 static int pps_shift;		/* current interval duration (s) (shift) */
107 static int pps_intcnt;		/* interval counter */
108 static s64 pps_freq;		/* frequency offset (scaled ns/s) */
109 static long pps_stabil;		/* current stability (scaled ns/s) */
110 
111 /*
112  * PPS signal quality monitors
113  */
114 static long pps_calcnt;		/* calibration intervals */
115 static long pps_jitcnt;		/* jitter limit exceeded */
116 static long pps_stbcnt;		/* stability limit exceeded */
117 static long pps_errcnt;		/* calibration errors */
118 
119 
120 /* PPS kernel consumer compensates the whole phase error immediately.
121  * Otherwise, reduce the offset by a fixed factor times the time constant.
122  */
123 static inline s64 ntp_offset_chunk(s64 offset)
124 {
125 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
126 		return offset;
127 	else
128 		return shift_right(offset, SHIFT_PLL + time_constant);
129 }
130 
131 static inline void pps_reset_freq_interval(void)
132 {
133 	/* the PPS calibration interval may end
134 	   surprisingly early */
135 	pps_shift = PPS_INTMIN;
136 	pps_intcnt = 0;
137 }
138 
139 /**
140  * pps_clear - Clears the PPS state variables
141  */
142 static inline void pps_clear(void)
143 {
144 	pps_reset_freq_interval();
145 	pps_tf[0] = 0;
146 	pps_tf[1] = 0;
147 	pps_tf[2] = 0;
148 	pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
149 	pps_freq = 0;
150 }
151 
152 /* Decrease pps_valid to indicate that another second has passed since
153  * the last PPS signal. When it reaches 0, indicate that PPS signal is
154  * missing.
155  */
156 static inline void pps_dec_valid(void)
157 {
158 	if (pps_valid > 0)
159 		pps_valid--;
160 	else {
161 		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
162 				 STA_PPSWANDER | STA_PPSERROR);
163 		pps_clear();
164 	}
165 }
166 
167 static inline void pps_set_freq(s64 freq)
168 {
169 	pps_freq = freq;
170 }
171 
172 static inline int is_error_status(int status)
173 {
174 	return (status & (STA_UNSYNC|STA_CLOCKERR))
175 		/* PPS signal lost when either PPS time or
176 		 * PPS frequency synchronization requested
177 		 */
178 		|| ((status & (STA_PPSFREQ|STA_PPSTIME))
179 			&& !(status & STA_PPSSIGNAL))
180 		/* PPS jitter exceeded when
181 		 * PPS time synchronization requested */
182 		|| ((status & (STA_PPSTIME|STA_PPSJITTER))
183 			== (STA_PPSTIME|STA_PPSJITTER))
184 		/* PPS wander exceeded or calibration error when
185 		 * PPS frequency synchronization requested
186 		 */
187 		|| ((status & STA_PPSFREQ)
188 			&& (status & (STA_PPSWANDER|STA_PPSERROR)));
189 }
190 
191 static inline void pps_fill_timex(struct timex *txc)
192 {
193 	txc->ppsfreq	   = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
194 					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
195 	txc->jitter	   = pps_jitter;
196 	if (!(time_status & STA_NANO))
197 		txc->jitter /= NSEC_PER_USEC;
198 	txc->shift	   = pps_shift;
199 	txc->stabil	   = pps_stabil;
200 	txc->jitcnt	   = pps_jitcnt;
201 	txc->calcnt	   = pps_calcnt;
202 	txc->errcnt	   = pps_errcnt;
203 	txc->stbcnt	   = pps_stbcnt;
204 }
205 
206 #else /* !CONFIG_NTP_PPS */
207 
208 static inline s64 ntp_offset_chunk(s64 offset)
209 {
210 	return shift_right(offset, SHIFT_PLL + time_constant);
211 }
212 
213 static inline void pps_reset_freq_interval(void) {}
214 static inline void pps_clear(void) {}
215 static inline void pps_dec_valid(void) {}
216 static inline void pps_set_freq(s64 freq) {}
217 
218 static inline int is_error_status(int status)
219 {
220 	return status & (STA_UNSYNC|STA_CLOCKERR);
221 }
222 
223 static inline void pps_fill_timex(struct timex *txc)
224 {
225 	/* PPS is not implemented, so these are zero */
226 	txc->ppsfreq	   = 0;
227 	txc->jitter	   = 0;
228 	txc->shift	   = 0;
229 	txc->stabil	   = 0;
230 	txc->jitcnt	   = 0;
231 	txc->calcnt	   = 0;
232 	txc->errcnt	   = 0;
233 	txc->stbcnt	   = 0;
234 }
235 
236 #endif /* CONFIG_NTP_PPS */
237 
238 
239 /**
240  * ntp_synced - Returns 1 if the NTP status is not UNSYNC
241  *
242  */
243 static inline int ntp_synced(void)
244 {
245 	return !(time_status & STA_UNSYNC);
246 }
247 
248 
249 /*
250  * NTP methods:
251  */
252 
253 /*
254  * Update (tick_length, tick_length_base, tick_nsec), based
255  * on (tick_usec, ntp_tick_adj, time_freq):
256  */
257 static void ntp_update_frequency(void)
258 {
259 	u64 second_length;
260 	u64 new_base;
261 
262 	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
263 						<< NTP_SCALE_SHIFT;
264 
265 	second_length		+= ntp_tick_adj;
266 	second_length		+= time_freq;
267 
268 	tick_nsec		 = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
269 	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
270 
271 	/*
272 	 * Don't wait for the next second_overflow, apply
273 	 * the change to the tick length immediately:
274 	 */
275 	tick_length		+= new_base - tick_length_base;
276 	tick_length_base	 = new_base;
277 }
278 
279 static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
280 {
281 	time_status &= ~STA_MODE;
282 
283 	if (secs < MINSEC)
284 		return 0;
285 
286 	if (!(time_status & STA_FLL) && (secs <= MAXSEC))
287 		return 0;
288 
289 	time_status |= STA_MODE;
290 
291 	return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
292 }
293 
294 static void ntp_update_offset(long offset)
295 {
296 	s64 freq_adj;
297 	s64 offset64;
298 	long secs;
299 
300 	if (!(time_status & STA_PLL))
301 		return;
302 
303 	if (!(time_status & STA_NANO)) {
304 		/* Make sure the multiplication below won't overflow */
305 		offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC);
306 		offset *= NSEC_PER_USEC;
307 	}
308 
309 	/*
310 	 * Scale the phase adjustment and
311 	 * clamp to the operating range.
312 	 */
313 	offset = clamp(offset, -MAXPHASE, MAXPHASE);
314 
315 	/*
316 	 * Select how the frequency is to be controlled
317 	 * and in which mode (PLL or FLL).
318 	 */
319 	secs = (long)(__ktime_get_real_seconds() - time_reftime);
320 	if (unlikely(time_status & STA_FREQHOLD))
321 		secs = 0;
322 
323 	time_reftime = __ktime_get_real_seconds();
324 
325 	offset64    = offset;
326 	freq_adj    = ntp_update_offset_fll(offset64, secs);
327 
328 	/*
329 	 * Clamp update interval to reduce PLL gain with low
330 	 * sampling rate (e.g. intermittent network connection)
331 	 * to avoid instability.
332 	 */
333 	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
334 		secs = 1 << (SHIFT_PLL + 1 + time_constant);
335 
336 	freq_adj    += (offset64 * secs) <<
337 			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
338 
339 	freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);
340 
341 	time_freq   = max(freq_adj, -MAXFREQ_SCALED);
342 
343 	time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
344 }
345 
346 /**
347  * ntp_clear - Clears the NTP state variables
348  */
349 void ntp_clear(void)
350 {
351 	time_adjust	= 0;		/* stop active adjtime() */
352 	time_status	|= STA_UNSYNC;
353 	time_maxerror	= NTP_PHASE_LIMIT;
354 	time_esterror	= NTP_PHASE_LIMIT;
355 
356 	ntp_update_frequency();
357 
358 	tick_length	= tick_length_base;
359 	time_offset	= 0;
360 
361 	ntp_next_leap_sec = TIME64_MAX;
362 	/* Clear PPS state variables */
363 	pps_clear();
364 }
365 
366 
367 u64 ntp_tick_length(void)
368 {
369 	return tick_length;
370 }
371 
372 /**
373  * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
374  *
375  * Provides the time of the next leapsecond against CLOCK_REALTIME in
376  * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
377  */
378 ktime_t ntp_get_next_leap(void)
379 {
380 	ktime_t ret;
381 
382 	if ((time_state == TIME_INS) && (time_status & STA_INS))
383 		return ktime_set(ntp_next_leap_sec, 0);
384 	ret = KTIME_MAX;
385 	return ret;
386 }
387 
388 /*
389  * this routine handles the overflow of the microsecond field
390  *
391  * The tricky bits of code to handle the accurate clock support
392  * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
393  * They were originally developed for SUN and DEC kernels.
394  * All the kudos should go to Dave for this stuff.
395  *
396  * Also handles leap second processing, and returns leap offset
397  */
398 int second_overflow(time64_t secs)
399 {
400 	s64 delta;
401 	int leap = 0;
402 	s32 rem;
403 
404 	/*
405 	 * Leap second processing. If in leap-insert state at the end of the
406 	 * day, the system clock is set back one second; if in leap-delete
407 	 * state, the system clock is set ahead one second.
408 	 */
409 	switch (time_state) {
410 	case TIME_OK:
411 		if (time_status & STA_INS) {
412 			time_state = TIME_INS;
413 			div_s64_rem(secs, SECS_PER_DAY, &rem);
414 			ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
415 		} else if (time_status & STA_DEL) {
416 			time_state = TIME_DEL;
417 			div_s64_rem(secs + 1, SECS_PER_DAY, &rem);
418 			ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
419 		}
420 		break;
421 	case TIME_INS:
422 		if (!(time_status & STA_INS)) {
423 			ntp_next_leap_sec = TIME64_MAX;
424 			time_state = TIME_OK;
425 		} else if (secs == ntp_next_leap_sec) {
426 			leap = -1;
427 			time_state = TIME_OOP;
428 			printk(KERN_NOTICE
429 				"Clock: inserting leap second 23:59:60 UTC\n");
430 		}
431 		break;
432 	case TIME_DEL:
433 		if (!(time_status & STA_DEL)) {
434 			ntp_next_leap_sec = TIME64_MAX;
435 			time_state = TIME_OK;
436 		} else if (secs == ntp_next_leap_sec) {
437 			leap = 1;
438 			ntp_next_leap_sec = TIME64_MAX;
439 			time_state = TIME_WAIT;
440 			printk(KERN_NOTICE
441 				"Clock: deleting leap second 23:59:59 UTC\n");
442 		}
443 		break;
444 	case TIME_OOP:
445 		ntp_next_leap_sec = TIME64_MAX;
446 		time_state = TIME_WAIT;
447 		break;
448 	case TIME_WAIT:
449 		if (!(time_status & (STA_INS | STA_DEL)))
450 			time_state = TIME_OK;
451 		break;
452 	}
453 
454 
455 	/* Bump the maxerror field */
456 	time_maxerror += MAXFREQ / NSEC_PER_USEC;
457 	if (time_maxerror > NTP_PHASE_LIMIT) {
458 		time_maxerror = NTP_PHASE_LIMIT;
459 		time_status |= STA_UNSYNC;
460 	}
461 
462 	/* Compute the phase adjustment for the next second */
463 	tick_length	 = tick_length_base;
464 
465 	delta		 = ntp_offset_chunk(time_offset);
466 	time_offset	-= delta;
467 	tick_length	+= delta;
468 
469 	/* Check PPS signal */
470 	pps_dec_valid();
471 
472 	if (!time_adjust)
473 		goto out;
474 
475 	if (time_adjust > MAX_TICKADJ) {
476 		time_adjust -= MAX_TICKADJ;
477 		tick_length += MAX_TICKADJ_SCALED;
478 		goto out;
479 	}
480 
481 	if (time_adjust < -MAX_TICKADJ) {
482 		time_adjust += MAX_TICKADJ;
483 		tick_length -= MAX_TICKADJ_SCALED;
484 		goto out;
485 	}
486 
487 	tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
488 							 << NTP_SCALE_SHIFT;
489 	time_adjust = 0;
490 
491 out:
492 	return leap;
493 }
494 
495 static void sync_hw_clock(struct work_struct *work);
496 static DECLARE_DELAYED_WORK(sync_work, sync_hw_clock);
497 
498 static void sched_sync_hw_clock(struct timespec64 now,
499 				unsigned long target_nsec, bool fail)
500 
501 {
502 	struct timespec64 next;
503 
504 	ktime_get_real_ts64(&next);
505 	if (!fail)
506 		next.tv_sec = 659;
507 	else {
508 		/*
509 		 * Try again as soon as possible. Delaying long periods
510 		 * decreases the accuracy of the work queue timer. Due to this
511 		 * the algorithm is very likely to require a short-sleep retry
512 		 * after the above long sleep to synchronize ts_nsec.
513 		 */
514 		next.tv_sec = 0;
515 	}
516 
517 	/* Compute the needed delay that will get to tv_nsec == target_nsec */
518 	next.tv_nsec = target_nsec - next.tv_nsec;
519 	if (next.tv_nsec <= 0)
520 		next.tv_nsec += NSEC_PER_SEC;
521 	if (next.tv_nsec >= NSEC_PER_SEC) {
522 		next.tv_sec++;
523 		next.tv_nsec -= NSEC_PER_SEC;
524 	}
525 
526 	queue_delayed_work(system_power_efficient_wq, &sync_work,
527 			   timespec64_to_jiffies(&next));
528 }
529 
530 static void sync_rtc_clock(void)
531 {
532 	unsigned long target_nsec;
533 	struct timespec64 adjust, now;
534 	int rc;
535 
536 	if (!IS_ENABLED(CONFIG_RTC_SYSTOHC))
537 		return;
538 
539 	ktime_get_real_ts64(&now);
540 
541 	adjust = now;
542 	if (persistent_clock_is_local)
543 		adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
544 
545 	/*
546 	 * The current RTC in use will provide the target_nsec it wants to be
547 	 * called at, and does rtc_tv_nsec_ok internally.
548 	 */
549 	rc = rtc_set_ntp_time(adjust, &target_nsec);
550 	if (rc == -ENODEV)
551 		return;
552 
553 	sched_sync_hw_clock(now, target_nsec, rc);
554 }
555 
556 #ifdef CONFIG_GENERIC_CMOS_UPDATE
557 int __weak update_persistent_clock(struct timespec now)
558 {
559 	return -ENODEV;
560 }
561 
562 int __weak update_persistent_clock64(struct timespec64 now64)
563 {
564 	struct timespec now;
565 
566 	now = timespec64_to_timespec(now64);
567 	return update_persistent_clock(now);
568 }
569 #endif
570 
571 static bool sync_cmos_clock(void)
572 {
573 	static bool no_cmos;
574 	struct timespec64 now;
575 	struct timespec64 adjust;
576 	int rc = -EPROTO;
577 	long target_nsec = NSEC_PER_SEC / 2;
578 
579 	if (!IS_ENABLED(CONFIG_GENERIC_CMOS_UPDATE))
580 		return false;
581 
582 	if (no_cmos)
583 		return false;
584 
585 	/*
586 	 * Historically update_persistent_clock64() has followed x86
587 	 * semantics, which match the MC146818A/etc RTC. This RTC will store
588 	 * 'adjust' and then in .5s it will advance once second.
589 	 *
590 	 * Architectures are strongly encouraged to use rtclib and not
591 	 * implement this legacy API.
592 	 */
593 	ktime_get_real_ts64(&now);
594 	if (rtc_tv_nsec_ok(-1 * target_nsec, &adjust, &now)) {
595 		if (persistent_clock_is_local)
596 			adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
597 		rc = update_persistent_clock64(adjust);
598 		/*
599 		 * The machine does not support update_persistent_clock64 even
600 		 * though it defines CONFIG_GENERIC_CMOS_UPDATE.
601 		 */
602 		if (rc == -ENODEV) {
603 			no_cmos = true;
604 			return false;
605 		}
606 	}
607 
608 	sched_sync_hw_clock(now, target_nsec, rc);
609 	return true;
610 }
611 
612 /*
613  * If we have an externally synchronized Linux clock, then update RTC clock
614  * accordingly every ~11 minutes. Generally RTCs can only store second
615  * precision, but many RTCs will adjust the phase of their second tick to
616  * match the moment of update. This infrastructure arranges to call to the RTC
617  * set at the correct moment to phase synchronize the RTC second tick over
618  * with the kernel clock.
619  */
620 static void sync_hw_clock(struct work_struct *work)
621 {
622 	if (!ntp_synced())
623 		return;
624 
625 	if (sync_cmos_clock())
626 		return;
627 
628 	sync_rtc_clock();
629 }
630 
631 void ntp_notify_cmos_timer(void)
632 {
633 	if (!ntp_synced())
634 		return;
635 
636 	if (IS_ENABLED(CONFIG_GENERIC_CMOS_UPDATE) ||
637 	    IS_ENABLED(CONFIG_RTC_SYSTOHC))
638 		queue_delayed_work(system_power_efficient_wq, &sync_work, 0);
639 }
640 
641 /*
642  * Propagate a new txc->status value into the NTP state:
643  */
644 static inline void process_adj_status(const struct timex *txc)
645 {
646 	if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
647 		time_state = TIME_OK;
648 		time_status = STA_UNSYNC;
649 		ntp_next_leap_sec = TIME64_MAX;
650 		/* restart PPS frequency calibration */
651 		pps_reset_freq_interval();
652 	}
653 
654 	/*
655 	 * If we turn on PLL adjustments then reset the
656 	 * reference time to current time.
657 	 */
658 	if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
659 		time_reftime = __ktime_get_real_seconds();
660 
661 	/* only set allowed bits */
662 	time_status &= STA_RONLY;
663 	time_status |= txc->status & ~STA_RONLY;
664 }
665 
666 
667 static inline void process_adjtimex_modes(const struct timex *txc, s32 *time_tai)
668 {
669 	if (txc->modes & ADJ_STATUS)
670 		process_adj_status(txc);
671 
672 	if (txc->modes & ADJ_NANO)
673 		time_status |= STA_NANO;
674 
675 	if (txc->modes & ADJ_MICRO)
676 		time_status &= ~STA_NANO;
677 
678 	if (txc->modes & ADJ_FREQUENCY) {
679 		time_freq = txc->freq * PPM_SCALE;
680 		time_freq = min(time_freq, MAXFREQ_SCALED);
681 		time_freq = max(time_freq, -MAXFREQ_SCALED);
682 		/* update pps_freq */
683 		pps_set_freq(time_freq);
684 	}
685 
686 	if (txc->modes & ADJ_MAXERROR)
687 		time_maxerror = txc->maxerror;
688 
689 	if (txc->modes & ADJ_ESTERROR)
690 		time_esterror = txc->esterror;
691 
692 	if (txc->modes & ADJ_TIMECONST) {
693 		time_constant = txc->constant;
694 		if (!(time_status & STA_NANO))
695 			time_constant += 4;
696 		time_constant = min(time_constant, (long)MAXTC);
697 		time_constant = max(time_constant, 0l);
698 	}
699 
700 	if (txc->modes & ADJ_TAI && txc->constant > 0)
701 		*time_tai = txc->constant;
702 
703 	if (txc->modes & ADJ_OFFSET)
704 		ntp_update_offset(txc->offset);
705 
706 	if (txc->modes & ADJ_TICK)
707 		tick_usec = txc->tick;
708 
709 	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
710 		ntp_update_frequency();
711 }
712 
713 
714 /*
715  * adjtimex mainly allows reading (and writing, if superuser) of
716  * kernel time-keeping variables. used by xntpd.
717  */
718 int __do_adjtimex(struct timex *txc, const struct timespec64 *ts, s32 *time_tai)
719 {
720 	int result;
721 
722 	if (txc->modes & ADJ_ADJTIME) {
723 		long save_adjust = time_adjust;
724 
725 		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
726 			/* adjtime() is independent from ntp_adjtime() */
727 			time_adjust = txc->offset;
728 			ntp_update_frequency();
729 		}
730 		txc->offset = save_adjust;
731 	} else {
732 
733 		/* If there are input parameters, then process them: */
734 		if (txc->modes)
735 			process_adjtimex_modes(txc, time_tai);
736 
737 		txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
738 				  NTP_SCALE_SHIFT);
739 		if (!(time_status & STA_NANO))
740 			txc->offset /= NSEC_PER_USEC;
741 	}
742 
743 	result = time_state;	/* mostly `TIME_OK' */
744 	/* check for errors */
745 	if (is_error_status(time_status))
746 		result = TIME_ERROR;
747 
748 	txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
749 					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
750 	txc->maxerror	   = time_maxerror;
751 	txc->esterror	   = time_esterror;
752 	txc->status	   = time_status;
753 	txc->constant	   = time_constant;
754 	txc->precision	   = 1;
755 	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
756 	txc->tick	   = tick_usec;
757 	txc->tai	   = *time_tai;
758 
759 	/* fill PPS status fields */
760 	pps_fill_timex(txc);
761 
762 	txc->time.tv_sec = (time_t)ts->tv_sec;
763 	txc->time.tv_usec = ts->tv_nsec;
764 	if (!(time_status & STA_NANO))
765 		txc->time.tv_usec /= NSEC_PER_USEC;
766 
767 	/* Handle leapsec adjustments */
768 	if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) {
769 		if ((time_state == TIME_INS) && (time_status & STA_INS)) {
770 			result = TIME_OOP;
771 			txc->tai++;
772 			txc->time.tv_sec--;
773 		}
774 		if ((time_state == TIME_DEL) && (time_status & STA_DEL)) {
775 			result = TIME_WAIT;
776 			txc->tai--;
777 			txc->time.tv_sec++;
778 		}
779 		if ((time_state == TIME_OOP) &&
780 					(ts->tv_sec == ntp_next_leap_sec)) {
781 			result = TIME_WAIT;
782 		}
783 	}
784 
785 	return result;
786 }
787 
788 #ifdef	CONFIG_NTP_PPS
789 
790 /* actually struct pps_normtime is good old struct timespec, but it is
791  * semantically different (and it is the reason why it was invented):
792  * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
793  * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
794 struct pps_normtime {
795 	s64		sec;	/* seconds */
796 	long		nsec;	/* nanoseconds */
797 };
798 
799 /* normalize the timestamp so that nsec is in the
800    ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
801 static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
802 {
803 	struct pps_normtime norm = {
804 		.sec = ts.tv_sec,
805 		.nsec = ts.tv_nsec
806 	};
807 
808 	if (norm.nsec > (NSEC_PER_SEC >> 1)) {
809 		norm.nsec -= NSEC_PER_SEC;
810 		norm.sec++;
811 	}
812 
813 	return norm;
814 }
815 
816 /* get current phase correction and jitter */
817 static inline long pps_phase_filter_get(long *jitter)
818 {
819 	*jitter = pps_tf[0] - pps_tf[1];
820 	if (*jitter < 0)
821 		*jitter = -*jitter;
822 
823 	/* TODO: test various filters */
824 	return pps_tf[0];
825 }
826 
827 /* add the sample to the phase filter */
828 static inline void pps_phase_filter_add(long err)
829 {
830 	pps_tf[2] = pps_tf[1];
831 	pps_tf[1] = pps_tf[0];
832 	pps_tf[0] = err;
833 }
834 
835 /* decrease frequency calibration interval length.
836  * It is halved after four consecutive unstable intervals.
837  */
838 static inline void pps_dec_freq_interval(void)
839 {
840 	if (--pps_intcnt <= -PPS_INTCOUNT) {
841 		pps_intcnt = -PPS_INTCOUNT;
842 		if (pps_shift > PPS_INTMIN) {
843 			pps_shift--;
844 			pps_intcnt = 0;
845 		}
846 	}
847 }
848 
849 /* increase frequency calibration interval length.
850  * It is doubled after four consecutive stable intervals.
851  */
852 static inline void pps_inc_freq_interval(void)
853 {
854 	if (++pps_intcnt >= PPS_INTCOUNT) {
855 		pps_intcnt = PPS_INTCOUNT;
856 		if (pps_shift < PPS_INTMAX) {
857 			pps_shift++;
858 			pps_intcnt = 0;
859 		}
860 	}
861 }
862 
863 /* update clock frequency based on MONOTONIC_RAW clock PPS signal
864  * timestamps
865  *
866  * At the end of the calibration interval the difference between the
867  * first and last MONOTONIC_RAW clock timestamps divided by the length
868  * of the interval becomes the frequency update. If the interval was
869  * too long, the data are discarded.
870  * Returns the difference between old and new frequency values.
871  */
872 static long hardpps_update_freq(struct pps_normtime freq_norm)
873 {
874 	long delta, delta_mod;
875 	s64 ftemp;
876 
877 	/* check if the frequency interval was too long */
878 	if (freq_norm.sec > (2 << pps_shift)) {
879 		time_status |= STA_PPSERROR;
880 		pps_errcnt++;
881 		pps_dec_freq_interval();
882 		printk_deferred(KERN_ERR
883 			"hardpps: PPSERROR: interval too long - %lld s\n",
884 			freq_norm.sec);
885 		return 0;
886 	}
887 
888 	/* here the raw frequency offset and wander (stability) is
889 	 * calculated. If the wander is less than the wander threshold
890 	 * the interval is increased; otherwise it is decreased.
891 	 */
892 	ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
893 			freq_norm.sec);
894 	delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
895 	pps_freq = ftemp;
896 	if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
897 		printk_deferred(KERN_WARNING
898 				"hardpps: PPSWANDER: change=%ld\n", delta);
899 		time_status |= STA_PPSWANDER;
900 		pps_stbcnt++;
901 		pps_dec_freq_interval();
902 	} else {	/* good sample */
903 		pps_inc_freq_interval();
904 	}
905 
906 	/* the stability metric is calculated as the average of recent
907 	 * frequency changes, but is used only for performance
908 	 * monitoring
909 	 */
910 	delta_mod = delta;
911 	if (delta_mod < 0)
912 		delta_mod = -delta_mod;
913 	pps_stabil += (div_s64(((s64)delta_mod) <<
914 				(NTP_SCALE_SHIFT - SHIFT_USEC),
915 				NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
916 
917 	/* if enabled, the system clock frequency is updated */
918 	if ((time_status & STA_PPSFREQ) != 0 &&
919 	    (time_status & STA_FREQHOLD) == 0) {
920 		time_freq = pps_freq;
921 		ntp_update_frequency();
922 	}
923 
924 	return delta;
925 }
926 
927 /* correct REALTIME clock phase error against PPS signal */
928 static void hardpps_update_phase(long error)
929 {
930 	long correction = -error;
931 	long jitter;
932 
933 	/* add the sample to the median filter */
934 	pps_phase_filter_add(correction);
935 	correction = pps_phase_filter_get(&jitter);
936 
937 	/* Nominal jitter is due to PPS signal noise. If it exceeds the
938 	 * threshold, the sample is discarded; otherwise, if so enabled,
939 	 * the time offset is updated.
940 	 */
941 	if (jitter > (pps_jitter << PPS_POPCORN)) {
942 		printk_deferred(KERN_WARNING
943 				"hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
944 				jitter, (pps_jitter << PPS_POPCORN));
945 		time_status |= STA_PPSJITTER;
946 		pps_jitcnt++;
947 	} else if (time_status & STA_PPSTIME) {
948 		/* correct the time using the phase offset */
949 		time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
950 				NTP_INTERVAL_FREQ);
951 		/* cancel running adjtime() */
952 		time_adjust = 0;
953 	}
954 	/* update jitter */
955 	pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
956 }
957 
958 /*
959  * __hardpps() - discipline CPU clock oscillator to external PPS signal
960  *
961  * This routine is called at each PPS signal arrival in order to
962  * discipline the CPU clock oscillator to the PPS signal. It takes two
963  * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
964  * is used to correct clock phase error and the latter is used to
965  * correct the frequency.
966  *
967  * This code is based on David Mills's reference nanokernel
968  * implementation. It was mostly rewritten but keeps the same idea.
969  */
970 void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
971 {
972 	struct pps_normtime pts_norm, freq_norm;
973 
974 	pts_norm = pps_normalize_ts(*phase_ts);
975 
976 	/* clear the error bits, they will be set again if needed */
977 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
978 
979 	/* indicate signal presence */
980 	time_status |= STA_PPSSIGNAL;
981 	pps_valid = PPS_VALID;
982 
983 	/* when called for the first time,
984 	 * just start the frequency interval */
985 	if (unlikely(pps_fbase.tv_sec == 0)) {
986 		pps_fbase = *raw_ts;
987 		return;
988 	}
989 
990 	/* ok, now we have a base for frequency calculation */
991 	freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, pps_fbase));
992 
993 	/* check that the signal is in the range
994 	 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
995 	if ((freq_norm.sec == 0) ||
996 			(freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
997 			(freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
998 		time_status |= STA_PPSJITTER;
999 		/* restart the frequency calibration interval */
1000 		pps_fbase = *raw_ts;
1001 		printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
1002 		return;
1003 	}
1004 
1005 	/* signal is ok */
1006 
1007 	/* check if the current frequency interval is finished */
1008 	if (freq_norm.sec >= (1 << pps_shift)) {
1009 		pps_calcnt++;
1010 		/* restart the frequency calibration interval */
1011 		pps_fbase = *raw_ts;
1012 		hardpps_update_freq(freq_norm);
1013 	}
1014 
1015 	hardpps_update_phase(pts_norm.nsec);
1016 
1017 }
1018 #endif	/* CONFIG_NTP_PPS */
1019 
1020 static int __init ntp_tick_adj_setup(char *str)
1021 {
1022 	int rc = kstrtos64(str, 0, &ntp_tick_adj);
1023 	if (rc)
1024 		return rc;
1025 
1026 	ntp_tick_adj <<= NTP_SCALE_SHIFT;
1027 	return 1;
1028 }
1029 
1030 __setup("ntp_tick_adj=", ntp_tick_adj_setup);
1031 
1032 void __init ntp_init(void)
1033 {
1034 	ntp_clear();
1035 }
1036