xref: /openbmc/linux/kernel/time/ntp.c (revision 4aea96f4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NTP state machine interfaces and logic.
4  *
5  * This code was mainly moved from kernel/timer.c and kernel/time.c
6  * Please see those files for relevant copyright info and historical
7  * changelogs.
8  */
9 #include <linux/capability.h>
10 #include <linux/clocksource.h>
11 #include <linux/workqueue.h>
12 #include <linux/hrtimer.h>
13 #include <linux/jiffies.h>
14 #include <linux/math64.h>
15 #include <linux/timex.h>
16 #include <linux/time.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/rtc.h>
20 #include <linux/math64.h>
21 
22 #include "ntp_internal.h"
23 #include "timekeeping_internal.h"
24 
25 
26 /*
27  * NTP timekeeping variables:
28  *
29  * Note: All of the NTP state is protected by the timekeeping locks.
30  */
31 
32 
33 /* USER_HZ period (usecs): */
34 unsigned long			tick_usec = USER_TICK_USEC;
35 
36 /* SHIFTED_HZ period (nsecs): */
37 unsigned long			tick_nsec;
38 
39 static u64			tick_length;
40 static u64			tick_length_base;
41 
42 #define SECS_PER_DAY		86400
43 #define MAX_TICKADJ		500LL		/* usecs */
44 #define MAX_TICKADJ_SCALED \
45 	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
46 
47 /*
48  * phase-lock loop variables
49  */
50 
51 /*
52  * clock synchronization status
53  *
54  * (TIME_ERROR prevents overwriting the CMOS clock)
55  */
56 static int			time_state = TIME_OK;
57 
58 /* clock status bits:							*/
59 static int			time_status = STA_UNSYNC;
60 
61 /* time adjustment (nsecs):						*/
62 static s64			time_offset;
63 
64 /* pll time constant:							*/
65 static long			time_constant = 2;
66 
67 /* maximum error (usecs):						*/
68 static long			time_maxerror = NTP_PHASE_LIMIT;
69 
70 /* estimated error (usecs):						*/
71 static long			time_esterror = NTP_PHASE_LIMIT;
72 
73 /* frequency offset (scaled nsecs/secs):				*/
74 static s64			time_freq;
75 
76 /* time at last adjustment (secs):					*/
77 static time64_t		time_reftime;
78 
79 static long			time_adjust;
80 
81 /* constant (boot-param configurable) NTP tick adjustment (upscaled)	*/
82 static s64			ntp_tick_adj;
83 
84 /* second value of the next pending leapsecond, or TIME64_MAX if no leap */
85 static time64_t			ntp_next_leap_sec = TIME64_MAX;
86 
87 #ifdef CONFIG_NTP_PPS
88 
89 /*
90  * The following variables are used when a pulse-per-second (PPS) signal
91  * is available. They establish the engineering parameters of the clock
92  * discipline loop when controlled by the PPS signal.
93  */
94 #define PPS_VALID	10	/* PPS signal watchdog max (s) */
95 #define PPS_POPCORN	4	/* popcorn spike threshold (shift) */
96 #define PPS_INTMIN	2	/* min freq interval (s) (shift) */
97 #define PPS_INTMAX	8	/* max freq interval (s) (shift) */
98 #define PPS_INTCOUNT	4	/* number of consecutive good intervals to
99 				   increase pps_shift or consecutive bad
100 				   intervals to decrease it */
101 #define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */
102 
103 static int pps_valid;		/* signal watchdog counter */
104 static long pps_tf[3];		/* phase median filter */
105 static long pps_jitter;		/* current jitter (ns) */
106 static struct timespec64 pps_fbase; /* beginning of the last freq interval */
107 static int pps_shift;		/* current interval duration (s) (shift) */
108 static int pps_intcnt;		/* interval counter */
109 static s64 pps_freq;		/* frequency offset (scaled ns/s) */
110 static long pps_stabil;		/* current stability (scaled ns/s) */
111 
112 /*
113  * PPS signal quality monitors
114  */
115 static long pps_calcnt;		/* calibration intervals */
116 static long pps_jitcnt;		/* jitter limit exceeded */
117 static long pps_stbcnt;		/* stability limit exceeded */
118 static long pps_errcnt;		/* calibration errors */
119 
120 
121 /* PPS kernel consumer compensates the whole phase error immediately.
122  * Otherwise, reduce the offset by a fixed factor times the time constant.
123  */
124 static inline s64 ntp_offset_chunk(s64 offset)
125 {
126 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
127 		return offset;
128 	else
129 		return shift_right(offset, SHIFT_PLL + time_constant);
130 }
131 
132 static inline void pps_reset_freq_interval(void)
133 {
134 	/* the PPS calibration interval may end
135 	   surprisingly early */
136 	pps_shift = PPS_INTMIN;
137 	pps_intcnt = 0;
138 }
139 
140 /**
141  * pps_clear - Clears the PPS state variables
142  */
143 static inline void pps_clear(void)
144 {
145 	pps_reset_freq_interval();
146 	pps_tf[0] = 0;
147 	pps_tf[1] = 0;
148 	pps_tf[2] = 0;
149 	pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
150 	pps_freq = 0;
151 }
152 
153 /* Decrease pps_valid to indicate that another second has passed since
154  * the last PPS signal. When it reaches 0, indicate that PPS signal is
155  * missing.
156  */
157 static inline void pps_dec_valid(void)
158 {
159 	if (pps_valid > 0)
160 		pps_valid--;
161 	else {
162 		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
163 				 STA_PPSWANDER | STA_PPSERROR);
164 		pps_clear();
165 	}
166 }
167 
168 static inline void pps_set_freq(s64 freq)
169 {
170 	pps_freq = freq;
171 }
172 
173 static inline int is_error_status(int status)
174 {
175 	return (status & (STA_UNSYNC|STA_CLOCKERR))
176 		/* PPS signal lost when either PPS time or
177 		 * PPS frequency synchronization requested
178 		 */
179 		|| ((status & (STA_PPSFREQ|STA_PPSTIME))
180 			&& !(status & STA_PPSSIGNAL))
181 		/* PPS jitter exceeded when
182 		 * PPS time synchronization requested */
183 		|| ((status & (STA_PPSTIME|STA_PPSJITTER))
184 			== (STA_PPSTIME|STA_PPSJITTER))
185 		/* PPS wander exceeded or calibration error when
186 		 * PPS frequency synchronization requested
187 		 */
188 		|| ((status & STA_PPSFREQ)
189 			&& (status & (STA_PPSWANDER|STA_PPSERROR)));
190 }
191 
192 static inline void pps_fill_timex(struct timex *txc)
193 {
194 	txc->ppsfreq	   = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
195 					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
196 	txc->jitter	   = pps_jitter;
197 	if (!(time_status & STA_NANO))
198 		txc->jitter /= NSEC_PER_USEC;
199 	txc->shift	   = pps_shift;
200 	txc->stabil	   = pps_stabil;
201 	txc->jitcnt	   = pps_jitcnt;
202 	txc->calcnt	   = pps_calcnt;
203 	txc->errcnt	   = pps_errcnt;
204 	txc->stbcnt	   = pps_stbcnt;
205 }
206 
207 #else /* !CONFIG_NTP_PPS */
208 
209 static inline s64 ntp_offset_chunk(s64 offset)
210 {
211 	return shift_right(offset, SHIFT_PLL + time_constant);
212 }
213 
214 static inline void pps_reset_freq_interval(void) {}
215 static inline void pps_clear(void) {}
216 static inline void pps_dec_valid(void) {}
217 static inline void pps_set_freq(s64 freq) {}
218 
219 static inline int is_error_status(int status)
220 {
221 	return status & (STA_UNSYNC|STA_CLOCKERR);
222 }
223 
224 static inline void pps_fill_timex(struct timex *txc)
225 {
226 	/* PPS is not implemented, so these are zero */
227 	txc->ppsfreq	   = 0;
228 	txc->jitter	   = 0;
229 	txc->shift	   = 0;
230 	txc->stabil	   = 0;
231 	txc->jitcnt	   = 0;
232 	txc->calcnt	   = 0;
233 	txc->errcnt	   = 0;
234 	txc->stbcnt	   = 0;
235 }
236 
237 #endif /* CONFIG_NTP_PPS */
238 
239 
240 /**
241  * ntp_synced - Returns 1 if the NTP status is not UNSYNC
242  *
243  */
244 static inline int ntp_synced(void)
245 {
246 	return !(time_status & STA_UNSYNC);
247 }
248 
249 
250 /*
251  * NTP methods:
252  */
253 
254 /*
255  * Update (tick_length, tick_length_base, tick_nsec), based
256  * on (tick_usec, ntp_tick_adj, time_freq):
257  */
258 static void ntp_update_frequency(void)
259 {
260 	u64 second_length;
261 	u64 new_base;
262 
263 	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
264 						<< NTP_SCALE_SHIFT;
265 
266 	second_length		+= ntp_tick_adj;
267 	second_length		+= time_freq;
268 
269 	tick_nsec		 = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
270 	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
271 
272 	/*
273 	 * Don't wait for the next second_overflow, apply
274 	 * the change to the tick length immediately:
275 	 */
276 	tick_length		+= new_base - tick_length_base;
277 	tick_length_base	 = new_base;
278 }
279 
280 static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
281 {
282 	time_status &= ~STA_MODE;
283 
284 	if (secs < MINSEC)
285 		return 0;
286 
287 	if (!(time_status & STA_FLL) && (secs <= MAXSEC))
288 		return 0;
289 
290 	time_status |= STA_MODE;
291 
292 	return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
293 }
294 
295 static void ntp_update_offset(long offset)
296 {
297 	s64 freq_adj;
298 	s64 offset64;
299 	long secs;
300 
301 	if (!(time_status & STA_PLL))
302 		return;
303 
304 	if (!(time_status & STA_NANO)) {
305 		/* Make sure the multiplication below won't overflow */
306 		offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC);
307 		offset *= NSEC_PER_USEC;
308 	}
309 
310 	/*
311 	 * Scale the phase adjustment and
312 	 * clamp to the operating range.
313 	 */
314 	offset = clamp(offset, -MAXPHASE, MAXPHASE);
315 
316 	/*
317 	 * Select how the frequency is to be controlled
318 	 * and in which mode (PLL or FLL).
319 	 */
320 	secs = (long)(__ktime_get_real_seconds() - time_reftime);
321 	if (unlikely(time_status & STA_FREQHOLD))
322 		secs = 0;
323 
324 	time_reftime = __ktime_get_real_seconds();
325 
326 	offset64    = offset;
327 	freq_adj    = ntp_update_offset_fll(offset64, secs);
328 
329 	/*
330 	 * Clamp update interval to reduce PLL gain with low
331 	 * sampling rate (e.g. intermittent network connection)
332 	 * to avoid instability.
333 	 */
334 	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
335 		secs = 1 << (SHIFT_PLL + 1 + time_constant);
336 
337 	freq_adj    += (offset64 * secs) <<
338 			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
339 
340 	freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);
341 
342 	time_freq   = max(freq_adj, -MAXFREQ_SCALED);
343 
344 	time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
345 }
346 
347 /**
348  * ntp_clear - Clears the NTP state variables
349  */
350 void ntp_clear(void)
351 {
352 	time_adjust	= 0;		/* stop active adjtime() */
353 	time_status	|= STA_UNSYNC;
354 	time_maxerror	= NTP_PHASE_LIMIT;
355 	time_esterror	= NTP_PHASE_LIMIT;
356 
357 	ntp_update_frequency();
358 
359 	tick_length	= tick_length_base;
360 	time_offset	= 0;
361 
362 	ntp_next_leap_sec = TIME64_MAX;
363 	/* Clear PPS state variables */
364 	pps_clear();
365 }
366 
367 
368 u64 ntp_tick_length(void)
369 {
370 	return tick_length;
371 }
372 
373 /**
374  * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
375  *
376  * Provides the time of the next leapsecond against CLOCK_REALTIME in
377  * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
378  */
379 ktime_t ntp_get_next_leap(void)
380 {
381 	ktime_t ret;
382 
383 	if ((time_state == TIME_INS) && (time_status & STA_INS))
384 		return ktime_set(ntp_next_leap_sec, 0);
385 	ret = KTIME_MAX;
386 	return ret;
387 }
388 
389 /*
390  * this routine handles the overflow of the microsecond field
391  *
392  * The tricky bits of code to handle the accurate clock support
393  * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
394  * They were originally developed for SUN and DEC kernels.
395  * All the kudos should go to Dave for this stuff.
396  *
397  * Also handles leap second processing, and returns leap offset
398  */
399 int second_overflow(time64_t secs)
400 {
401 	s64 delta;
402 	int leap = 0;
403 	s32 rem;
404 
405 	/*
406 	 * Leap second processing. If in leap-insert state at the end of the
407 	 * day, the system clock is set back one second; if in leap-delete
408 	 * state, the system clock is set ahead one second.
409 	 */
410 	switch (time_state) {
411 	case TIME_OK:
412 		if (time_status & STA_INS) {
413 			time_state = TIME_INS;
414 			div_s64_rem(secs, SECS_PER_DAY, &rem);
415 			ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
416 		} else if (time_status & STA_DEL) {
417 			time_state = TIME_DEL;
418 			div_s64_rem(secs + 1, SECS_PER_DAY, &rem);
419 			ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
420 		}
421 		break;
422 	case TIME_INS:
423 		if (!(time_status & STA_INS)) {
424 			ntp_next_leap_sec = TIME64_MAX;
425 			time_state = TIME_OK;
426 		} else if (secs == ntp_next_leap_sec) {
427 			leap = -1;
428 			time_state = TIME_OOP;
429 			printk(KERN_NOTICE
430 				"Clock: inserting leap second 23:59:60 UTC\n");
431 		}
432 		break;
433 	case TIME_DEL:
434 		if (!(time_status & STA_DEL)) {
435 			ntp_next_leap_sec = TIME64_MAX;
436 			time_state = TIME_OK;
437 		} else if (secs == ntp_next_leap_sec) {
438 			leap = 1;
439 			ntp_next_leap_sec = TIME64_MAX;
440 			time_state = TIME_WAIT;
441 			printk(KERN_NOTICE
442 				"Clock: deleting leap second 23:59:59 UTC\n");
443 		}
444 		break;
445 	case TIME_OOP:
446 		ntp_next_leap_sec = TIME64_MAX;
447 		time_state = TIME_WAIT;
448 		break;
449 	case TIME_WAIT:
450 		if (!(time_status & (STA_INS | STA_DEL)))
451 			time_state = TIME_OK;
452 		break;
453 	}
454 
455 
456 	/* Bump the maxerror field */
457 	time_maxerror += MAXFREQ / NSEC_PER_USEC;
458 	if (time_maxerror > NTP_PHASE_LIMIT) {
459 		time_maxerror = NTP_PHASE_LIMIT;
460 		time_status |= STA_UNSYNC;
461 	}
462 
463 	/* Compute the phase adjustment for the next second */
464 	tick_length	 = tick_length_base;
465 
466 	delta		 = ntp_offset_chunk(time_offset);
467 	time_offset	-= delta;
468 	tick_length	+= delta;
469 
470 	/* Check PPS signal */
471 	pps_dec_valid();
472 
473 	if (!time_adjust)
474 		goto out;
475 
476 	if (time_adjust > MAX_TICKADJ) {
477 		time_adjust -= MAX_TICKADJ;
478 		tick_length += MAX_TICKADJ_SCALED;
479 		goto out;
480 	}
481 
482 	if (time_adjust < -MAX_TICKADJ) {
483 		time_adjust += MAX_TICKADJ;
484 		tick_length -= MAX_TICKADJ_SCALED;
485 		goto out;
486 	}
487 
488 	tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
489 							 << NTP_SCALE_SHIFT;
490 	time_adjust = 0;
491 
492 out:
493 	return leap;
494 }
495 
496 static void sync_hw_clock(struct work_struct *work);
497 static DECLARE_DELAYED_WORK(sync_work, sync_hw_clock);
498 
499 static void sched_sync_hw_clock(struct timespec64 now,
500 				unsigned long target_nsec, bool fail)
501 
502 {
503 	struct timespec64 next;
504 
505 	ktime_get_real_ts64(&next);
506 	if (!fail)
507 		next.tv_sec = 659;
508 	else {
509 		/*
510 		 * Try again as soon as possible. Delaying long periods
511 		 * decreases the accuracy of the work queue timer. Due to this
512 		 * the algorithm is very likely to require a short-sleep retry
513 		 * after the above long sleep to synchronize ts_nsec.
514 		 */
515 		next.tv_sec = 0;
516 	}
517 
518 	/* Compute the needed delay that will get to tv_nsec == target_nsec */
519 	next.tv_nsec = target_nsec - next.tv_nsec;
520 	if (next.tv_nsec <= 0)
521 		next.tv_nsec += NSEC_PER_SEC;
522 	if (next.tv_nsec >= NSEC_PER_SEC) {
523 		next.tv_sec++;
524 		next.tv_nsec -= NSEC_PER_SEC;
525 	}
526 
527 	queue_delayed_work(system_power_efficient_wq, &sync_work,
528 			   timespec64_to_jiffies(&next));
529 }
530 
531 static void sync_rtc_clock(void)
532 {
533 	unsigned long target_nsec;
534 	struct timespec64 adjust, now;
535 	int rc;
536 
537 	if (!IS_ENABLED(CONFIG_RTC_SYSTOHC))
538 		return;
539 
540 	ktime_get_real_ts64(&now);
541 
542 	adjust = now;
543 	if (persistent_clock_is_local)
544 		adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
545 
546 	/*
547 	 * The current RTC in use will provide the target_nsec it wants to be
548 	 * called at, and does rtc_tv_nsec_ok internally.
549 	 */
550 	rc = rtc_set_ntp_time(adjust, &target_nsec);
551 	if (rc == -ENODEV)
552 		return;
553 
554 	sched_sync_hw_clock(now, target_nsec, rc);
555 }
556 
557 #ifdef CONFIG_GENERIC_CMOS_UPDATE
558 int __weak update_persistent_clock(struct timespec now)
559 {
560 	return -ENODEV;
561 }
562 
563 int __weak update_persistent_clock64(struct timespec64 now64)
564 {
565 	struct timespec now;
566 
567 	now = timespec64_to_timespec(now64);
568 	return update_persistent_clock(now);
569 }
570 #endif
571 
572 static bool sync_cmos_clock(void)
573 {
574 	static bool no_cmos;
575 	struct timespec64 now;
576 	struct timespec64 adjust;
577 	int rc = -EPROTO;
578 	long target_nsec = NSEC_PER_SEC / 2;
579 
580 	if (!IS_ENABLED(CONFIG_GENERIC_CMOS_UPDATE))
581 		return false;
582 
583 	if (no_cmos)
584 		return false;
585 
586 	/*
587 	 * Historically update_persistent_clock64() has followed x86
588 	 * semantics, which match the MC146818A/etc RTC. This RTC will store
589 	 * 'adjust' and then in .5s it will advance once second.
590 	 *
591 	 * Architectures are strongly encouraged to use rtclib and not
592 	 * implement this legacy API.
593 	 */
594 	ktime_get_real_ts64(&now);
595 	if (rtc_tv_nsec_ok(-1 * target_nsec, &adjust, &now)) {
596 		if (persistent_clock_is_local)
597 			adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
598 		rc = update_persistent_clock64(adjust);
599 		/*
600 		 * The machine does not support update_persistent_clock64 even
601 		 * though it defines CONFIG_GENERIC_CMOS_UPDATE.
602 		 */
603 		if (rc == -ENODEV) {
604 			no_cmos = true;
605 			return false;
606 		}
607 	}
608 
609 	sched_sync_hw_clock(now, target_nsec, rc);
610 	return true;
611 }
612 
613 /*
614  * If we have an externally synchronized Linux clock, then update RTC clock
615  * accordingly every ~11 minutes. Generally RTCs can only store second
616  * precision, but many RTCs will adjust the phase of their second tick to
617  * match the moment of update. This infrastructure arranges to call to the RTC
618  * set at the correct moment to phase synchronize the RTC second tick over
619  * with the kernel clock.
620  */
621 static void sync_hw_clock(struct work_struct *work)
622 {
623 	if (!ntp_synced())
624 		return;
625 
626 	if (sync_cmos_clock())
627 		return;
628 
629 	sync_rtc_clock();
630 }
631 
632 void ntp_notify_cmos_timer(void)
633 {
634 	if (!ntp_synced())
635 		return;
636 
637 	if (IS_ENABLED(CONFIG_GENERIC_CMOS_UPDATE) ||
638 	    IS_ENABLED(CONFIG_RTC_SYSTOHC))
639 		queue_delayed_work(system_power_efficient_wq, &sync_work, 0);
640 }
641 
642 /*
643  * Propagate a new txc->status value into the NTP state:
644  */
645 static inline void process_adj_status(const struct timex *txc)
646 {
647 	if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
648 		time_state = TIME_OK;
649 		time_status = STA_UNSYNC;
650 		ntp_next_leap_sec = TIME64_MAX;
651 		/* restart PPS frequency calibration */
652 		pps_reset_freq_interval();
653 	}
654 
655 	/*
656 	 * If we turn on PLL adjustments then reset the
657 	 * reference time to current time.
658 	 */
659 	if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
660 		time_reftime = __ktime_get_real_seconds();
661 
662 	/* only set allowed bits */
663 	time_status &= STA_RONLY;
664 	time_status |= txc->status & ~STA_RONLY;
665 }
666 
667 
668 static inline void process_adjtimex_modes(const struct timex *txc, s32 *time_tai)
669 {
670 	if (txc->modes & ADJ_STATUS)
671 		process_adj_status(txc);
672 
673 	if (txc->modes & ADJ_NANO)
674 		time_status |= STA_NANO;
675 
676 	if (txc->modes & ADJ_MICRO)
677 		time_status &= ~STA_NANO;
678 
679 	if (txc->modes & ADJ_FREQUENCY) {
680 		time_freq = txc->freq * PPM_SCALE;
681 		time_freq = min(time_freq, MAXFREQ_SCALED);
682 		time_freq = max(time_freq, -MAXFREQ_SCALED);
683 		/* update pps_freq */
684 		pps_set_freq(time_freq);
685 	}
686 
687 	if (txc->modes & ADJ_MAXERROR)
688 		time_maxerror = txc->maxerror;
689 
690 	if (txc->modes & ADJ_ESTERROR)
691 		time_esterror = txc->esterror;
692 
693 	if (txc->modes & ADJ_TIMECONST) {
694 		time_constant = txc->constant;
695 		if (!(time_status & STA_NANO))
696 			time_constant += 4;
697 		time_constant = min(time_constant, (long)MAXTC);
698 		time_constant = max(time_constant, 0l);
699 	}
700 
701 	if (txc->modes & ADJ_TAI && txc->constant > 0)
702 		*time_tai = txc->constant;
703 
704 	if (txc->modes & ADJ_OFFSET)
705 		ntp_update_offset(txc->offset);
706 
707 	if (txc->modes & ADJ_TICK)
708 		tick_usec = txc->tick;
709 
710 	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
711 		ntp_update_frequency();
712 }
713 
714 
715 /*
716  * adjtimex mainly allows reading (and writing, if superuser) of
717  * kernel time-keeping variables. used by xntpd.
718  */
719 int __do_adjtimex(struct timex *txc, const struct timespec64 *ts, s32 *time_tai)
720 {
721 	int result;
722 
723 	if (txc->modes & ADJ_ADJTIME) {
724 		long save_adjust = time_adjust;
725 
726 		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
727 			/* adjtime() is independent from ntp_adjtime() */
728 			time_adjust = txc->offset;
729 			ntp_update_frequency();
730 		}
731 		txc->offset = save_adjust;
732 	} else {
733 
734 		/* If there are input parameters, then process them: */
735 		if (txc->modes)
736 			process_adjtimex_modes(txc, time_tai);
737 
738 		txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
739 				  NTP_SCALE_SHIFT);
740 		if (!(time_status & STA_NANO))
741 			txc->offset /= NSEC_PER_USEC;
742 	}
743 
744 	result = time_state;	/* mostly `TIME_OK' */
745 	/* check for errors */
746 	if (is_error_status(time_status))
747 		result = TIME_ERROR;
748 
749 	txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
750 					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
751 	txc->maxerror	   = time_maxerror;
752 	txc->esterror	   = time_esterror;
753 	txc->status	   = time_status;
754 	txc->constant	   = time_constant;
755 	txc->precision	   = 1;
756 	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
757 	txc->tick	   = tick_usec;
758 	txc->tai	   = *time_tai;
759 
760 	/* fill PPS status fields */
761 	pps_fill_timex(txc);
762 
763 	txc->time.tv_sec = (time_t)ts->tv_sec;
764 	txc->time.tv_usec = ts->tv_nsec;
765 	if (!(time_status & STA_NANO))
766 		txc->time.tv_usec /= NSEC_PER_USEC;
767 
768 	/* Handle leapsec adjustments */
769 	if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) {
770 		if ((time_state == TIME_INS) && (time_status & STA_INS)) {
771 			result = TIME_OOP;
772 			txc->tai++;
773 			txc->time.tv_sec--;
774 		}
775 		if ((time_state == TIME_DEL) && (time_status & STA_DEL)) {
776 			result = TIME_WAIT;
777 			txc->tai--;
778 			txc->time.tv_sec++;
779 		}
780 		if ((time_state == TIME_OOP) &&
781 					(ts->tv_sec == ntp_next_leap_sec)) {
782 			result = TIME_WAIT;
783 		}
784 	}
785 
786 	return result;
787 }
788 
789 #ifdef	CONFIG_NTP_PPS
790 
791 /* actually struct pps_normtime is good old struct timespec, but it is
792  * semantically different (and it is the reason why it was invented):
793  * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
794  * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
795 struct pps_normtime {
796 	s64		sec;	/* seconds */
797 	long		nsec;	/* nanoseconds */
798 };
799 
800 /* normalize the timestamp so that nsec is in the
801    ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
802 static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
803 {
804 	struct pps_normtime norm = {
805 		.sec = ts.tv_sec,
806 		.nsec = ts.tv_nsec
807 	};
808 
809 	if (norm.nsec > (NSEC_PER_SEC >> 1)) {
810 		norm.nsec -= NSEC_PER_SEC;
811 		norm.sec++;
812 	}
813 
814 	return norm;
815 }
816 
817 /* get current phase correction and jitter */
818 static inline long pps_phase_filter_get(long *jitter)
819 {
820 	*jitter = pps_tf[0] - pps_tf[1];
821 	if (*jitter < 0)
822 		*jitter = -*jitter;
823 
824 	/* TODO: test various filters */
825 	return pps_tf[0];
826 }
827 
828 /* add the sample to the phase filter */
829 static inline void pps_phase_filter_add(long err)
830 {
831 	pps_tf[2] = pps_tf[1];
832 	pps_tf[1] = pps_tf[0];
833 	pps_tf[0] = err;
834 }
835 
836 /* decrease frequency calibration interval length.
837  * It is halved after four consecutive unstable intervals.
838  */
839 static inline void pps_dec_freq_interval(void)
840 {
841 	if (--pps_intcnt <= -PPS_INTCOUNT) {
842 		pps_intcnt = -PPS_INTCOUNT;
843 		if (pps_shift > PPS_INTMIN) {
844 			pps_shift--;
845 			pps_intcnt = 0;
846 		}
847 	}
848 }
849 
850 /* increase frequency calibration interval length.
851  * It is doubled after four consecutive stable intervals.
852  */
853 static inline void pps_inc_freq_interval(void)
854 {
855 	if (++pps_intcnt >= PPS_INTCOUNT) {
856 		pps_intcnt = PPS_INTCOUNT;
857 		if (pps_shift < PPS_INTMAX) {
858 			pps_shift++;
859 			pps_intcnt = 0;
860 		}
861 	}
862 }
863 
864 /* update clock frequency based on MONOTONIC_RAW clock PPS signal
865  * timestamps
866  *
867  * At the end of the calibration interval the difference between the
868  * first and last MONOTONIC_RAW clock timestamps divided by the length
869  * of the interval becomes the frequency update. If the interval was
870  * too long, the data are discarded.
871  * Returns the difference between old and new frequency values.
872  */
873 static long hardpps_update_freq(struct pps_normtime freq_norm)
874 {
875 	long delta, delta_mod;
876 	s64 ftemp;
877 
878 	/* check if the frequency interval was too long */
879 	if (freq_norm.sec > (2 << pps_shift)) {
880 		time_status |= STA_PPSERROR;
881 		pps_errcnt++;
882 		pps_dec_freq_interval();
883 		printk_deferred(KERN_ERR
884 			"hardpps: PPSERROR: interval too long - %lld s\n",
885 			freq_norm.sec);
886 		return 0;
887 	}
888 
889 	/* here the raw frequency offset and wander (stability) is
890 	 * calculated. If the wander is less than the wander threshold
891 	 * the interval is increased; otherwise it is decreased.
892 	 */
893 	ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
894 			freq_norm.sec);
895 	delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
896 	pps_freq = ftemp;
897 	if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
898 		printk_deferred(KERN_WARNING
899 				"hardpps: PPSWANDER: change=%ld\n", delta);
900 		time_status |= STA_PPSWANDER;
901 		pps_stbcnt++;
902 		pps_dec_freq_interval();
903 	} else {	/* good sample */
904 		pps_inc_freq_interval();
905 	}
906 
907 	/* the stability metric is calculated as the average of recent
908 	 * frequency changes, but is used only for performance
909 	 * monitoring
910 	 */
911 	delta_mod = delta;
912 	if (delta_mod < 0)
913 		delta_mod = -delta_mod;
914 	pps_stabil += (div_s64(((s64)delta_mod) <<
915 				(NTP_SCALE_SHIFT - SHIFT_USEC),
916 				NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
917 
918 	/* if enabled, the system clock frequency is updated */
919 	if ((time_status & STA_PPSFREQ) != 0 &&
920 	    (time_status & STA_FREQHOLD) == 0) {
921 		time_freq = pps_freq;
922 		ntp_update_frequency();
923 	}
924 
925 	return delta;
926 }
927 
928 /* correct REALTIME clock phase error against PPS signal */
929 static void hardpps_update_phase(long error)
930 {
931 	long correction = -error;
932 	long jitter;
933 
934 	/* add the sample to the median filter */
935 	pps_phase_filter_add(correction);
936 	correction = pps_phase_filter_get(&jitter);
937 
938 	/* Nominal jitter is due to PPS signal noise. If it exceeds the
939 	 * threshold, the sample is discarded; otherwise, if so enabled,
940 	 * the time offset is updated.
941 	 */
942 	if (jitter > (pps_jitter << PPS_POPCORN)) {
943 		printk_deferred(KERN_WARNING
944 				"hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
945 				jitter, (pps_jitter << PPS_POPCORN));
946 		time_status |= STA_PPSJITTER;
947 		pps_jitcnt++;
948 	} else if (time_status & STA_PPSTIME) {
949 		/* correct the time using the phase offset */
950 		time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
951 				NTP_INTERVAL_FREQ);
952 		/* cancel running adjtime() */
953 		time_adjust = 0;
954 	}
955 	/* update jitter */
956 	pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
957 }
958 
959 /*
960  * __hardpps() - discipline CPU clock oscillator to external PPS signal
961  *
962  * This routine is called at each PPS signal arrival in order to
963  * discipline the CPU clock oscillator to the PPS signal. It takes two
964  * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
965  * is used to correct clock phase error and the latter is used to
966  * correct the frequency.
967  *
968  * This code is based on David Mills's reference nanokernel
969  * implementation. It was mostly rewritten but keeps the same idea.
970  */
971 void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
972 {
973 	struct pps_normtime pts_norm, freq_norm;
974 
975 	pts_norm = pps_normalize_ts(*phase_ts);
976 
977 	/* clear the error bits, they will be set again if needed */
978 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
979 
980 	/* indicate signal presence */
981 	time_status |= STA_PPSSIGNAL;
982 	pps_valid = PPS_VALID;
983 
984 	/* when called for the first time,
985 	 * just start the frequency interval */
986 	if (unlikely(pps_fbase.tv_sec == 0)) {
987 		pps_fbase = *raw_ts;
988 		return;
989 	}
990 
991 	/* ok, now we have a base for frequency calculation */
992 	freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, pps_fbase));
993 
994 	/* check that the signal is in the range
995 	 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
996 	if ((freq_norm.sec == 0) ||
997 			(freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
998 			(freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
999 		time_status |= STA_PPSJITTER;
1000 		/* restart the frequency calibration interval */
1001 		pps_fbase = *raw_ts;
1002 		printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
1003 		return;
1004 	}
1005 
1006 	/* signal is ok */
1007 
1008 	/* check if the current frequency interval is finished */
1009 	if (freq_norm.sec >= (1 << pps_shift)) {
1010 		pps_calcnt++;
1011 		/* restart the frequency calibration interval */
1012 		pps_fbase = *raw_ts;
1013 		hardpps_update_freq(freq_norm);
1014 	}
1015 
1016 	hardpps_update_phase(pts_norm.nsec);
1017 
1018 }
1019 #endif	/* CONFIG_NTP_PPS */
1020 
1021 static int __init ntp_tick_adj_setup(char *str)
1022 {
1023 	int rc = kstrtos64(str, 0, &ntp_tick_adj);
1024 	if (rc)
1025 		return rc;
1026 
1027 	ntp_tick_adj <<= NTP_SCALE_SHIFT;
1028 	return 1;
1029 }
1030 
1031 __setup("ntp_tick_adj=", ntp_tick_adj_setup);
1032 
1033 void __init ntp_init(void)
1034 {
1035 	ntp_clear();
1036 }
1037