xref: /openbmc/linux/kernel/time/ntp.c (revision 6189f1b0)
1 /*
2  * NTP state machine interfaces and logic.
3  *
4  * This code was mainly moved from kernel/timer.c and kernel/time.c
5  * Please see those files for relevant copyright info and historical
6  * changelogs.
7  */
8 #include <linux/capability.h>
9 #include <linux/clocksource.h>
10 #include <linux/workqueue.h>
11 #include <linux/hrtimer.h>
12 #include <linux/jiffies.h>
13 #include <linux/math64.h>
14 #include <linux/timex.h>
15 #include <linux/time.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/rtc.h>
19 
20 #include "ntp_internal.h"
21 
22 /*
23  * NTP timekeeping variables:
24  *
25  * Note: All of the NTP state is protected by the timekeeping locks.
26  */
27 
28 
29 /* USER_HZ period (usecs): */
30 unsigned long			tick_usec = TICK_USEC;
31 
32 /* SHIFTED_HZ period (nsecs): */
33 unsigned long			tick_nsec;
34 
35 static u64			tick_length;
36 static u64			tick_length_base;
37 
38 #define SECS_PER_DAY		86400
39 #define MAX_TICKADJ		500LL		/* usecs */
40 #define MAX_TICKADJ_SCALED \
41 	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
42 
43 /*
44  * phase-lock loop variables
45  */
46 
47 /*
48  * clock synchronization status
49  *
50  * (TIME_ERROR prevents overwriting the CMOS clock)
51  */
52 static int			time_state = TIME_OK;
53 
54 /* clock status bits:							*/
55 static int			time_status = STA_UNSYNC;
56 
57 /* time adjustment (nsecs):						*/
58 static s64			time_offset;
59 
60 /* pll time constant:							*/
61 static long			time_constant = 2;
62 
63 /* maximum error (usecs):						*/
64 static long			time_maxerror = NTP_PHASE_LIMIT;
65 
66 /* estimated error (usecs):						*/
67 static long			time_esterror = NTP_PHASE_LIMIT;
68 
69 /* frequency offset (scaled nsecs/secs):				*/
70 static s64			time_freq;
71 
72 /* time at last adjustment (secs):					*/
73 static long			time_reftime;
74 
75 static long			time_adjust;
76 
77 /* constant (boot-param configurable) NTP tick adjustment (upscaled)	*/
78 static s64			ntp_tick_adj;
79 
80 /* second value of the next pending leapsecond, or TIME64_MAX if no leap */
81 static time64_t			ntp_next_leap_sec = TIME64_MAX;
82 
83 #ifdef CONFIG_NTP_PPS
84 
85 /*
86  * The following variables are used when a pulse-per-second (PPS) signal
87  * is available. They establish the engineering parameters of the clock
88  * discipline loop when controlled by the PPS signal.
89  */
90 #define PPS_VALID	10	/* PPS signal watchdog max (s) */
91 #define PPS_POPCORN	4	/* popcorn spike threshold (shift) */
92 #define PPS_INTMIN	2	/* min freq interval (s) (shift) */
93 #define PPS_INTMAX	8	/* max freq interval (s) (shift) */
94 #define PPS_INTCOUNT	4	/* number of consecutive good intervals to
95 				   increase pps_shift or consecutive bad
96 				   intervals to decrease it */
97 #define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */
98 
99 static int pps_valid;		/* signal watchdog counter */
100 static long pps_tf[3];		/* phase median filter */
101 static long pps_jitter;		/* current jitter (ns) */
102 static struct timespec pps_fbase; /* beginning of the last freq interval */
103 static int pps_shift;		/* current interval duration (s) (shift) */
104 static int pps_intcnt;		/* interval counter */
105 static s64 pps_freq;		/* frequency offset (scaled ns/s) */
106 static long pps_stabil;		/* current stability (scaled ns/s) */
107 
108 /*
109  * PPS signal quality monitors
110  */
111 static long pps_calcnt;		/* calibration intervals */
112 static long pps_jitcnt;		/* jitter limit exceeded */
113 static long pps_stbcnt;		/* stability limit exceeded */
114 static long pps_errcnt;		/* calibration errors */
115 
116 
117 /* PPS kernel consumer compensates the whole phase error immediately.
118  * Otherwise, reduce the offset by a fixed factor times the time constant.
119  */
120 static inline s64 ntp_offset_chunk(s64 offset)
121 {
122 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
123 		return offset;
124 	else
125 		return shift_right(offset, SHIFT_PLL + time_constant);
126 }
127 
128 static inline void pps_reset_freq_interval(void)
129 {
130 	/* the PPS calibration interval may end
131 	   surprisingly early */
132 	pps_shift = PPS_INTMIN;
133 	pps_intcnt = 0;
134 }
135 
136 /**
137  * pps_clear - Clears the PPS state variables
138  */
139 static inline void pps_clear(void)
140 {
141 	pps_reset_freq_interval();
142 	pps_tf[0] = 0;
143 	pps_tf[1] = 0;
144 	pps_tf[2] = 0;
145 	pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
146 	pps_freq = 0;
147 }
148 
149 /* Decrease pps_valid to indicate that another second has passed since
150  * the last PPS signal. When it reaches 0, indicate that PPS signal is
151  * missing.
152  */
153 static inline void pps_dec_valid(void)
154 {
155 	if (pps_valid > 0)
156 		pps_valid--;
157 	else {
158 		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
159 				 STA_PPSWANDER | STA_PPSERROR);
160 		pps_clear();
161 	}
162 }
163 
164 static inline void pps_set_freq(s64 freq)
165 {
166 	pps_freq = freq;
167 }
168 
169 static inline int is_error_status(int status)
170 {
171 	return (status & (STA_UNSYNC|STA_CLOCKERR))
172 		/* PPS signal lost when either PPS time or
173 		 * PPS frequency synchronization requested
174 		 */
175 		|| ((status & (STA_PPSFREQ|STA_PPSTIME))
176 			&& !(status & STA_PPSSIGNAL))
177 		/* PPS jitter exceeded when
178 		 * PPS time synchronization requested */
179 		|| ((status & (STA_PPSTIME|STA_PPSJITTER))
180 			== (STA_PPSTIME|STA_PPSJITTER))
181 		/* PPS wander exceeded or calibration error when
182 		 * PPS frequency synchronization requested
183 		 */
184 		|| ((status & STA_PPSFREQ)
185 			&& (status & (STA_PPSWANDER|STA_PPSERROR)));
186 }
187 
188 static inline void pps_fill_timex(struct timex *txc)
189 {
190 	txc->ppsfreq	   = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
191 					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
192 	txc->jitter	   = pps_jitter;
193 	if (!(time_status & STA_NANO))
194 		txc->jitter /= NSEC_PER_USEC;
195 	txc->shift	   = pps_shift;
196 	txc->stabil	   = pps_stabil;
197 	txc->jitcnt	   = pps_jitcnt;
198 	txc->calcnt	   = pps_calcnt;
199 	txc->errcnt	   = pps_errcnt;
200 	txc->stbcnt	   = pps_stbcnt;
201 }
202 
203 #else /* !CONFIG_NTP_PPS */
204 
205 static inline s64 ntp_offset_chunk(s64 offset)
206 {
207 	return shift_right(offset, SHIFT_PLL + time_constant);
208 }
209 
210 static inline void pps_reset_freq_interval(void) {}
211 static inline void pps_clear(void) {}
212 static inline void pps_dec_valid(void) {}
213 static inline void pps_set_freq(s64 freq) {}
214 
215 static inline int is_error_status(int status)
216 {
217 	return status & (STA_UNSYNC|STA_CLOCKERR);
218 }
219 
220 static inline void pps_fill_timex(struct timex *txc)
221 {
222 	/* PPS is not implemented, so these are zero */
223 	txc->ppsfreq	   = 0;
224 	txc->jitter	   = 0;
225 	txc->shift	   = 0;
226 	txc->stabil	   = 0;
227 	txc->jitcnt	   = 0;
228 	txc->calcnt	   = 0;
229 	txc->errcnt	   = 0;
230 	txc->stbcnt	   = 0;
231 }
232 
233 #endif /* CONFIG_NTP_PPS */
234 
235 
236 /**
237  * ntp_synced - Returns 1 if the NTP status is not UNSYNC
238  *
239  */
240 static inline int ntp_synced(void)
241 {
242 	return !(time_status & STA_UNSYNC);
243 }
244 
245 
246 /*
247  * NTP methods:
248  */
249 
250 /*
251  * Update (tick_length, tick_length_base, tick_nsec), based
252  * on (tick_usec, ntp_tick_adj, time_freq):
253  */
254 static void ntp_update_frequency(void)
255 {
256 	u64 second_length;
257 	u64 new_base;
258 
259 	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
260 						<< NTP_SCALE_SHIFT;
261 
262 	second_length		+= ntp_tick_adj;
263 	second_length		+= time_freq;
264 
265 	tick_nsec		 = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
266 	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
267 
268 	/*
269 	 * Don't wait for the next second_overflow, apply
270 	 * the change to the tick length immediately:
271 	 */
272 	tick_length		+= new_base - tick_length_base;
273 	tick_length_base	 = new_base;
274 }
275 
276 static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
277 {
278 	time_status &= ~STA_MODE;
279 
280 	if (secs < MINSEC)
281 		return 0;
282 
283 	if (!(time_status & STA_FLL) && (secs <= MAXSEC))
284 		return 0;
285 
286 	time_status |= STA_MODE;
287 
288 	return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
289 }
290 
291 static void ntp_update_offset(long offset)
292 {
293 	s64 freq_adj;
294 	s64 offset64;
295 	long secs;
296 
297 	if (!(time_status & STA_PLL))
298 		return;
299 
300 	if (!(time_status & STA_NANO))
301 		offset *= NSEC_PER_USEC;
302 
303 	/*
304 	 * Scale the phase adjustment and
305 	 * clamp to the operating range.
306 	 */
307 	offset = min(offset, MAXPHASE);
308 	offset = max(offset, -MAXPHASE);
309 
310 	/*
311 	 * Select how the frequency is to be controlled
312 	 * and in which mode (PLL or FLL).
313 	 */
314 	secs = get_seconds() - time_reftime;
315 	if (unlikely(time_status & STA_FREQHOLD))
316 		secs = 0;
317 
318 	time_reftime = get_seconds();
319 
320 	offset64    = offset;
321 	freq_adj    = ntp_update_offset_fll(offset64, secs);
322 
323 	/*
324 	 * Clamp update interval to reduce PLL gain with low
325 	 * sampling rate (e.g. intermittent network connection)
326 	 * to avoid instability.
327 	 */
328 	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
329 		secs = 1 << (SHIFT_PLL + 1 + time_constant);
330 
331 	freq_adj    += (offset64 * secs) <<
332 			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
333 
334 	freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);
335 
336 	time_freq   = max(freq_adj, -MAXFREQ_SCALED);
337 
338 	time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
339 }
340 
341 /**
342  * ntp_clear - Clears the NTP state variables
343  */
344 void ntp_clear(void)
345 {
346 	time_adjust	= 0;		/* stop active adjtime() */
347 	time_status	|= STA_UNSYNC;
348 	time_maxerror	= NTP_PHASE_LIMIT;
349 	time_esterror	= NTP_PHASE_LIMIT;
350 
351 	ntp_update_frequency();
352 
353 	tick_length	= tick_length_base;
354 	time_offset	= 0;
355 
356 	ntp_next_leap_sec = TIME64_MAX;
357 	/* Clear PPS state variables */
358 	pps_clear();
359 }
360 
361 
362 u64 ntp_tick_length(void)
363 {
364 	return tick_length;
365 }
366 
367 /**
368  * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
369  *
370  * Provides the time of the next leapsecond against CLOCK_REALTIME in
371  * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
372  */
373 ktime_t ntp_get_next_leap(void)
374 {
375 	ktime_t ret;
376 
377 	if ((time_state == TIME_INS) && (time_status & STA_INS))
378 		return ktime_set(ntp_next_leap_sec, 0);
379 	ret.tv64 = KTIME_MAX;
380 	return ret;
381 }
382 
383 /*
384  * this routine handles the overflow of the microsecond field
385  *
386  * The tricky bits of code to handle the accurate clock support
387  * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
388  * They were originally developed for SUN and DEC kernels.
389  * All the kudos should go to Dave for this stuff.
390  *
391  * Also handles leap second processing, and returns leap offset
392  */
393 int second_overflow(unsigned long secs)
394 {
395 	s64 delta;
396 	int leap = 0;
397 
398 	/*
399 	 * Leap second processing. If in leap-insert state at the end of the
400 	 * day, the system clock is set back one second; if in leap-delete
401 	 * state, the system clock is set ahead one second.
402 	 */
403 	switch (time_state) {
404 	case TIME_OK:
405 		if (time_status & STA_INS) {
406 			time_state = TIME_INS;
407 			ntp_next_leap_sec = secs + SECS_PER_DAY -
408 						(secs % SECS_PER_DAY);
409 		} else if (time_status & STA_DEL) {
410 			time_state = TIME_DEL;
411 			ntp_next_leap_sec = secs + SECS_PER_DAY -
412 						 ((secs+1) % SECS_PER_DAY);
413 		}
414 		break;
415 	case TIME_INS:
416 		if (!(time_status & STA_INS)) {
417 			ntp_next_leap_sec = TIME64_MAX;
418 			time_state = TIME_OK;
419 		} else if (secs % SECS_PER_DAY == 0) {
420 			leap = -1;
421 			time_state = TIME_OOP;
422 			printk(KERN_NOTICE
423 				"Clock: inserting leap second 23:59:60 UTC\n");
424 		}
425 		break;
426 	case TIME_DEL:
427 		if (!(time_status & STA_DEL)) {
428 			ntp_next_leap_sec = TIME64_MAX;
429 			time_state = TIME_OK;
430 		} else if ((secs + 1) % SECS_PER_DAY == 0) {
431 			leap = 1;
432 			ntp_next_leap_sec = TIME64_MAX;
433 			time_state = TIME_WAIT;
434 			printk(KERN_NOTICE
435 				"Clock: deleting leap second 23:59:59 UTC\n");
436 		}
437 		break;
438 	case TIME_OOP:
439 		ntp_next_leap_sec = TIME64_MAX;
440 		time_state = TIME_WAIT;
441 		break;
442 	case TIME_WAIT:
443 		if (!(time_status & (STA_INS | STA_DEL)))
444 			time_state = TIME_OK;
445 		break;
446 	}
447 
448 
449 	/* Bump the maxerror field */
450 	time_maxerror += MAXFREQ / NSEC_PER_USEC;
451 	if (time_maxerror > NTP_PHASE_LIMIT) {
452 		time_maxerror = NTP_PHASE_LIMIT;
453 		time_status |= STA_UNSYNC;
454 	}
455 
456 	/* Compute the phase adjustment for the next second */
457 	tick_length	 = tick_length_base;
458 
459 	delta		 = ntp_offset_chunk(time_offset);
460 	time_offset	-= delta;
461 	tick_length	+= delta;
462 
463 	/* Check PPS signal */
464 	pps_dec_valid();
465 
466 	if (!time_adjust)
467 		goto out;
468 
469 	if (time_adjust > MAX_TICKADJ) {
470 		time_adjust -= MAX_TICKADJ;
471 		tick_length += MAX_TICKADJ_SCALED;
472 		goto out;
473 	}
474 
475 	if (time_adjust < -MAX_TICKADJ) {
476 		time_adjust += MAX_TICKADJ;
477 		tick_length -= MAX_TICKADJ_SCALED;
478 		goto out;
479 	}
480 
481 	tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
482 							 << NTP_SCALE_SHIFT;
483 	time_adjust = 0;
484 
485 out:
486 	return leap;
487 }
488 
489 #ifdef CONFIG_GENERIC_CMOS_UPDATE
490 int __weak update_persistent_clock64(struct timespec64 now64)
491 {
492 	struct timespec now;
493 
494 	now = timespec64_to_timespec(now64);
495 	return update_persistent_clock(now);
496 }
497 #endif
498 
499 #if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
500 static void sync_cmos_clock(struct work_struct *work);
501 
502 static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
503 
504 static void sync_cmos_clock(struct work_struct *work)
505 {
506 	struct timespec64 now;
507 	struct timespec next;
508 	int fail = 1;
509 
510 	/*
511 	 * If we have an externally synchronized Linux clock, then update
512 	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
513 	 * called as close as possible to 500 ms before the new second starts.
514 	 * This code is run on a timer.  If the clock is set, that timer
515 	 * may not expire at the correct time.  Thus, we adjust...
516 	 * We want the clock to be within a couple of ticks from the target.
517 	 */
518 	if (!ntp_synced()) {
519 		/*
520 		 * Not synced, exit, do not restart a timer (if one is
521 		 * running, let it run out).
522 		 */
523 		return;
524 	}
525 
526 	getnstimeofday64(&now);
527 	if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec * 5) {
528 		struct timespec64 adjust = now;
529 
530 		fail = -ENODEV;
531 		if (persistent_clock_is_local)
532 			adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
533 #ifdef CONFIG_GENERIC_CMOS_UPDATE
534 		fail = update_persistent_clock64(adjust);
535 #endif
536 
537 #ifdef CONFIG_RTC_SYSTOHC
538 		if (fail == -ENODEV)
539 			fail = rtc_set_ntp_time(adjust);
540 #endif
541 	}
542 
543 	next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
544 	if (next.tv_nsec <= 0)
545 		next.tv_nsec += NSEC_PER_SEC;
546 
547 	if (!fail || fail == -ENODEV)
548 		next.tv_sec = 659;
549 	else
550 		next.tv_sec = 0;
551 
552 	if (next.tv_nsec >= NSEC_PER_SEC) {
553 		next.tv_sec++;
554 		next.tv_nsec -= NSEC_PER_SEC;
555 	}
556 	queue_delayed_work(system_power_efficient_wq,
557 			   &sync_cmos_work, timespec_to_jiffies(&next));
558 }
559 
560 void ntp_notify_cmos_timer(void)
561 {
562 	queue_delayed_work(system_power_efficient_wq, &sync_cmos_work, 0);
563 }
564 
565 #else
566 void ntp_notify_cmos_timer(void) { }
567 #endif
568 
569 
570 /*
571  * Propagate a new txc->status value into the NTP state:
572  */
573 static inline void process_adj_status(struct timex *txc, struct timespec64 *ts)
574 {
575 	if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
576 		time_state = TIME_OK;
577 		time_status = STA_UNSYNC;
578 		ntp_next_leap_sec = TIME64_MAX;
579 		/* restart PPS frequency calibration */
580 		pps_reset_freq_interval();
581 	}
582 
583 	/*
584 	 * If we turn on PLL adjustments then reset the
585 	 * reference time to current time.
586 	 */
587 	if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
588 		time_reftime = get_seconds();
589 
590 	/* only set allowed bits */
591 	time_status &= STA_RONLY;
592 	time_status |= txc->status & ~STA_RONLY;
593 }
594 
595 
596 static inline void process_adjtimex_modes(struct timex *txc,
597 						struct timespec64 *ts,
598 						s32 *time_tai)
599 {
600 	if (txc->modes & ADJ_STATUS)
601 		process_adj_status(txc, ts);
602 
603 	if (txc->modes & ADJ_NANO)
604 		time_status |= STA_NANO;
605 
606 	if (txc->modes & ADJ_MICRO)
607 		time_status &= ~STA_NANO;
608 
609 	if (txc->modes & ADJ_FREQUENCY) {
610 		time_freq = txc->freq * PPM_SCALE;
611 		time_freq = min(time_freq, MAXFREQ_SCALED);
612 		time_freq = max(time_freq, -MAXFREQ_SCALED);
613 		/* update pps_freq */
614 		pps_set_freq(time_freq);
615 	}
616 
617 	if (txc->modes & ADJ_MAXERROR)
618 		time_maxerror = txc->maxerror;
619 
620 	if (txc->modes & ADJ_ESTERROR)
621 		time_esterror = txc->esterror;
622 
623 	if (txc->modes & ADJ_TIMECONST) {
624 		time_constant = txc->constant;
625 		if (!(time_status & STA_NANO))
626 			time_constant += 4;
627 		time_constant = min(time_constant, (long)MAXTC);
628 		time_constant = max(time_constant, 0l);
629 	}
630 
631 	if (txc->modes & ADJ_TAI && txc->constant > 0)
632 		*time_tai = txc->constant;
633 
634 	if (txc->modes & ADJ_OFFSET)
635 		ntp_update_offset(txc->offset);
636 
637 	if (txc->modes & ADJ_TICK)
638 		tick_usec = txc->tick;
639 
640 	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
641 		ntp_update_frequency();
642 }
643 
644 
645 
646 /**
647  * ntp_validate_timex - Ensures the timex is ok for use in do_adjtimex
648  */
649 int ntp_validate_timex(struct timex *txc)
650 {
651 	if (txc->modes & ADJ_ADJTIME) {
652 		/* singleshot must not be used with any other mode bits */
653 		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
654 			return -EINVAL;
655 		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
656 		    !capable(CAP_SYS_TIME))
657 			return -EPERM;
658 	} else {
659 		/* In order to modify anything, you gotta be super-user! */
660 		 if (txc->modes && !capable(CAP_SYS_TIME))
661 			return -EPERM;
662 		/*
663 		 * if the quartz is off by more than 10% then
664 		 * something is VERY wrong!
665 		 */
666 		if (txc->modes & ADJ_TICK &&
667 		    (txc->tick <  900000/USER_HZ ||
668 		     txc->tick > 1100000/USER_HZ))
669 			return -EINVAL;
670 	}
671 
672 	if ((txc->modes & ADJ_SETOFFSET) && (!capable(CAP_SYS_TIME)))
673 		return -EPERM;
674 
675 	/*
676 	 * Check for potential multiplication overflows that can
677 	 * only happen on 64-bit systems:
678 	 */
679 	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
680 		if (LLONG_MIN / PPM_SCALE > txc->freq)
681 			return -EINVAL;
682 		if (LLONG_MAX / PPM_SCALE < txc->freq)
683 			return -EINVAL;
684 	}
685 
686 	return 0;
687 }
688 
689 
690 /*
691  * adjtimex mainly allows reading (and writing, if superuser) of
692  * kernel time-keeping variables. used by xntpd.
693  */
694 int __do_adjtimex(struct timex *txc, struct timespec64 *ts, s32 *time_tai)
695 {
696 	int result;
697 
698 	if (txc->modes & ADJ_ADJTIME) {
699 		long save_adjust = time_adjust;
700 
701 		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
702 			/* adjtime() is independent from ntp_adjtime() */
703 			time_adjust = txc->offset;
704 			ntp_update_frequency();
705 		}
706 		txc->offset = save_adjust;
707 	} else {
708 
709 		/* If there are input parameters, then process them: */
710 		if (txc->modes)
711 			process_adjtimex_modes(txc, ts, time_tai);
712 
713 		txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
714 				  NTP_SCALE_SHIFT);
715 		if (!(time_status & STA_NANO))
716 			txc->offset /= NSEC_PER_USEC;
717 	}
718 
719 	result = time_state;	/* mostly `TIME_OK' */
720 	/* check for errors */
721 	if (is_error_status(time_status))
722 		result = TIME_ERROR;
723 
724 	txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
725 					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
726 	txc->maxerror	   = time_maxerror;
727 	txc->esterror	   = time_esterror;
728 	txc->status	   = time_status;
729 	txc->constant	   = time_constant;
730 	txc->precision	   = 1;
731 	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
732 	txc->tick	   = tick_usec;
733 	txc->tai	   = *time_tai;
734 
735 	/* fill PPS status fields */
736 	pps_fill_timex(txc);
737 
738 	txc->time.tv_sec = (time_t)ts->tv_sec;
739 	txc->time.tv_usec = ts->tv_nsec;
740 	if (!(time_status & STA_NANO))
741 		txc->time.tv_usec /= NSEC_PER_USEC;
742 
743 	/* Handle leapsec adjustments */
744 	if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) {
745 		if ((time_state == TIME_INS) && (time_status & STA_INS)) {
746 			result = TIME_OOP;
747 			txc->tai++;
748 			txc->time.tv_sec--;
749 		}
750 		if ((time_state == TIME_DEL) && (time_status & STA_DEL)) {
751 			result = TIME_WAIT;
752 			txc->tai--;
753 			txc->time.tv_sec++;
754 		}
755 		if ((time_state == TIME_OOP) &&
756 					(ts->tv_sec == ntp_next_leap_sec)) {
757 			result = TIME_WAIT;
758 		}
759 	}
760 
761 	return result;
762 }
763 
764 #ifdef	CONFIG_NTP_PPS
765 
766 /* actually struct pps_normtime is good old struct timespec, but it is
767  * semantically different (and it is the reason why it was invented):
768  * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
769  * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
770 struct pps_normtime {
771 	__kernel_time_t	sec;	/* seconds */
772 	long		nsec;	/* nanoseconds */
773 };
774 
775 /* normalize the timestamp so that nsec is in the
776    ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
777 static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
778 {
779 	struct pps_normtime norm = {
780 		.sec = ts.tv_sec,
781 		.nsec = ts.tv_nsec
782 	};
783 
784 	if (norm.nsec > (NSEC_PER_SEC >> 1)) {
785 		norm.nsec -= NSEC_PER_SEC;
786 		norm.sec++;
787 	}
788 
789 	return norm;
790 }
791 
792 /* get current phase correction and jitter */
793 static inline long pps_phase_filter_get(long *jitter)
794 {
795 	*jitter = pps_tf[0] - pps_tf[1];
796 	if (*jitter < 0)
797 		*jitter = -*jitter;
798 
799 	/* TODO: test various filters */
800 	return pps_tf[0];
801 }
802 
803 /* add the sample to the phase filter */
804 static inline void pps_phase_filter_add(long err)
805 {
806 	pps_tf[2] = pps_tf[1];
807 	pps_tf[1] = pps_tf[0];
808 	pps_tf[0] = err;
809 }
810 
811 /* decrease frequency calibration interval length.
812  * It is halved after four consecutive unstable intervals.
813  */
814 static inline void pps_dec_freq_interval(void)
815 {
816 	if (--pps_intcnt <= -PPS_INTCOUNT) {
817 		pps_intcnt = -PPS_INTCOUNT;
818 		if (pps_shift > PPS_INTMIN) {
819 			pps_shift--;
820 			pps_intcnt = 0;
821 		}
822 	}
823 }
824 
825 /* increase frequency calibration interval length.
826  * It is doubled after four consecutive stable intervals.
827  */
828 static inline void pps_inc_freq_interval(void)
829 {
830 	if (++pps_intcnt >= PPS_INTCOUNT) {
831 		pps_intcnt = PPS_INTCOUNT;
832 		if (pps_shift < PPS_INTMAX) {
833 			pps_shift++;
834 			pps_intcnt = 0;
835 		}
836 	}
837 }
838 
839 /* update clock frequency based on MONOTONIC_RAW clock PPS signal
840  * timestamps
841  *
842  * At the end of the calibration interval the difference between the
843  * first and last MONOTONIC_RAW clock timestamps divided by the length
844  * of the interval becomes the frequency update. If the interval was
845  * too long, the data are discarded.
846  * Returns the difference between old and new frequency values.
847  */
848 static long hardpps_update_freq(struct pps_normtime freq_norm)
849 {
850 	long delta, delta_mod;
851 	s64 ftemp;
852 
853 	/* check if the frequency interval was too long */
854 	if (freq_norm.sec > (2 << pps_shift)) {
855 		time_status |= STA_PPSERROR;
856 		pps_errcnt++;
857 		pps_dec_freq_interval();
858 		printk_deferred(KERN_ERR
859 			"hardpps: PPSERROR: interval too long - %ld s\n",
860 			freq_norm.sec);
861 		return 0;
862 	}
863 
864 	/* here the raw frequency offset and wander (stability) is
865 	 * calculated. If the wander is less than the wander threshold
866 	 * the interval is increased; otherwise it is decreased.
867 	 */
868 	ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
869 			freq_norm.sec);
870 	delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
871 	pps_freq = ftemp;
872 	if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
873 		printk_deferred(KERN_WARNING
874 				"hardpps: PPSWANDER: change=%ld\n", delta);
875 		time_status |= STA_PPSWANDER;
876 		pps_stbcnt++;
877 		pps_dec_freq_interval();
878 	} else {	/* good sample */
879 		pps_inc_freq_interval();
880 	}
881 
882 	/* the stability metric is calculated as the average of recent
883 	 * frequency changes, but is used only for performance
884 	 * monitoring
885 	 */
886 	delta_mod = delta;
887 	if (delta_mod < 0)
888 		delta_mod = -delta_mod;
889 	pps_stabil += (div_s64(((s64)delta_mod) <<
890 				(NTP_SCALE_SHIFT - SHIFT_USEC),
891 				NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
892 
893 	/* if enabled, the system clock frequency is updated */
894 	if ((time_status & STA_PPSFREQ) != 0 &&
895 	    (time_status & STA_FREQHOLD) == 0) {
896 		time_freq = pps_freq;
897 		ntp_update_frequency();
898 	}
899 
900 	return delta;
901 }
902 
903 /* correct REALTIME clock phase error against PPS signal */
904 static void hardpps_update_phase(long error)
905 {
906 	long correction = -error;
907 	long jitter;
908 
909 	/* add the sample to the median filter */
910 	pps_phase_filter_add(correction);
911 	correction = pps_phase_filter_get(&jitter);
912 
913 	/* Nominal jitter is due to PPS signal noise. If it exceeds the
914 	 * threshold, the sample is discarded; otherwise, if so enabled,
915 	 * the time offset is updated.
916 	 */
917 	if (jitter > (pps_jitter << PPS_POPCORN)) {
918 		printk_deferred(KERN_WARNING
919 				"hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
920 				jitter, (pps_jitter << PPS_POPCORN));
921 		time_status |= STA_PPSJITTER;
922 		pps_jitcnt++;
923 	} else if (time_status & STA_PPSTIME) {
924 		/* correct the time using the phase offset */
925 		time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
926 				NTP_INTERVAL_FREQ);
927 		/* cancel running adjtime() */
928 		time_adjust = 0;
929 	}
930 	/* update jitter */
931 	pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
932 }
933 
934 /*
935  * __hardpps() - discipline CPU clock oscillator to external PPS signal
936  *
937  * This routine is called at each PPS signal arrival in order to
938  * discipline the CPU clock oscillator to the PPS signal. It takes two
939  * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
940  * is used to correct clock phase error and the latter is used to
941  * correct the frequency.
942  *
943  * This code is based on David Mills's reference nanokernel
944  * implementation. It was mostly rewritten but keeps the same idea.
945  */
946 void __hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
947 {
948 	struct pps_normtime pts_norm, freq_norm;
949 
950 	pts_norm = pps_normalize_ts(*phase_ts);
951 
952 	/* clear the error bits, they will be set again if needed */
953 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
954 
955 	/* indicate signal presence */
956 	time_status |= STA_PPSSIGNAL;
957 	pps_valid = PPS_VALID;
958 
959 	/* when called for the first time,
960 	 * just start the frequency interval */
961 	if (unlikely(pps_fbase.tv_sec == 0)) {
962 		pps_fbase = *raw_ts;
963 		return;
964 	}
965 
966 	/* ok, now we have a base for frequency calculation */
967 	freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));
968 
969 	/* check that the signal is in the range
970 	 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
971 	if ((freq_norm.sec == 0) ||
972 			(freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
973 			(freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
974 		time_status |= STA_PPSJITTER;
975 		/* restart the frequency calibration interval */
976 		pps_fbase = *raw_ts;
977 		printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
978 		return;
979 	}
980 
981 	/* signal is ok */
982 
983 	/* check if the current frequency interval is finished */
984 	if (freq_norm.sec >= (1 << pps_shift)) {
985 		pps_calcnt++;
986 		/* restart the frequency calibration interval */
987 		pps_fbase = *raw_ts;
988 		hardpps_update_freq(freq_norm);
989 	}
990 
991 	hardpps_update_phase(pts_norm.nsec);
992 
993 }
994 #endif	/* CONFIG_NTP_PPS */
995 
996 static int __init ntp_tick_adj_setup(char *str)
997 {
998 	int rc = kstrtol(str, 0, (long *)&ntp_tick_adj);
999 
1000 	if (rc)
1001 		return rc;
1002 	ntp_tick_adj <<= NTP_SCALE_SHIFT;
1003 
1004 	return 1;
1005 }
1006 
1007 __setup("ntp_tick_adj=", ntp_tick_adj_setup);
1008 
1009 void __init ntp_init(void)
1010 {
1011 	ntp_clear();
1012 }
1013