xref: /openbmc/linux/kernel/time/ntp.c (revision 5b628549)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NTP state machine interfaces and logic.
4  *
5  * This code was mainly moved from kernel/timer.c and kernel/time.c
6  * Please see those files for relevant copyright info and historical
7  * changelogs.
8  */
9 #include <linux/capability.h>
10 #include <linux/clocksource.h>
11 #include <linux/workqueue.h>
12 #include <linux/hrtimer.h>
13 #include <linux/jiffies.h>
14 #include <linux/math64.h>
15 #include <linux/timex.h>
16 #include <linux/time.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/rtc.h>
20 
21 #include "ntp_internal.h"
22 #include "timekeeping_internal.h"
23 
24 
25 /*
26  * NTP timekeeping variables:
27  *
28  * Note: All of the NTP state is protected by the timekeeping locks.
29  */
30 
31 
32 /* USER_HZ period (usecs): */
33 unsigned long			tick_usec = USER_TICK_USEC;
34 
35 /* SHIFTED_HZ period (nsecs): */
36 unsigned long			tick_nsec;
37 
38 static u64			tick_length;
39 static u64			tick_length_base;
40 
41 #define SECS_PER_DAY		86400
42 #define MAX_TICKADJ		500LL		/* usecs */
43 #define MAX_TICKADJ_SCALED \
44 	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
45 
46 /*
47  * phase-lock loop variables
48  */
49 
50 /*
51  * clock synchronization status
52  *
53  * (TIME_ERROR prevents overwriting the CMOS clock)
54  */
55 static int			time_state = TIME_OK;
56 
57 /* clock status bits:							*/
58 static int			time_status = STA_UNSYNC;
59 
60 /* time adjustment (nsecs):						*/
61 static s64			time_offset;
62 
63 /* pll time constant:							*/
64 static long			time_constant = 2;
65 
66 /* maximum error (usecs):						*/
67 static long			time_maxerror = NTP_PHASE_LIMIT;
68 
69 /* estimated error (usecs):						*/
70 static long			time_esterror = NTP_PHASE_LIMIT;
71 
72 /* frequency offset (scaled nsecs/secs):				*/
73 static s64			time_freq;
74 
75 /* time at last adjustment (secs):					*/
76 static time64_t		time_reftime;
77 
78 static long			time_adjust;
79 
80 /* constant (boot-param configurable) NTP tick adjustment (upscaled)	*/
81 static s64			ntp_tick_adj;
82 
83 /* second value of the next pending leapsecond, or TIME64_MAX if no leap */
84 static time64_t			ntp_next_leap_sec = TIME64_MAX;
85 
86 #ifdef CONFIG_NTP_PPS
87 
88 /*
89  * The following variables are used when a pulse-per-second (PPS) signal
90  * is available. They establish the engineering parameters of the clock
91  * discipline loop when controlled by the PPS signal.
92  */
93 #define PPS_VALID	10	/* PPS signal watchdog max (s) */
94 #define PPS_POPCORN	4	/* popcorn spike threshold (shift) */
95 #define PPS_INTMIN	2	/* min freq interval (s) (shift) */
96 #define PPS_INTMAX	8	/* max freq interval (s) (shift) */
97 #define PPS_INTCOUNT	4	/* number of consecutive good intervals to
98 				   increase pps_shift or consecutive bad
99 				   intervals to decrease it */
100 #define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */
101 
102 static int pps_valid;		/* signal watchdog counter */
103 static long pps_tf[3];		/* phase median filter */
104 static long pps_jitter;		/* current jitter (ns) */
105 static struct timespec64 pps_fbase; /* beginning of the last freq interval */
106 static int pps_shift;		/* current interval duration (s) (shift) */
107 static int pps_intcnt;		/* interval counter */
108 static s64 pps_freq;		/* frequency offset (scaled ns/s) */
109 static long pps_stabil;		/* current stability (scaled ns/s) */
110 
111 /*
112  * PPS signal quality monitors
113  */
114 static long pps_calcnt;		/* calibration intervals */
115 static long pps_jitcnt;		/* jitter limit exceeded */
116 static long pps_stbcnt;		/* stability limit exceeded */
117 static long pps_errcnt;		/* calibration errors */
118 
119 
120 /* PPS kernel consumer compensates the whole phase error immediately.
121  * Otherwise, reduce the offset by a fixed factor times the time constant.
122  */
123 static inline s64 ntp_offset_chunk(s64 offset)
124 {
125 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
126 		return offset;
127 	else
128 		return shift_right(offset, SHIFT_PLL + time_constant);
129 }
130 
131 static inline void pps_reset_freq_interval(void)
132 {
133 	/* the PPS calibration interval may end
134 	   surprisingly early */
135 	pps_shift = PPS_INTMIN;
136 	pps_intcnt = 0;
137 }
138 
139 /**
140  * pps_clear - Clears the PPS state variables
141  */
142 static inline void pps_clear(void)
143 {
144 	pps_reset_freq_interval();
145 	pps_tf[0] = 0;
146 	pps_tf[1] = 0;
147 	pps_tf[2] = 0;
148 	pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
149 	pps_freq = 0;
150 }
151 
152 /* Decrease pps_valid to indicate that another second has passed since
153  * the last PPS signal. When it reaches 0, indicate that PPS signal is
154  * missing.
155  */
156 static inline void pps_dec_valid(void)
157 {
158 	if (pps_valid > 0)
159 		pps_valid--;
160 	else {
161 		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
162 				 STA_PPSWANDER | STA_PPSERROR);
163 		pps_clear();
164 	}
165 }
166 
167 static inline void pps_set_freq(s64 freq)
168 {
169 	pps_freq = freq;
170 }
171 
172 static inline int is_error_status(int status)
173 {
174 	return (status & (STA_UNSYNC|STA_CLOCKERR))
175 		/* PPS signal lost when either PPS time or
176 		 * PPS frequency synchronization requested
177 		 */
178 		|| ((status & (STA_PPSFREQ|STA_PPSTIME))
179 			&& !(status & STA_PPSSIGNAL))
180 		/* PPS jitter exceeded when
181 		 * PPS time synchronization requested */
182 		|| ((status & (STA_PPSTIME|STA_PPSJITTER))
183 			== (STA_PPSTIME|STA_PPSJITTER))
184 		/* PPS wander exceeded or calibration error when
185 		 * PPS frequency synchronization requested
186 		 */
187 		|| ((status & STA_PPSFREQ)
188 			&& (status & (STA_PPSWANDER|STA_PPSERROR)));
189 }
190 
191 static inline void pps_fill_timex(struct __kernel_timex *txc)
192 {
193 	txc->ppsfreq	   = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
194 					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
195 	txc->jitter	   = pps_jitter;
196 	if (!(time_status & STA_NANO))
197 		txc->jitter = pps_jitter / NSEC_PER_USEC;
198 	txc->shift	   = pps_shift;
199 	txc->stabil	   = pps_stabil;
200 	txc->jitcnt	   = pps_jitcnt;
201 	txc->calcnt	   = pps_calcnt;
202 	txc->errcnt	   = pps_errcnt;
203 	txc->stbcnt	   = pps_stbcnt;
204 }
205 
206 #else /* !CONFIG_NTP_PPS */
207 
208 static inline s64 ntp_offset_chunk(s64 offset)
209 {
210 	return shift_right(offset, SHIFT_PLL + time_constant);
211 }
212 
213 static inline void pps_reset_freq_interval(void) {}
214 static inline void pps_clear(void) {}
215 static inline void pps_dec_valid(void) {}
216 static inline void pps_set_freq(s64 freq) {}
217 
218 static inline int is_error_status(int status)
219 {
220 	return status & (STA_UNSYNC|STA_CLOCKERR);
221 }
222 
223 static inline void pps_fill_timex(struct __kernel_timex *txc)
224 {
225 	/* PPS is not implemented, so these are zero */
226 	txc->ppsfreq	   = 0;
227 	txc->jitter	   = 0;
228 	txc->shift	   = 0;
229 	txc->stabil	   = 0;
230 	txc->jitcnt	   = 0;
231 	txc->calcnt	   = 0;
232 	txc->errcnt	   = 0;
233 	txc->stbcnt	   = 0;
234 }
235 
236 #endif /* CONFIG_NTP_PPS */
237 
238 
239 /**
240  * ntp_synced - Returns 1 if the NTP status is not UNSYNC
241  *
242  */
243 static inline int ntp_synced(void)
244 {
245 	return !(time_status & STA_UNSYNC);
246 }
247 
248 
249 /*
250  * NTP methods:
251  */
252 
253 /*
254  * Update (tick_length, tick_length_base, tick_nsec), based
255  * on (tick_usec, ntp_tick_adj, time_freq):
256  */
257 static void ntp_update_frequency(void)
258 {
259 	u64 second_length;
260 	u64 new_base;
261 
262 	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
263 						<< NTP_SCALE_SHIFT;
264 
265 	second_length		+= ntp_tick_adj;
266 	second_length		+= time_freq;
267 
268 	tick_nsec		 = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
269 	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
270 
271 	/*
272 	 * Don't wait for the next second_overflow, apply
273 	 * the change to the tick length immediately:
274 	 */
275 	tick_length		+= new_base - tick_length_base;
276 	tick_length_base	 = new_base;
277 }
278 
279 static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
280 {
281 	time_status &= ~STA_MODE;
282 
283 	if (secs < MINSEC)
284 		return 0;
285 
286 	if (!(time_status & STA_FLL) && (secs <= MAXSEC))
287 		return 0;
288 
289 	time_status |= STA_MODE;
290 
291 	return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
292 }
293 
294 static void ntp_update_offset(long offset)
295 {
296 	s64 freq_adj;
297 	s64 offset64;
298 	long secs;
299 
300 	if (!(time_status & STA_PLL))
301 		return;
302 
303 	if (!(time_status & STA_NANO)) {
304 		/* Make sure the multiplication below won't overflow */
305 		offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC);
306 		offset *= NSEC_PER_USEC;
307 	}
308 
309 	/*
310 	 * Scale the phase adjustment and
311 	 * clamp to the operating range.
312 	 */
313 	offset = clamp(offset, -MAXPHASE, MAXPHASE);
314 
315 	/*
316 	 * Select how the frequency is to be controlled
317 	 * and in which mode (PLL or FLL).
318 	 */
319 	secs = (long)(__ktime_get_real_seconds() - time_reftime);
320 	if (unlikely(time_status & STA_FREQHOLD))
321 		secs = 0;
322 
323 	time_reftime = __ktime_get_real_seconds();
324 
325 	offset64    = offset;
326 	freq_adj    = ntp_update_offset_fll(offset64, secs);
327 
328 	/*
329 	 * Clamp update interval to reduce PLL gain with low
330 	 * sampling rate (e.g. intermittent network connection)
331 	 * to avoid instability.
332 	 */
333 	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
334 		secs = 1 << (SHIFT_PLL + 1 + time_constant);
335 
336 	freq_adj    += (offset64 * secs) <<
337 			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
338 
339 	freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);
340 
341 	time_freq   = max(freq_adj, -MAXFREQ_SCALED);
342 
343 	time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
344 }
345 
346 /**
347  * ntp_clear - Clears the NTP state variables
348  */
349 void ntp_clear(void)
350 {
351 	time_adjust	= 0;		/* stop active adjtime() */
352 	time_status	|= STA_UNSYNC;
353 	time_maxerror	= NTP_PHASE_LIMIT;
354 	time_esterror	= NTP_PHASE_LIMIT;
355 
356 	ntp_update_frequency();
357 
358 	tick_length	= tick_length_base;
359 	time_offset	= 0;
360 
361 	ntp_next_leap_sec = TIME64_MAX;
362 	/* Clear PPS state variables */
363 	pps_clear();
364 }
365 
366 
367 u64 ntp_tick_length(void)
368 {
369 	return tick_length;
370 }
371 
372 /**
373  * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
374  *
375  * Provides the time of the next leapsecond against CLOCK_REALTIME in
376  * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
377  */
378 ktime_t ntp_get_next_leap(void)
379 {
380 	ktime_t ret;
381 
382 	if ((time_state == TIME_INS) && (time_status & STA_INS))
383 		return ktime_set(ntp_next_leap_sec, 0);
384 	ret = KTIME_MAX;
385 	return ret;
386 }
387 
388 /*
389  * this routine handles the overflow of the microsecond field
390  *
391  * The tricky bits of code to handle the accurate clock support
392  * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
393  * They were originally developed for SUN and DEC kernels.
394  * All the kudos should go to Dave for this stuff.
395  *
396  * Also handles leap second processing, and returns leap offset
397  */
398 int second_overflow(time64_t secs)
399 {
400 	s64 delta;
401 	int leap = 0;
402 	s32 rem;
403 
404 	/*
405 	 * Leap second processing. If in leap-insert state at the end of the
406 	 * day, the system clock is set back one second; if in leap-delete
407 	 * state, the system clock is set ahead one second.
408 	 */
409 	switch (time_state) {
410 	case TIME_OK:
411 		if (time_status & STA_INS) {
412 			time_state = TIME_INS;
413 			div_s64_rem(secs, SECS_PER_DAY, &rem);
414 			ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
415 		} else if (time_status & STA_DEL) {
416 			time_state = TIME_DEL;
417 			div_s64_rem(secs + 1, SECS_PER_DAY, &rem);
418 			ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
419 		}
420 		break;
421 	case TIME_INS:
422 		if (!(time_status & STA_INS)) {
423 			ntp_next_leap_sec = TIME64_MAX;
424 			time_state = TIME_OK;
425 		} else if (secs == ntp_next_leap_sec) {
426 			leap = -1;
427 			time_state = TIME_OOP;
428 			printk(KERN_NOTICE
429 				"Clock: inserting leap second 23:59:60 UTC\n");
430 		}
431 		break;
432 	case TIME_DEL:
433 		if (!(time_status & STA_DEL)) {
434 			ntp_next_leap_sec = TIME64_MAX;
435 			time_state = TIME_OK;
436 		} else if (secs == ntp_next_leap_sec) {
437 			leap = 1;
438 			ntp_next_leap_sec = TIME64_MAX;
439 			time_state = TIME_WAIT;
440 			printk(KERN_NOTICE
441 				"Clock: deleting leap second 23:59:59 UTC\n");
442 		}
443 		break;
444 	case TIME_OOP:
445 		ntp_next_leap_sec = TIME64_MAX;
446 		time_state = TIME_WAIT;
447 		break;
448 	case TIME_WAIT:
449 		if (!(time_status & (STA_INS | STA_DEL)))
450 			time_state = TIME_OK;
451 		break;
452 	}
453 
454 
455 	/* Bump the maxerror field */
456 	time_maxerror += MAXFREQ / NSEC_PER_USEC;
457 	if (time_maxerror > NTP_PHASE_LIMIT) {
458 		time_maxerror = NTP_PHASE_LIMIT;
459 		time_status |= STA_UNSYNC;
460 	}
461 
462 	/* Compute the phase adjustment for the next second */
463 	tick_length	 = tick_length_base;
464 
465 	delta		 = ntp_offset_chunk(time_offset);
466 	time_offset	-= delta;
467 	tick_length	+= delta;
468 
469 	/* Check PPS signal */
470 	pps_dec_valid();
471 
472 	if (!time_adjust)
473 		goto out;
474 
475 	if (time_adjust > MAX_TICKADJ) {
476 		time_adjust -= MAX_TICKADJ;
477 		tick_length += MAX_TICKADJ_SCALED;
478 		goto out;
479 	}
480 
481 	if (time_adjust < -MAX_TICKADJ) {
482 		time_adjust += MAX_TICKADJ;
483 		tick_length -= MAX_TICKADJ_SCALED;
484 		goto out;
485 	}
486 
487 	tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
488 							 << NTP_SCALE_SHIFT;
489 	time_adjust = 0;
490 
491 out:
492 	return leap;
493 }
494 
495 static void sync_hw_clock(struct work_struct *work);
496 static DECLARE_DELAYED_WORK(sync_work, sync_hw_clock);
497 
498 static void sched_sync_hw_clock(struct timespec64 now,
499 				unsigned long target_nsec, bool fail)
500 
501 {
502 	struct timespec64 next;
503 
504 	ktime_get_real_ts64(&next);
505 	if (!fail)
506 		next.tv_sec = 659;
507 	else {
508 		/*
509 		 * Try again as soon as possible. Delaying long periods
510 		 * decreases the accuracy of the work queue timer. Due to this
511 		 * the algorithm is very likely to require a short-sleep retry
512 		 * after the above long sleep to synchronize ts_nsec.
513 		 */
514 		next.tv_sec = 0;
515 	}
516 
517 	/* Compute the needed delay that will get to tv_nsec == target_nsec */
518 	next.tv_nsec = target_nsec - next.tv_nsec;
519 	if (next.tv_nsec <= 0)
520 		next.tv_nsec += NSEC_PER_SEC;
521 	if (next.tv_nsec >= NSEC_PER_SEC) {
522 		next.tv_sec++;
523 		next.tv_nsec -= NSEC_PER_SEC;
524 	}
525 
526 	queue_delayed_work(system_power_efficient_wq, &sync_work,
527 			   timespec64_to_jiffies(&next));
528 }
529 
530 static void sync_rtc_clock(void)
531 {
532 	unsigned long target_nsec;
533 	struct timespec64 adjust, now;
534 	int rc;
535 
536 	if (!IS_ENABLED(CONFIG_RTC_SYSTOHC))
537 		return;
538 
539 	ktime_get_real_ts64(&now);
540 
541 	adjust = now;
542 	if (persistent_clock_is_local)
543 		adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
544 
545 	/*
546 	 * The current RTC in use will provide the target_nsec it wants to be
547 	 * called at, and does rtc_tv_nsec_ok internally.
548 	 */
549 	rc = rtc_set_ntp_time(adjust, &target_nsec);
550 	if (rc == -ENODEV)
551 		return;
552 
553 	sched_sync_hw_clock(now, target_nsec, rc);
554 }
555 
556 #ifdef CONFIG_GENERIC_CMOS_UPDATE
557 int __weak update_persistent_clock64(struct timespec64 now64)
558 {
559 	return -ENODEV;
560 }
561 #endif
562 
563 static bool sync_cmos_clock(void)
564 {
565 	static bool no_cmos;
566 	struct timespec64 now;
567 	struct timespec64 adjust;
568 	int rc = -EPROTO;
569 	long target_nsec = NSEC_PER_SEC / 2;
570 
571 	if (!IS_ENABLED(CONFIG_GENERIC_CMOS_UPDATE))
572 		return false;
573 
574 	if (no_cmos)
575 		return false;
576 
577 	/*
578 	 * Historically update_persistent_clock64() has followed x86
579 	 * semantics, which match the MC146818A/etc RTC. This RTC will store
580 	 * 'adjust' and then in .5s it will advance once second.
581 	 *
582 	 * Architectures are strongly encouraged to use rtclib and not
583 	 * implement this legacy API.
584 	 */
585 	ktime_get_real_ts64(&now);
586 	if (rtc_tv_nsec_ok(-1 * target_nsec, &adjust, &now)) {
587 		if (persistent_clock_is_local)
588 			adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
589 		rc = update_persistent_clock64(adjust);
590 		/*
591 		 * The machine does not support update_persistent_clock64 even
592 		 * though it defines CONFIG_GENERIC_CMOS_UPDATE.
593 		 */
594 		if (rc == -ENODEV) {
595 			no_cmos = true;
596 			return false;
597 		}
598 	}
599 
600 	sched_sync_hw_clock(now, target_nsec, rc);
601 	return true;
602 }
603 
604 /*
605  * If we have an externally synchronized Linux clock, then update RTC clock
606  * accordingly every ~11 minutes. Generally RTCs can only store second
607  * precision, but many RTCs will adjust the phase of their second tick to
608  * match the moment of update. This infrastructure arranges to call to the RTC
609  * set at the correct moment to phase synchronize the RTC second tick over
610  * with the kernel clock.
611  */
612 static void sync_hw_clock(struct work_struct *work)
613 {
614 	if (!ntp_synced())
615 		return;
616 
617 	if (sync_cmos_clock())
618 		return;
619 
620 	sync_rtc_clock();
621 }
622 
623 void ntp_notify_cmos_timer(void)
624 {
625 	if (!ntp_synced())
626 		return;
627 
628 	if (IS_ENABLED(CONFIG_GENERIC_CMOS_UPDATE) ||
629 	    IS_ENABLED(CONFIG_RTC_SYSTOHC))
630 		queue_delayed_work(system_power_efficient_wq, &sync_work, 0);
631 }
632 
633 /*
634  * Propagate a new txc->status value into the NTP state:
635  */
636 static inline void process_adj_status(const struct __kernel_timex *txc)
637 {
638 	if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
639 		time_state = TIME_OK;
640 		time_status = STA_UNSYNC;
641 		ntp_next_leap_sec = TIME64_MAX;
642 		/* restart PPS frequency calibration */
643 		pps_reset_freq_interval();
644 	}
645 
646 	/*
647 	 * If we turn on PLL adjustments then reset the
648 	 * reference time to current time.
649 	 */
650 	if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
651 		time_reftime = __ktime_get_real_seconds();
652 
653 	/* only set allowed bits */
654 	time_status &= STA_RONLY;
655 	time_status |= txc->status & ~STA_RONLY;
656 }
657 
658 
659 static inline void process_adjtimex_modes(const struct __kernel_timex *txc,
660 					  s32 *time_tai)
661 {
662 	if (txc->modes & ADJ_STATUS)
663 		process_adj_status(txc);
664 
665 	if (txc->modes & ADJ_NANO)
666 		time_status |= STA_NANO;
667 
668 	if (txc->modes & ADJ_MICRO)
669 		time_status &= ~STA_NANO;
670 
671 	if (txc->modes & ADJ_FREQUENCY) {
672 		time_freq = txc->freq * PPM_SCALE;
673 		time_freq = min(time_freq, MAXFREQ_SCALED);
674 		time_freq = max(time_freq, -MAXFREQ_SCALED);
675 		/* update pps_freq */
676 		pps_set_freq(time_freq);
677 	}
678 
679 	if (txc->modes & ADJ_MAXERROR)
680 		time_maxerror = txc->maxerror;
681 
682 	if (txc->modes & ADJ_ESTERROR)
683 		time_esterror = txc->esterror;
684 
685 	if (txc->modes & ADJ_TIMECONST) {
686 		time_constant = txc->constant;
687 		if (!(time_status & STA_NANO))
688 			time_constant += 4;
689 		time_constant = min(time_constant, (long)MAXTC);
690 		time_constant = max(time_constant, 0l);
691 	}
692 
693 	if (txc->modes & ADJ_TAI && txc->constant > 0)
694 		*time_tai = txc->constant;
695 
696 	if (txc->modes & ADJ_OFFSET)
697 		ntp_update_offset(txc->offset);
698 
699 	if (txc->modes & ADJ_TICK)
700 		tick_usec = txc->tick;
701 
702 	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
703 		ntp_update_frequency();
704 }
705 
706 
707 /*
708  * adjtimex mainly allows reading (and writing, if superuser) of
709  * kernel time-keeping variables. used by xntpd.
710  */
711 int __do_adjtimex(struct __kernel_timex *txc, const struct timespec64 *ts,
712 		  s32 *time_tai)
713 {
714 	int result;
715 
716 	if (txc->modes & ADJ_ADJTIME) {
717 		long save_adjust = time_adjust;
718 
719 		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
720 			/* adjtime() is independent from ntp_adjtime() */
721 			time_adjust = txc->offset;
722 			ntp_update_frequency();
723 		}
724 		txc->offset = save_adjust;
725 	} else {
726 
727 		/* If there are input parameters, then process them: */
728 		if (txc->modes)
729 			process_adjtimex_modes(txc, time_tai);
730 
731 		txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
732 				  NTP_SCALE_SHIFT);
733 		if (!(time_status & STA_NANO))
734 			txc->offset = (u32)txc->offset / NSEC_PER_USEC;
735 	}
736 
737 	result = time_state;	/* mostly `TIME_OK' */
738 	/* check for errors */
739 	if (is_error_status(time_status))
740 		result = TIME_ERROR;
741 
742 	txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
743 					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
744 	txc->maxerror	   = time_maxerror;
745 	txc->esterror	   = time_esterror;
746 	txc->status	   = time_status;
747 	txc->constant	   = time_constant;
748 	txc->precision	   = 1;
749 	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
750 	txc->tick	   = tick_usec;
751 	txc->tai	   = *time_tai;
752 
753 	/* fill PPS status fields */
754 	pps_fill_timex(txc);
755 
756 	txc->time.tv_sec = (time_t)ts->tv_sec;
757 	txc->time.tv_usec = ts->tv_nsec;
758 	if (!(time_status & STA_NANO))
759 		txc->time.tv_usec = ts->tv_nsec / NSEC_PER_USEC;
760 
761 	/* Handle leapsec adjustments */
762 	if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) {
763 		if ((time_state == TIME_INS) && (time_status & STA_INS)) {
764 			result = TIME_OOP;
765 			txc->tai++;
766 			txc->time.tv_sec--;
767 		}
768 		if ((time_state == TIME_DEL) && (time_status & STA_DEL)) {
769 			result = TIME_WAIT;
770 			txc->tai--;
771 			txc->time.tv_sec++;
772 		}
773 		if ((time_state == TIME_OOP) &&
774 					(ts->tv_sec == ntp_next_leap_sec)) {
775 			result = TIME_WAIT;
776 		}
777 	}
778 
779 	return result;
780 }
781 
782 #ifdef	CONFIG_NTP_PPS
783 
784 /* actually struct pps_normtime is good old struct timespec, but it is
785  * semantically different (and it is the reason why it was invented):
786  * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
787  * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
788 struct pps_normtime {
789 	s64		sec;	/* seconds */
790 	long		nsec;	/* nanoseconds */
791 };
792 
793 /* normalize the timestamp so that nsec is in the
794    ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
795 static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
796 {
797 	struct pps_normtime norm = {
798 		.sec = ts.tv_sec,
799 		.nsec = ts.tv_nsec
800 	};
801 
802 	if (norm.nsec > (NSEC_PER_SEC >> 1)) {
803 		norm.nsec -= NSEC_PER_SEC;
804 		norm.sec++;
805 	}
806 
807 	return norm;
808 }
809 
810 /* get current phase correction and jitter */
811 static inline long pps_phase_filter_get(long *jitter)
812 {
813 	*jitter = pps_tf[0] - pps_tf[1];
814 	if (*jitter < 0)
815 		*jitter = -*jitter;
816 
817 	/* TODO: test various filters */
818 	return pps_tf[0];
819 }
820 
821 /* add the sample to the phase filter */
822 static inline void pps_phase_filter_add(long err)
823 {
824 	pps_tf[2] = pps_tf[1];
825 	pps_tf[1] = pps_tf[0];
826 	pps_tf[0] = err;
827 }
828 
829 /* decrease frequency calibration interval length.
830  * It is halved after four consecutive unstable intervals.
831  */
832 static inline void pps_dec_freq_interval(void)
833 {
834 	if (--pps_intcnt <= -PPS_INTCOUNT) {
835 		pps_intcnt = -PPS_INTCOUNT;
836 		if (pps_shift > PPS_INTMIN) {
837 			pps_shift--;
838 			pps_intcnt = 0;
839 		}
840 	}
841 }
842 
843 /* increase frequency calibration interval length.
844  * It is doubled after four consecutive stable intervals.
845  */
846 static inline void pps_inc_freq_interval(void)
847 {
848 	if (++pps_intcnt >= PPS_INTCOUNT) {
849 		pps_intcnt = PPS_INTCOUNT;
850 		if (pps_shift < PPS_INTMAX) {
851 			pps_shift++;
852 			pps_intcnt = 0;
853 		}
854 	}
855 }
856 
857 /* update clock frequency based on MONOTONIC_RAW clock PPS signal
858  * timestamps
859  *
860  * At the end of the calibration interval the difference between the
861  * first and last MONOTONIC_RAW clock timestamps divided by the length
862  * of the interval becomes the frequency update. If the interval was
863  * too long, the data are discarded.
864  * Returns the difference between old and new frequency values.
865  */
866 static long hardpps_update_freq(struct pps_normtime freq_norm)
867 {
868 	long delta, delta_mod;
869 	s64 ftemp;
870 
871 	/* check if the frequency interval was too long */
872 	if (freq_norm.sec > (2 << pps_shift)) {
873 		time_status |= STA_PPSERROR;
874 		pps_errcnt++;
875 		pps_dec_freq_interval();
876 		printk_deferred(KERN_ERR
877 			"hardpps: PPSERROR: interval too long - %lld s\n",
878 			freq_norm.sec);
879 		return 0;
880 	}
881 
882 	/* here the raw frequency offset and wander (stability) is
883 	 * calculated. If the wander is less than the wander threshold
884 	 * the interval is increased; otherwise it is decreased.
885 	 */
886 	ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
887 			freq_norm.sec);
888 	delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
889 	pps_freq = ftemp;
890 	if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
891 		printk_deferred(KERN_WARNING
892 				"hardpps: PPSWANDER: change=%ld\n", delta);
893 		time_status |= STA_PPSWANDER;
894 		pps_stbcnt++;
895 		pps_dec_freq_interval();
896 	} else {	/* good sample */
897 		pps_inc_freq_interval();
898 	}
899 
900 	/* the stability metric is calculated as the average of recent
901 	 * frequency changes, but is used only for performance
902 	 * monitoring
903 	 */
904 	delta_mod = delta;
905 	if (delta_mod < 0)
906 		delta_mod = -delta_mod;
907 	pps_stabil += (div_s64(((s64)delta_mod) <<
908 				(NTP_SCALE_SHIFT - SHIFT_USEC),
909 				NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
910 
911 	/* if enabled, the system clock frequency is updated */
912 	if ((time_status & STA_PPSFREQ) != 0 &&
913 	    (time_status & STA_FREQHOLD) == 0) {
914 		time_freq = pps_freq;
915 		ntp_update_frequency();
916 	}
917 
918 	return delta;
919 }
920 
921 /* correct REALTIME clock phase error against PPS signal */
922 static void hardpps_update_phase(long error)
923 {
924 	long correction = -error;
925 	long jitter;
926 
927 	/* add the sample to the median filter */
928 	pps_phase_filter_add(correction);
929 	correction = pps_phase_filter_get(&jitter);
930 
931 	/* Nominal jitter is due to PPS signal noise. If it exceeds the
932 	 * threshold, the sample is discarded; otherwise, if so enabled,
933 	 * the time offset is updated.
934 	 */
935 	if (jitter > (pps_jitter << PPS_POPCORN)) {
936 		printk_deferred(KERN_WARNING
937 				"hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
938 				jitter, (pps_jitter << PPS_POPCORN));
939 		time_status |= STA_PPSJITTER;
940 		pps_jitcnt++;
941 	} else if (time_status & STA_PPSTIME) {
942 		/* correct the time using the phase offset */
943 		time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
944 				NTP_INTERVAL_FREQ);
945 		/* cancel running adjtime() */
946 		time_adjust = 0;
947 	}
948 	/* update jitter */
949 	pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
950 }
951 
952 /*
953  * __hardpps() - discipline CPU clock oscillator to external PPS signal
954  *
955  * This routine is called at each PPS signal arrival in order to
956  * discipline the CPU clock oscillator to the PPS signal. It takes two
957  * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
958  * is used to correct clock phase error and the latter is used to
959  * correct the frequency.
960  *
961  * This code is based on David Mills's reference nanokernel
962  * implementation. It was mostly rewritten but keeps the same idea.
963  */
964 void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
965 {
966 	struct pps_normtime pts_norm, freq_norm;
967 
968 	pts_norm = pps_normalize_ts(*phase_ts);
969 
970 	/* clear the error bits, they will be set again if needed */
971 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
972 
973 	/* indicate signal presence */
974 	time_status |= STA_PPSSIGNAL;
975 	pps_valid = PPS_VALID;
976 
977 	/* when called for the first time,
978 	 * just start the frequency interval */
979 	if (unlikely(pps_fbase.tv_sec == 0)) {
980 		pps_fbase = *raw_ts;
981 		return;
982 	}
983 
984 	/* ok, now we have a base for frequency calculation */
985 	freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, pps_fbase));
986 
987 	/* check that the signal is in the range
988 	 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
989 	if ((freq_norm.sec == 0) ||
990 			(freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
991 			(freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
992 		time_status |= STA_PPSJITTER;
993 		/* restart the frequency calibration interval */
994 		pps_fbase = *raw_ts;
995 		printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
996 		return;
997 	}
998 
999 	/* signal is ok */
1000 
1001 	/* check if the current frequency interval is finished */
1002 	if (freq_norm.sec >= (1 << pps_shift)) {
1003 		pps_calcnt++;
1004 		/* restart the frequency calibration interval */
1005 		pps_fbase = *raw_ts;
1006 		hardpps_update_freq(freq_norm);
1007 	}
1008 
1009 	hardpps_update_phase(pts_norm.nsec);
1010 
1011 }
1012 #endif	/* CONFIG_NTP_PPS */
1013 
1014 static int __init ntp_tick_adj_setup(char *str)
1015 {
1016 	int rc = kstrtos64(str, 0, &ntp_tick_adj);
1017 	if (rc)
1018 		return rc;
1019 
1020 	ntp_tick_adj <<= NTP_SCALE_SHIFT;
1021 	return 1;
1022 }
1023 
1024 __setup("ntp_tick_adj=", ntp_tick_adj_setup);
1025 
1026 void __init ntp_init(void)
1027 {
1028 	ntp_clear();
1029 }
1030