xref: /openbmc/linux/kernel/time/ntp.c (revision 565d76cb)
1 /*
2  * NTP state machine interfaces and logic.
3  *
4  * This code was mainly moved from kernel/timer.c and kernel/time.c
5  * Please see those files for relevant copyright info and historical
6  * changelogs.
7  */
8 #include <linux/capability.h>
9 #include <linux/clocksource.h>
10 #include <linux/workqueue.h>
11 #include <linux/hrtimer.h>
12 #include <linux/jiffies.h>
13 #include <linux/math64.h>
14 #include <linux/timex.h>
15 #include <linux/time.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 
19 #include "tick-internal.h"
20 
21 /*
22  * NTP timekeeping variables:
23  */
24 
25 /* USER_HZ period (usecs): */
26 unsigned long			tick_usec = TICK_USEC;
27 
28 /* ACTHZ period (nsecs): */
29 unsigned long			tick_nsec;
30 
31 u64				tick_length;
32 static u64			tick_length_base;
33 
34 static struct hrtimer		leap_timer;
35 
36 #define MAX_TICKADJ		500LL		/* usecs */
37 #define MAX_TICKADJ_SCALED \
38 	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
39 
40 /*
41  * phase-lock loop variables
42  */
43 
44 /*
45  * clock synchronization status
46  *
47  * (TIME_ERROR prevents overwriting the CMOS clock)
48  */
49 static int			time_state = TIME_OK;
50 
51 /* clock status bits:							*/
52 int				time_status = STA_UNSYNC;
53 
54 /* TAI offset (secs):							*/
55 static long			time_tai;
56 
57 /* time adjustment (nsecs):						*/
58 static s64			time_offset;
59 
60 /* pll time constant:							*/
61 static long			time_constant = 2;
62 
63 /* maximum error (usecs):						*/
64 static long			time_maxerror = NTP_PHASE_LIMIT;
65 
66 /* estimated error (usecs):						*/
67 static long			time_esterror = NTP_PHASE_LIMIT;
68 
69 /* frequency offset (scaled nsecs/secs):				*/
70 static s64			time_freq;
71 
72 /* time at last adjustment (secs):					*/
73 static long			time_reftime;
74 
75 static long			time_adjust;
76 
77 /* constant (boot-param configurable) NTP tick adjustment (upscaled)	*/
78 static s64			ntp_tick_adj;
79 
80 #ifdef CONFIG_NTP_PPS
81 
82 /*
83  * The following variables are used when a pulse-per-second (PPS) signal
84  * is available. They establish the engineering parameters of the clock
85  * discipline loop when controlled by the PPS signal.
86  */
87 #define PPS_VALID	10	/* PPS signal watchdog max (s) */
88 #define PPS_POPCORN	4	/* popcorn spike threshold (shift) */
89 #define PPS_INTMIN	2	/* min freq interval (s) (shift) */
90 #define PPS_INTMAX	8	/* max freq interval (s) (shift) */
91 #define PPS_INTCOUNT	4	/* number of consecutive good intervals to
92 				   increase pps_shift or consecutive bad
93 				   intervals to decrease it */
94 #define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */
95 
96 static int pps_valid;		/* signal watchdog counter */
97 static long pps_tf[3];		/* phase median filter */
98 static long pps_jitter;		/* current jitter (ns) */
99 static struct timespec pps_fbase; /* beginning of the last freq interval */
100 static int pps_shift;		/* current interval duration (s) (shift) */
101 static int pps_intcnt;		/* interval counter */
102 static s64 pps_freq;		/* frequency offset (scaled ns/s) */
103 static long pps_stabil;		/* current stability (scaled ns/s) */
104 
105 /*
106  * PPS signal quality monitors
107  */
108 static long pps_calcnt;		/* calibration intervals */
109 static long pps_jitcnt;		/* jitter limit exceeded */
110 static long pps_stbcnt;		/* stability limit exceeded */
111 static long pps_errcnt;		/* calibration errors */
112 
113 
114 /* PPS kernel consumer compensates the whole phase error immediately.
115  * Otherwise, reduce the offset by a fixed factor times the time constant.
116  */
117 static inline s64 ntp_offset_chunk(s64 offset)
118 {
119 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
120 		return offset;
121 	else
122 		return shift_right(offset, SHIFT_PLL + time_constant);
123 }
124 
125 static inline void pps_reset_freq_interval(void)
126 {
127 	/* the PPS calibration interval may end
128 	   surprisingly early */
129 	pps_shift = PPS_INTMIN;
130 	pps_intcnt = 0;
131 }
132 
133 /**
134  * pps_clear - Clears the PPS state variables
135  *
136  * Must be called while holding a write on the xtime_lock
137  */
138 static inline void pps_clear(void)
139 {
140 	pps_reset_freq_interval();
141 	pps_tf[0] = 0;
142 	pps_tf[1] = 0;
143 	pps_tf[2] = 0;
144 	pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
145 	pps_freq = 0;
146 }
147 
148 /* Decrease pps_valid to indicate that another second has passed since
149  * the last PPS signal. When it reaches 0, indicate that PPS signal is
150  * missing.
151  *
152  * Must be called while holding a write on the xtime_lock
153  */
154 static inline void pps_dec_valid(void)
155 {
156 	if (pps_valid > 0)
157 		pps_valid--;
158 	else {
159 		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
160 				 STA_PPSWANDER | STA_PPSERROR);
161 		pps_clear();
162 	}
163 }
164 
165 static inline void pps_set_freq(s64 freq)
166 {
167 	pps_freq = freq;
168 }
169 
170 static inline int is_error_status(int status)
171 {
172 	return (time_status & (STA_UNSYNC|STA_CLOCKERR))
173 		/* PPS signal lost when either PPS time or
174 		 * PPS frequency synchronization requested
175 		 */
176 		|| ((time_status & (STA_PPSFREQ|STA_PPSTIME))
177 			&& !(time_status & STA_PPSSIGNAL))
178 		/* PPS jitter exceeded when
179 		 * PPS time synchronization requested */
180 		|| ((time_status & (STA_PPSTIME|STA_PPSJITTER))
181 			== (STA_PPSTIME|STA_PPSJITTER))
182 		/* PPS wander exceeded or calibration error when
183 		 * PPS frequency synchronization requested
184 		 */
185 		|| ((time_status & STA_PPSFREQ)
186 			&& (time_status & (STA_PPSWANDER|STA_PPSERROR)));
187 }
188 
189 static inline void pps_fill_timex(struct timex *txc)
190 {
191 	txc->ppsfreq	   = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
192 					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
193 	txc->jitter	   = pps_jitter;
194 	if (!(time_status & STA_NANO))
195 		txc->jitter /= NSEC_PER_USEC;
196 	txc->shift	   = pps_shift;
197 	txc->stabil	   = pps_stabil;
198 	txc->jitcnt	   = pps_jitcnt;
199 	txc->calcnt	   = pps_calcnt;
200 	txc->errcnt	   = pps_errcnt;
201 	txc->stbcnt	   = pps_stbcnt;
202 }
203 
204 #else /* !CONFIG_NTP_PPS */
205 
206 static inline s64 ntp_offset_chunk(s64 offset)
207 {
208 	return shift_right(offset, SHIFT_PLL + time_constant);
209 }
210 
211 static inline void pps_reset_freq_interval(void) {}
212 static inline void pps_clear(void) {}
213 static inline void pps_dec_valid(void) {}
214 static inline void pps_set_freq(s64 freq) {}
215 
216 static inline int is_error_status(int status)
217 {
218 	return status & (STA_UNSYNC|STA_CLOCKERR);
219 }
220 
221 static inline void pps_fill_timex(struct timex *txc)
222 {
223 	/* PPS is not implemented, so these are zero */
224 	txc->ppsfreq	   = 0;
225 	txc->jitter	   = 0;
226 	txc->shift	   = 0;
227 	txc->stabil	   = 0;
228 	txc->jitcnt	   = 0;
229 	txc->calcnt	   = 0;
230 	txc->errcnt	   = 0;
231 	txc->stbcnt	   = 0;
232 }
233 
234 #endif /* CONFIG_NTP_PPS */
235 
236 /*
237  * NTP methods:
238  */
239 
240 /*
241  * Update (tick_length, tick_length_base, tick_nsec), based
242  * on (tick_usec, ntp_tick_adj, time_freq):
243  */
244 static void ntp_update_frequency(void)
245 {
246 	u64 second_length;
247 	u64 new_base;
248 
249 	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
250 						<< NTP_SCALE_SHIFT;
251 
252 	second_length		+= ntp_tick_adj;
253 	second_length		+= time_freq;
254 
255 	tick_nsec		 = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
256 	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
257 
258 	/*
259 	 * Don't wait for the next second_overflow, apply
260 	 * the change to the tick length immediately:
261 	 */
262 	tick_length		+= new_base - tick_length_base;
263 	tick_length_base	 = new_base;
264 }
265 
266 static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
267 {
268 	time_status &= ~STA_MODE;
269 
270 	if (secs < MINSEC)
271 		return 0;
272 
273 	if (!(time_status & STA_FLL) && (secs <= MAXSEC))
274 		return 0;
275 
276 	time_status |= STA_MODE;
277 
278 	return div_s64(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
279 }
280 
281 static void ntp_update_offset(long offset)
282 {
283 	s64 freq_adj;
284 	s64 offset64;
285 	long secs;
286 
287 	if (!(time_status & STA_PLL))
288 		return;
289 
290 	if (!(time_status & STA_NANO))
291 		offset *= NSEC_PER_USEC;
292 
293 	/*
294 	 * Scale the phase adjustment and
295 	 * clamp to the operating range.
296 	 */
297 	offset = min(offset, MAXPHASE);
298 	offset = max(offset, -MAXPHASE);
299 
300 	/*
301 	 * Select how the frequency is to be controlled
302 	 * and in which mode (PLL or FLL).
303 	 */
304 	secs = get_seconds() - time_reftime;
305 	if (unlikely(time_status & STA_FREQHOLD))
306 		secs = 0;
307 
308 	time_reftime = get_seconds();
309 
310 	offset64    = offset;
311 	freq_adj    = ntp_update_offset_fll(offset64, secs);
312 
313 	/*
314 	 * Clamp update interval to reduce PLL gain with low
315 	 * sampling rate (e.g. intermittent network connection)
316 	 * to avoid instability.
317 	 */
318 	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
319 		secs = 1 << (SHIFT_PLL + 1 + time_constant);
320 
321 	freq_adj    += (offset64 * secs) <<
322 			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
323 
324 	freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);
325 
326 	time_freq   = max(freq_adj, -MAXFREQ_SCALED);
327 
328 	time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
329 }
330 
331 /**
332  * ntp_clear - Clears the NTP state variables
333  *
334  * Must be called while holding a write on the xtime_lock
335  */
336 void ntp_clear(void)
337 {
338 	time_adjust	= 0;		/* stop active adjtime() */
339 	time_status	|= STA_UNSYNC;
340 	time_maxerror	= NTP_PHASE_LIMIT;
341 	time_esterror	= NTP_PHASE_LIMIT;
342 
343 	ntp_update_frequency();
344 
345 	tick_length	= tick_length_base;
346 	time_offset	= 0;
347 
348 	/* Clear PPS state variables */
349 	pps_clear();
350 }
351 
352 /*
353  * Leap second processing. If in leap-insert state at the end of the
354  * day, the system clock is set back one second; if in leap-delete
355  * state, the system clock is set ahead one second.
356  */
357 static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
358 {
359 	enum hrtimer_restart res = HRTIMER_NORESTART;
360 
361 	write_seqlock(&xtime_lock);
362 
363 	switch (time_state) {
364 	case TIME_OK:
365 		break;
366 	case TIME_INS:
367 		timekeeping_leap_insert(-1);
368 		time_state = TIME_OOP;
369 		printk(KERN_NOTICE
370 			"Clock: inserting leap second 23:59:60 UTC\n");
371 		hrtimer_add_expires_ns(&leap_timer, NSEC_PER_SEC);
372 		res = HRTIMER_RESTART;
373 		break;
374 	case TIME_DEL:
375 		timekeeping_leap_insert(1);
376 		time_tai--;
377 		time_state = TIME_WAIT;
378 		printk(KERN_NOTICE
379 			"Clock: deleting leap second 23:59:59 UTC\n");
380 		break;
381 	case TIME_OOP:
382 		time_tai++;
383 		time_state = TIME_WAIT;
384 		/* fall through */
385 	case TIME_WAIT:
386 		if (!(time_status & (STA_INS | STA_DEL)))
387 			time_state = TIME_OK;
388 		break;
389 	}
390 
391 	write_sequnlock(&xtime_lock);
392 
393 	return res;
394 }
395 
396 /*
397  * this routine handles the overflow of the microsecond field
398  *
399  * The tricky bits of code to handle the accurate clock support
400  * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
401  * They were originally developed for SUN and DEC kernels.
402  * All the kudos should go to Dave for this stuff.
403  */
404 void second_overflow(void)
405 {
406 	s64 delta;
407 
408 	/* Bump the maxerror field */
409 	time_maxerror += MAXFREQ / NSEC_PER_USEC;
410 	if (time_maxerror > NTP_PHASE_LIMIT) {
411 		time_maxerror = NTP_PHASE_LIMIT;
412 		time_status |= STA_UNSYNC;
413 	}
414 
415 	/* Compute the phase adjustment for the next second */
416 	tick_length	 = tick_length_base;
417 
418 	delta		 = ntp_offset_chunk(time_offset);
419 	time_offset	-= delta;
420 	tick_length	+= delta;
421 
422 	/* Check PPS signal */
423 	pps_dec_valid();
424 
425 	if (!time_adjust)
426 		return;
427 
428 	if (time_adjust > MAX_TICKADJ) {
429 		time_adjust -= MAX_TICKADJ;
430 		tick_length += MAX_TICKADJ_SCALED;
431 		return;
432 	}
433 
434 	if (time_adjust < -MAX_TICKADJ) {
435 		time_adjust += MAX_TICKADJ;
436 		tick_length -= MAX_TICKADJ_SCALED;
437 		return;
438 	}
439 
440 	tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
441 							 << NTP_SCALE_SHIFT;
442 	time_adjust = 0;
443 }
444 
445 #ifdef CONFIG_GENERIC_CMOS_UPDATE
446 
447 /* Disable the cmos update - used by virtualization and embedded */
448 int no_sync_cmos_clock  __read_mostly;
449 
450 static void sync_cmos_clock(struct work_struct *work);
451 
452 static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
453 
454 static void sync_cmos_clock(struct work_struct *work)
455 {
456 	struct timespec now, next;
457 	int fail = 1;
458 
459 	/*
460 	 * If we have an externally synchronized Linux clock, then update
461 	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
462 	 * called as close as possible to 500 ms before the new second starts.
463 	 * This code is run on a timer.  If the clock is set, that timer
464 	 * may not expire at the correct time.  Thus, we adjust...
465 	 */
466 	if (!ntp_synced()) {
467 		/*
468 		 * Not synced, exit, do not restart a timer (if one is
469 		 * running, let it run out).
470 		 */
471 		return;
472 	}
473 
474 	getnstimeofday(&now);
475 	if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
476 		fail = update_persistent_clock(now);
477 
478 	next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
479 	if (next.tv_nsec <= 0)
480 		next.tv_nsec += NSEC_PER_SEC;
481 
482 	if (!fail)
483 		next.tv_sec = 659;
484 	else
485 		next.tv_sec = 0;
486 
487 	if (next.tv_nsec >= NSEC_PER_SEC) {
488 		next.tv_sec++;
489 		next.tv_nsec -= NSEC_PER_SEC;
490 	}
491 	schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next));
492 }
493 
494 static void notify_cmos_timer(void)
495 {
496 	if (!no_sync_cmos_clock)
497 		schedule_delayed_work(&sync_cmos_work, 0);
498 }
499 
500 #else
501 static inline void notify_cmos_timer(void) { }
502 #endif
503 
504 /*
505  * Start the leap seconds timer:
506  */
507 static inline void ntp_start_leap_timer(struct timespec *ts)
508 {
509 	long now = ts->tv_sec;
510 
511 	if (time_status & STA_INS) {
512 		time_state = TIME_INS;
513 		now += 86400 - now % 86400;
514 		hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS);
515 
516 		return;
517 	}
518 
519 	if (time_status & STA_DEL) {
520 		time_state = TIME_DEL;
521 		now += 86400 - (now + 1) % 86400;
522 		hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS);
523 	}
524 }
525 
526 /*
527  * Propagate a new txc->status value into the NTP state:
528  */
529 static inline void process_adj_status(struct timex *txc, struct timespec *ts)
530 {
531 	if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
532 		time_state = TIME_OK;
533 		time_status = STA_UNSYNC;
534 		/* restart PPS frequency calibration */
535 		pps_reset_freq_interval();
536 	}
537 
538 	/*
539 	 * If we turn on PLL adjustments then reset the
540 	 * reference time to current time.
541 	 */
542 	if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
543 		time_reftime = get_seconds();
544 
545 	/* only set allowed bits */
546 	time_status &= STA_RONLY;
547 	time_status |= txc->status & ~STA_RONLY;
548 
549 	switch (time_state) {
550 	case TIME_OK:
551 		ntp_start_leap_timer(ts);
552 		break;
553 	case TIME_INS:
554 	case TIME_DEL:
555 		time_state = TIME_OK;
556 		ntp_start_leap_timer(ts);
557 	case TIME_WAIT:
558 		if (!(time_status & (STA_INS | STA_DEL)))
559 			time_state = TIME_OK;
560 		break;
561 	case TIME_OOP:
562 		hrtimer_restart(&leap_timer);
563 		break;
564 	}
565 }
566 /*
567  * Called with the xtime lock held, so we can access and modify
568  * all the global NTP state:
569  */
570 static inline void process_adjtimex_modes(struct timex *txc, struct timespec *ts)
571 {
572 	if (txc->modes & ADJ_STATUS)
573 		process_adj_status(txc, ts);
574 
575 	if (txc->modes & ADJ_NANO)
576 		time_status |= STA_NANO;
577 
578 	if (txc->modes & ADJ_MICRO)
579 		time_status &= ~STA_NANO;
580 
581 	if (txc->modes & ADJ_FREQUENCY) {
582 		time_freq = txc->freq * PPM_SCALE;
583 		time_freq = min(time_freq, MAXFREQ_SCALED);
584 		time_freq = max(time_freq, -MAXFREQ_SCALED);
585 		/* update pps_freq */
586 		pps_set_freq(time_freq);
587 	}
588 
589 	if (txc->modes & ADJ_MAXERROR)
590 		time_maxerror = txc->maxerror;
591 
592 	if (txc->modes & ADJ_ESTERROR)
593 		time_esterror = txc->esterror;
594 
595 	if (txc->modes & ADJ_TIMECONST) {
596 		time_constant = txc->constant;
597 		if (!(time_status & STA_NANO))
598 			time_constant += 4;
599 		time_constant = min(time_constant, (long)MAXTC);
600 		time_constant = max(time_constant, 0l);
601 	}
602 
603 	if (txc->modes & ADJ_TAI && txc->constant > 0)
604 		time_tai = txc->constant;
605 
606 	if (txc->modes & ADJ_OFFSET)
607 		ntp_update_offset(txc->offset);
608 
609 	if (txc->modes & ADJ_TICK)
610 		tick_usec = txc->tick;
611 
612 	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
613 		ntp_update_frequency();
614 }
615 
616 /*
617  * adjtimex mainly allows reading (and writing, if superuser) of
618  * kernel time-keeping variables. used by xntpd.
619  */
620 int do_adjtimex(struct timex *txc)
621 {
622 	struct timespec ts;
623 	int result;
624 
625 	/* Validate the data before disabling interrupts */
626 	if (txc->modes & ADJ_ADJTIME) {
627 		/* singleshot must not be used with any other mode bits */
628 		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
629 			return -EINVAL;
630 		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
631 		    !capable(CAP_SYS_TIME))
632 			return -EPERM;
633 	} else {
634 		/* In order to modify anything, you gotta be super-user! */
635 		 if (txc->modes && !capable(CAP_SYS_TIME))
636 			return -EPERM;
637 
638 		/*
639 		 * if the quartz is off by more than 10% then
640 		 * something is VERY wrong!
641 		 */
642 		if (txc->modes & ADJ_TICK &&
643 		    (txc->tick <  900000/USER_HZ ||
644 		     txc->tick > 1100000/USER_HZ))
645 			return -EINVAL;
646 
647 		if (txc->modes & ADJ_STATUS && time_state != TIME_OK)
648 			hrtimer_cancel(&leap_timer);
649 	}
650 
651 	if (txc->modes & ADJ_SETOFFSET) {
652 		struct timespec delta;
653 		delta.tv_sec  = txc->time.tv_sec;
654 		delta.tv_nsec = txc->time.tv_usec;
655 		if (!(txc->modes & ADJ_NANO))
656 			delta.tv_nsec *= 1000;
657 		result = timekeeping_inject_offset(&delta);
658 		if (result)
659 			return result;
660 	}
661 
662 	getnstimeofday(&ts);
663 
664 	write_seqlock_irq(&xtime_lock);
665 
666 	if (txc->modes & ADJ_ADJTIME) {
667 		long save_adjust = time_adjust;
668 
669 		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
670 			/* adjtime() is independent from ntp_adjtime() */
671 			time_adjust = txc->offset;
672 			ntp_update_frequency();
673 		}
674 		txc->offset = save_adjust;
675 	} else {
676 
677 		/* If there are input parameters, then process them: */
678 		if (txc->modes)
679 			process_adjtimex_modes(txc, &ts);
680 
681 		txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
682 				  NTP_SCALE_SHIFT);
683 		if (!(time_status & STA_NANO))
684 			txc->offset /= NSEC_PER_USEC;
685 	}
686 
687 	result = time_state;	/* mostly `TIME_OK' */
688 	/* check for errors */
689 	if (is_error_status(time_status))
690 		result = TIME_ERROR;
691 
692 	txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
693 					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
694 	txc->maxerror	   = time_maxerror;
695 	txc->esterror	   = time_esterror;
696 	txc->status	   = time_status;
697 	txc->constant	   = time_constant;
698 	txc->precision	   = 1;
699 	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
700 	txc->tick	   = tick_usec;
701 	txc->tai	   = time_tai;
702 
703 	/* fill PPS status fields */
704 	pps_fill_timex(txc);
705 
706 	write_sequnlock_irq(&xtime_lock);
707 
708 	txc->time.tv_sec = ts.tv_sec;
709 	txc->time.tv_usec = ts.tv_nsec;
710 	if (!(time_status & STA_NANO))
711 		txc->time.tv_usec /= NSEC_PER_USEC;
712 
713 	notify_cmos_timer();
714 
715 	return result;
716 }
717 
718 #ifdef	CONFIG_NTP_PPS
719 
720 /* actually struct pps_normtime is good old struct timespec, but it is
721  * semantically different (and it is the reason why it was invented):
722  * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
723  * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
724 struct pps_normtime {
725 	__kernel_time_t	sec;	/* seconds */
726 	long		nsec;	/* nanoseconds */
727 };
728 
729 /* normalize the timestamp so that nsec is in the
730    ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
731 static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
732 {
733 	struct pps_normtime norm = {
734 		.sec = ts.tv_sec,
735 		.nsec = ts.tv_nsec
736 	};
737 
738 	if (norm.nsec > (NSEC_PER_SEC >> 1)) {
739 		norm.nsec -= NSEC_PER_SEC;
740 		norm.sec++;
741 	}
742 
743 	return norm;
744 }
745 
746 /* get current phase correction and jitter */
747 static inline long pps_phase_filter_get(long *jitter)
748 {
749 	*jitter = pps_tf[0] - pps_tf[1];
750 	if (*jitter < 0)
751 		*jitter = -*jitter;
752 
753 	/* TODO: test various filters */
754 	return pps_tf[0];
755 }
756 
757 /* add the sample to the phase filter */
758 static inline void pps_phase_filter_add(long err)
759 {
760 	pps_tf[2] = pps_tf[1];
761 	pps_tf[1] = pps_tf[0];
762 	pps_tf[0] = err;
763 }
764 
765 /* decrease frequency calibration interval length.
766  * It is halved after four consecutive unstable intervals.
767  */
768 static inline void pps_dec_freq_interval(void)
769 {
770 	if (--pps_intcnt <= -PPS_INTCOUNT) {
771 		pps_intcnt = -PPS_INTCOUNT;
772 		if (pps_shift > PPS_INTMIN) {
773 			pps_shift--;
774 			pps_intcnt = 0;
775 		}
776 	}
777 }
778 
779 /* increase frequency calibration interval length.
780  * It is doubled after four consecutive stable intervals.
781  */
782 static inline void pps_inc_freq_interval(void)
783 {
784 	if (++pps_intcnt >= PPS_INTCOUNT) {
785 		pps_intcnt = PPS_INTCOUNT;
786 		if (pps_shift < PPS_INTMAX) {
787 			pps_shift++;
788 			pps_intcnt = 0;
789 		}
790 	}
791 }
792 
793 /* update clock frequency based on MONOTONIC_RAW clock PPS signal
794  * timestamps
795  *
796  * At the end of the calibration interval the difference between the
797  * first and last MONOTONIC_RAW clock timestamps divided by the length
798  * of the interval becomes the frequency update. If the interval was
799  * too long, the data are discarded.
800  * Returns the difference between old and new frequency values.
801  */
802 static long hardpps_update_freq(struct pps_normtime freq_norm)
803 {
804 	long delta, delta_mod;
805 	s64 ftemp;
806 
807 	/* check if the frequency interval was too long */
808 	if (freq_norm.sec > (2 << pps_shift)) {
809 		time_status |= STA_PPSERROR;
810 		pps_errcnt++;
811 		pps_dec_freq_interval();
812 		pr_err("hardpps: PPSERROR: interval too long - %ld s\n",
813 				freq_norm.sec);
814 		return 0;
815 	}
816 
817 	/* here the raw frequency offset and wander (stability) is
818 	 * calculated. If the wander is less than the wander threshold
819 	 * the interval is increased; otherwise it is decreased.
820 	 */
821 	ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
822 			freq_norm.sec);
823 	delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
824 	pps_freq = ftemp;
825 	if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
826 		pr_warning("hardpps: PPSWANDER: change=%ld\n", delta);
827 		time_status |= STA_PPSWANDER;
828 		pps_stbcnt++;
829 		pps_dec_freq_interval();
830 	} else {	/* good sample */
831 		pps_inc_freq_interval();
832 	}
833 
834 	/* the stability metric is calculated as the average of recent
835 	 * frequency changes, but is used only for performance
836 	 * monitoring
837 	 */
838 	delta_mod = delta;
839 	if (delta_mod < 0)
840 		delta_mod = -delta_mod;
841 	pps_stabil += (div_s64(((s64)delta_mod) <<
842 				(NTP_SCALE_SHIFT - SHIFT_USEC),
843 				NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
844 
845 	/* if enabled, the system clock frequency is updated */
846 	if ((time_status & STA_PPSFREQ) != 0 &&
847 	    (time_status & STA_FREQHOLD) == 0) {
848 		time_freq = pps_freq;
849 		ntp_update_frequency();
850 	}
851 
852 	return delta;
853 }
854 
855 /* correct REALTIME clock phase error against PPS signal */
856 static void hardpps_update_phase(long error)
857 {
858 	long correction = -error;
859 	long jitter;
860 
861 	/* add the sample to the median filter */
862 	pps_phase_filter_add(correction);
863 	correction = pps_phase_filter_get(&jitter);
864 
865 	/* Nominal jitter is due to PPS signal noise. If it exceeds the
866 	 * threshold, the sample is discarded; otherwise, if so enabled,
867 	 * the time offset is updated.
868 	 */
869 	if (jitter > (pps_jitter << PPS_POPCORN)) {
870 		pr_warning("hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
871 		       jitter, (pps_jitter << PPS_POPCORN));
872 		time_status |= STA_PPSJITTER;
873 		pps_jitcnt++;
874 	} else if (time_status & STA_PPSTIME) {
875 		/* correct the time using the phase offset */
876 		time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
877 				NTP_INTERVAL_FREQ);
878 		/* cancel running adjtime() */
879 		time_adjust = 0;
880 	}
881 	/* update jitter */
882 	pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
883 }
884 
885 /*
886  * hardpps() - discipline CPU clock oscillator to external PPS signal
887  *
888  * This routine is called at each PPS signal arrival in order to
889  * discipline the CPU clock oscillator to the PPS signal. It takes two
890  * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
891  * is used to correct clock phase error and the latter is used to
892  * correct the frequency.
893  *
894  * This code is based on David Mills's reference nanokernel
895  * implementation. It was mostly rewritten but keeps the same idea.
896  */
897 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
898 {
899 	struct pps_normtime pts_norm, freq_norm;
900 	unsigned long flags;
901 
902 	pts_norm = pps_normalize_ts(*phase_ts);
903 
904 	write_seqlock_irqsave(&xtime_lock, flags);
905 
906 	/* clear the error bits, they will be set again if needed */
907 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
908 
909 	/* indicate signal presence */
910 	time_status |= STA_PPSSIGNAL;
911 	pps_valid = PPS_VALID;
912 
913 	/* when called for the first time,
914 	 * just start the frequency interval */
915 	if (unlikely(pps_fbase.tv_sec == 0)) {
916 		pps_fbase = *raw_ts;
917 		write_sequnlock_irqrestore(&xtime_lock, flags);
918 		return;
919 	}
920 
921 	/* ok, now we have a base for frequency calculation */
922 	freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));
923 
924 	/* check that the signal is in the range
925 	 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
926 	if ((freq_norm.sec == 0) ||
927 			(freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
928 			(freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
929 		time_status |= STA_PPSJITTER;
930 		/* restart the frequency calibration interval */
931 		pps_fbase = *raw_ts;
932 		write_sequnlock_irqrestore(&xtime_lock, flags);
933 		pr_err("hardpps: PPSJITTER: bad pulse\n");
934 		return;
935 	}
936 
937 	/* signal is ok */
938 
939 	/* check if the current frequency interval is finished */
940 	if (freq_norm.sec >= (1 << pps_shift)) {
941 		pps_calcnt++;
942 		/* restart the frequency calibration interval */
943 		pps_fbase = *raw_ts;
944 		hardpps_update_freq(freq_norm);
945 	}
946 
947 	hardpps_update_phase(pts_norm.nsec);
948 
949 	write_sequnlock_irqrestore(&xtime_lock, flags);
950 }
951 EXPORT_SYMBOL(hardpps);
952 
953 #endif	/* CONFIG_NTP_PPS */
954 
955 static int __init ntp_tick_adj_setup(char *str)
956 {
957 	ntp_tick_adj = simple_strtol(str, NULL, 0);
958 	ntp_tick_adj <<= NTP_SCALE_SHIFT;
959 
960 	return 1;
961 }
962 
963 __setup("ntp_tick_adj=", ntp_tick_adj_setup);
964 
965 void __init ntp_init(void)
966 {
967 	ntp_clear();
968 	hrtimer_init(&leap_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
969 	leap_timer.function = ntp_leap_second;
970 }
971