xref: /openbmc/linux/kernel/time/ntp.c (revision 643d1f7f)
1 /*
2  * linux/kernel/time/ntp.c
3  *
4  * NTP state machine interfaces and logic.
5  *
6  * This code was mainly moved from kernel/timer.c and kernel/time.c
7  * Please see those files for relevant copyright info and historical
8  * changelogs.
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/time.h>
13 #include <linux/timer.h>
14 #include <linux/timex.h>
15 #include <linux/jiffies.h>
16 #include <linux/hrtimer.h>
17 #include <linux/capability.h>
18 #include <asm/div64.h>
19 #include <asm/timex.h>
20 
21 /*
22  * Timekeeping variables
23  */
24 unsigned long tick_usec = TICK_USEC; 		/* USER_HZ period (usec) */
25 unsigned long tick_nsec;			/* ACTHZ period (nsec) */
26 static u64 tick_length, tick_length_base;
27 
28 #define MAX_TICKADJ		500		/* microsecs */
29 #define MAX_TICKADJ_SCALED	(((u64)(MAX_TICKADJ * NSEC_PER_USEC) << \
30 				  TICK_LENGTH_SHIFT) / NTP_INTERVAL_FREQ)
31 
32 /*
33  * phase-lock loop variables
34  */
35 /* TIME_ERROR prevents overwriting the CMOS clock */
36 static int time_state = TIME_OK;	/* clock synchronization status	*/
37 int time_status = STA_UNSYNC;		/* clock status bits		*/
38 static s64 time_offset;		/* time adjustment (ns)		*/
39 static long time_constant = 2;		/* pll time constant		*/
40 long time_maxerror = NTP_PHASE_LIMIT;	/* maximum error (us)		*/
41 long time_esterror = NTP_PHASE_LIMIT;	/* estimated error (us)		*/
42 long time_freq;				/* frequency offset (scaled ppm)*/
43 static long time_reftime;		/* time at last adjustment (s)	*/
44 long time_adjust;
45 
46 #define CLOCK_TICK_OVERFLOW	(LATCH * HZ - CLOCK_TICK_RATE)
47 #define CLOCK_TICK_ADJUST	(((s64)CLOCK_TICK_OVERFLOW * NSEC_PER_SEC) / \
48 					(s64)CLOCK_TICK_RATE)
49 
50 static void ntp_update_frequency(void)
51 {
52 	u64 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
53 				<< TICK_LENGTH_SHIFT;
54 	second_length += (s64)CLOCK_TICK_ADJUST << TICK_LENGTH_SHIFT;
55 	second_length += (s64)time_freq << (TICK_LENGTH_SHIFT - SHIFT_NSEC);
56 
57 	tick_length_base = second_length;
58 
59 	do_div(second_length, HZ);
60 	tick_nsec = second_length >> TICK_LENGTH_SHIFT;
61 
62 	do_div(tick_length_base, NTP_INTERVAL_FREQ);
63 }
64 
65 /**
66  * ntp_clear - Clears the NTP state variables
67  *
68  * Must be called while holding a write on the xtime_lock
69  */
70 void ntp_clear(void)
71 {
72 	time_adjust = 0;		/* stop active adjtime() */
73 	time_status |= STA_UNSYNC;
74 	time_maxerror = NTP_PHASE_LIMIT;
75 	time_esterror = NTP_PHASE_LIMIT;
76 
77 	ntp_update_frequency();
78 
79 	tick_length = tick_length_base;
80 	time_offset = 0;
81 }
82 
83 /*
84  * this routine handles the overflow of the microsecond field
85  *
86  * The tricky bits of code to handle the accurate clock support
87  * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
88  * They were originally developed for SUN and DEC kernels.
89  * All the kudos should go to Dave for this stuff.
90  */
91 void second_overflow(void)
92 {
93 	long time_adj;
94 
95 	/* Bump the maxerror field */
96 	time_maxerror += MAXFREQ >> SHIFT_USEC;
97 	if (time_maxerror > NTP_PHASE_LIMIT) {
98 		time_maxerror = NTP_PHASE_LIMIT;
99 		time_status |= STA_UNSYNC;
100 	}
101 
102 	/*
103 	 * Leap second processing. If in leap-insert state at the end of the
104 	 * day, the system clock is set back one second; if in leap-delete
105 	 * state, the system clock is set ahead one second. The microtime()
106 	 * routine or external clock driver will insure that reported time is
107 	 * always monotonic. The ugly divides should be replaced.
108 	 */
109 	switch (time_state) {
110 	case TIME_OK:
111 		if (time_status & STA_INS)
112 			time_state = TIME_INS;
113 		else if (time_status & STA_DEL)
114 			time_state = TIME_DEL;
115 		break;
116 	case TIME_INS:
117 		if (xtime.tv_sec % 86400 == 0) {
118 			xtime.tv_sec--;
119 			wall_to_monotonic.tv_sec++;
120 			time_state = TIME_OOP;
121 			printk(KERN_NOTICE "Clock: inserting leap second "
122 					"23:59:60 UTC\n");
123 		}
124 		break;
125 	case TIME_DEL:
126 		if ((xtime.tv_sec + 1) % 86400 == 0) {
127 			xtime.tv_sec++;
128 			wall_to_monotonic.tv_sec--;
129 			time_state = TIME_WAIT;
130 			printk(KERN_NOTICE "Clock: deleting leap second "
131 					"23:59:59 UTC\n");
132 		}
133 		break;
134 	case TIME_OOP:
135 		time_state = TIME_WAIT;
136 		break;
137 	case TIME_WAIT:
138 		if (!(time_status & (STA_INS | STA_DEL)))
139 		time_state = TIME_OK;
140 	}
141 
142 	/*
143 	 * Compute the phase adjustment for the next second. The offset is
144 	 * reduced by a fixed factor times the time constant.
145 	 */
146 	tick_length = tick_length_base;
147 	time_adj = shift_right(time_offset, SHIFT_PLL + time_constant);
148 	time_offset -= time_adj;
149 	tick_length += (s64)time_adj << (TICK_LENGTH_SHIFT - SHIFT_UPDATE);
150 
151 	if (unlikely(time_adjust)) {
152 		if (time_adjust > MAX_TICKADJ) {
153 			time_adjust -= MAX_TICKADJ;
154 			tick_length += MAX_TICKADJ_SCALED;
155 		} else if (time_adjust < -MAX_TICKADJ) {
156 			time_adjust += MAX_TICKADJ;
157 			tick_length -= MAX_TICKADJ_SCALED;
158 		} else {
159 			tick_length += (s64)(time_adjust * NSEC_PER_USEC /
160 					NTP_INTERVAL_FREQ) << TICK_LENGTH_SHIFT;
161 			time_adjust = 0;
162 		}
163 	}
164 }
165 
166 /*
167  * Return how long ticks are at the moment, that is, how much time
168  * update_wall_time_one_tick will add to xtime next time we call it
169  * (assuming no calls to do_adjtimex in the meantime).
170  * The return value is in fixed-point nanoseconds shifted by the
171  * specified number of bits to the right of the binary point.
172  * This function has no side-effects.
173  */
174 u64 current_tick_length(void)
175 {
176 	return tick_length;
177 }
178 
179 #ifdef CONFIG_GENERIC_CMOS_UPDATE
180 
181 /* Disable the cmos update - used by virtualization and embedded */
182 int no_sync_cmos_clock  __read_mostly;
183 
184 static void sync_cmos_clock(unsigned long dummy);
185 
186 static DEFINE_TIMER(sync_cmos_timer, sync_cmos_clock, 0, 0);
187 
188 static void sync_cmos_clock(unsigned long dummy)
189 {
190 	struct timespec now, next;
191 	int fail = 1;
192 
193 	/*
194 	 * If we have an externally synchronized Linux clock, then update
195 	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
196 	 * called as close as possible to 500 ms before the new second starts.
197 	 * This code is run on a timer.  If the clock is set, that timer
198 	 * may not expire at the correct time.  Thus, we adjust...
199 	 */
200 	if (!ntp_synced())
201 		/*
202 		 * Not synced, exit, do not restart a timer (if one is
203 		 * running, let it run out).
204 		 */
205 		return;
206 
207 	getnstimeofday(&now);
208 	if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
209 		fail = update_persistent_clock(now);
210 
211 	next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec;
212 	if (next.tv_nsec <= 0)
213 		next.tv_nsec += NSEC_PER_SEC;
214 
215 	if (!fail)
216 		next.tv_sec = 659;
217 	else
218 		next.tv_sec = 0;
219 
220 	if (next.tv_nsec >= NSEC_PER_SEC) {
221 		next.tv_sec++;
222 		next.tv_nsec -= NSEC_PER_SEC;
223 	}
224 	mod_timer(&sync_cmos_timer, jiffies + timespec_to_jiffies(&next));
225 }
226 
227 static void notify_cmos_timer(void)
228 {
229 	if (!no_sync_cmos_clock)
230 		mod_timer(&sync_cmos_timer, jiffies + 1);
231 }
232 
233 #else
234 static inline void notify_cmos_timer(void) { }
235 #endif
236 
237 /* adjtimex mainly allows reading (and writing, if superuser) of
238  * kernel time-keeping variables. used by xntpd.
239  */
240 int do_adjtimex(struct timex *txc)
241 {
242 	long mtemp, save_adjust, rem;
243 	s64 freq_adj, temp64;
244 	int result;
245 
246 	/* In order to modify anything, you gotta be super-user! */
247 	if (txc->modes && !capable(CAP_SYS_TIME))
248 		return -EPERM;
249 
250 	/* Now we validate the data before disabling interrupts */
251 
252 	if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT) {
253 	  /* singleshot must not be used with any other mode bits */
254 		if (txc->modes != ADJ_OFFSET_SINGLESHOT &&
255 					txc->modes != ADJ_OFFSET_SS_READ)
256 			return -EINVAL;
257 	}
258 
259 	if (txc->modes != ADJ_OFFSET_SINGLESHOT && (txc->modes & ADJ_OFFSET))
260 	  /* adjustment Offset limited to +- .512 seconds */
261 		if (txc->offset <= - MAXPHASE || txc->offset >= MAXPHASE )
262 			return -EINVAL;
263 
264 	/* if the quartz is off by more than 10% something is VERY wrong ! */
265 	if (txc->modes & ADJ_TICK)
266 		if (txc->tick <  900000/USER_HZ ||
267 		    txc->tick > 1100000/USER_HZ)
268 			return -EINVAL;
269 
270 	write_seqlock_irq(&xtime_lock);
271 	result = time_state;	/* mostly `TIME_OK' */
272 
273 	/* Save for later - semantics of adjtime is to return old value */
274 	save_adjust = time_adjust;
275 
276 #if 0	/* STA_CLOCKERR is never set yet */
277 	time_status &= ~STA_CLOCKERR;		/* reset STA_CLOCKERR */
278 #endif
279 	/* If there are input parameters, then process them */
280 	if (txc->modes)
281 	{
282 	    if (txc->modes & ADJ_STATUS)	/* only set allowed bits */
283 		time_status =  (txc->status & ~STA_RONLY) |
284 			      (time_status & STA_RONLY);
285 
286 	    if (txc->modes & ADJ_FREQUENCY) {	/* p. 22 */
287 		if (txc->freq > MAXFREQ || txc->freq < -MAXFREQ) {
288 		    result = -EINVAL;
289 		    goto leave;
290 		}
291 		time_freq = ((s64)txc->freq * NSEC_PER_USEC)
292 				>> (SHIFT_USEC - SHIFT_NSEC);
293 	    }
294 
295 	    if (txc->modes & ADJ_MAXERROR) {
296 		if (txc->maxerror < 0 || txc->maxerror >= NTP_PHASE_LIMIT) {
297 		    result = -EINVAL;
298 		    goto leave;
299 		}
300 		time_maxerror = txc->maxerror;
301 	    }
302 
303 	    if (txc->modes & ADJ_ESTERROR) {
304 		if (txc->esterror < 0 || txc->esterror >= NTP_PHASE_LIMIT) {
305 		    result = -EINVAL;
306 		    goto leave;
307 		}
308 		time_esterror = txc->esterror;
309 	    }
310 
311 	    if (txc->modes & ADJ_TIMECONST) {	/* p. 24 */
312 		if (txc->constant < 0) {	/* NTP v4 uses values > 6 */
313 		    result = -EINVAL;
314 		    goto leave;
315 		}
316 		time_constant = min(txc->constant + 4, (long)MAXTC);
317 	    }
318 
319 	    if (txc->modes & ADJ_OFFSET) {	/* values checked earlier */
320 		if (txc->modes == ADJ_OFFSET_SINGLESHOT) {
321 		    /* adjtime() is independent from ntp_adjtime() */
322 		    time_adjust = txc->offset;
323 		}
324 		else if (time_status & STA_PLL) {
325 		    time_offset = txc->offset * NSEC_PER_USEC;
326 
327 		    /*
328 		     * Scale the phase adjustment and
329 		     * clamp to the operating range.
330 		     */
331 		    time_offset = min(time_offset, (s64)MAXPHASE * NSEC_PER_USEC);
332 		    time_offset = max(time_offset, (s64)-MAXPHASE * NSEC_PER_USEC);
333 
334 		    /*
335 		     * Select whether the frequency is to be controlled
336 		     * and in which mode (PLL or FLL). Clamp to the operating
337 		     * range. Ugly multiply/divide should be replaced someday.
338 		     */
339 
340 		    if (time_status & STA_FREQHOLD || time_reftime == 0)
341 		        time_reftime = xtime.tv_sec;
342 		    mtemp = xtime.tv_sec - time_reftime;
343 		    time_reftime = xtime.tv_sec;
344 
345 		    freq_adj = time_offset * mtemp;
346 		    freq_adj = shift_right(freq_adj, time_constant * 2 +
347 					   (SHIFT_PLL + 2) * 2 - SHIFT_NSEC);
348 		    if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)) {
349 			temp64 = time_offset << (SHIFT_NSEC - SHIFT_FLL);
350 			if (time_offset < 0) {
351 			    temp64 = -temp64;
352 			    do_div(temp64, mtemp);
353 			    freq_adj -= temp64;
354 			} else {
355 			    do_div(temp64, mtemp);
356 			    freq_adj += temp64;
357 			}
358 		    }
359 		    freq_adj += time_freq;
360 		    freq_adj = min(freq_adj, (s64)MAXFREQ_NSEC);
361 		    time_freq = max(freq_adj, (s64)-MAXFREQ_NSEC);
362 		    time_offset = div_long_long_rem_signed(time_offset,
363 							   NTP_INTERVAL_FREQ,
364 							   &rem);
365 		    time_offset <<= SHIFT_UPDATE;
366 		} /* STA_PLL */
367 	    } /* txc->modes & ADJ_OFFSET */
368 	    if (txc->modes & ADJ_TICK)
369 		tick_usec = txc->tick;
370 
371 	    if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
372 		    ntp_update_frequency();
373 	} /* txc->modes */
374 leave:	if ((time_status & (STA_UNSYNC|STA_CLOCKERR)) != 0)
375 		result = TIME_ERROR;
376 
377 	if ((txc->modes == ADJ_OFFSET_SINGLESHOT) ||
378 			(txc->modes == ADJ_OFFSET_SS_READ))
379 		txc->offset = save_adjust;
380 	else
381 		txc->offset = ((long)shift_right(time_offset, SHIFT_UPDATE)) *
382 	    			NTP_INTERVAL_FREQ / 1000;
383 	txc->freq	   = (time_freq / NSEC_PER_USEC) <<
384 				(SHIFT_USEC - SHIFT_NSEC);
385 	txc->maxerror	   = time_maxerror;
386 	txc->esterror	   = time_esterror;
387 	txc->status	   = time_status;
388 	txc->constant	   = time_constant;
389 	txc->precision	   = 1;
390 	txc->tolerance	   = MAXFREQ;
391 	txc->tick	   = tick_usec;
392 
393 	/* PPS is not implemented, so these are zero */
394 	txc->ppsfreq	   = 0;
395 	txc->jitter	   = 0;
396 	txc->shift	   = 0;
397 	txc->stabil	   = 0;
398 	txc->jitcnt	   = 0;
399 	txc->calcnt	   = 0;
400 	txc->errcnt	   = 0;
401 	txc->stbcnt	   = 0;
402 	write_sequnlock_irq(&xtime_lock);
403 	do_gettimeofday(&txc->time);
404 	notify_cmos_timer();
405 	return(result);
406 }
407