xref: /openbmc/linux/kernel/time/ntp.c (revision 3bf50923)
1 /*
2  * linux/kernel/time/ntp.c
3  *
4  * NTP state machine interfaces and logic.
5  *
6  * This code was mainly moved from kernel/timer.c and kernel/time.c
7  * Please see those files for relevant copyright info and historical
8  * changelogs.
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/time.h>
13 #include <linux/timex.h>
14 #include <linux/jiffies.h>
15 #include <linux/hrtimer.h>
16 #include <linux/capability.h>
17 #include <linux/math64.h>
18 #include <linux/clocksource.h>
19 #include <linux/workqueue.h>
20 #include <asm/timex.h>
21 
22 /*
23  * Timekeeping variables
24  */
25 unsigned long tick_usec = TICK_USEC; 		/* USER_HZ period (usec) */
26 unsigned long tick_nsec;			/* ACTHZ period (nsec) */
27 u64 tick_length;
28 static u64 tick_length_base;
29 
30 static struct hrtimer leap_timer;
31 
32 #define MAX_TICKADJ		500		/* microsecs */
33 #define MAX_TICKADJ_SCALED	(((u64)(MAX_TICKADJ * NSEC_PER_USEC) << \
34 				  NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
35 
36 /*
37  * phase-lock loop variables
38  */
39 /* TIME_ERROR prevents overwriting the CMOS clock */
40 static int time_state = TIME_OK;	/* clock synchronization status	*/
41 int time_status = STA_UNSYNC;		/* clock status bits		*/
42 static long time_tai;			/* TAI offset (s)		*/
43 static s64 time_offset;			/* time adjustment (ns)		*/
44 static long time_constant = 2;		/* pll time constant		*/
45 long time_maxerror = NTP_PHASE_LIMIT;	/* maximum error (us)		*/
46 long time_esterror = NTP_PHASE_LIMIT;	/* estimated error (us)		*/
47 static s64 time_freq;			/* frequency offset (scaled ns/s)*/
48 static long time_reftime;		/* time at last adjustment (s)	*/
49 long time_adjust;
50 static long ntp_tick_adj;
51 
52 static void ntp_update_frequency(void)
53 {
54 	u64 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
55 				<< NTP_SCALE_SHIFT;
56 	second_length += (s64)ntp_tick_adj << NTP_SCALE_SHIFT;
57 	second_length += time_freq;
58 
59 	tick_length_base = second_length;
60 
61 	tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
62 	tick_length_base = div_u64(tick_length_base, NTP_INTERVAL_FREQ);
63 }
64 
65 static void ntp_update_offset(long offset)
66 {
67 	long mtemp;
68 	s64 freq_adj;
69 
70 	if (!(time_status & STA_PLL))
71 		return;
72 
73 	if (!(time_status & STA_NANO))
74 		offset *= NSEC_PER_USEC;
75 
76 	/*
77 	 * Scale the phase adjustment and
78 	 * clamp to the operating range.
79 	 */
80 	offset = min(offset, MAXPHASE);
81 	offset = max(offset, -MAXPHASE);
82 
83 	/*
84 	 * Select how the frequency is to be controlled
85 	 * and in which mode (PLL or FLL).
86 	 */
87 	if (time_status & STA_FREQHOLD || time_reftime == 0)
88 		time_reftime = xtime.tv_sec;
89 	mtemp = xtime.tv_sec - time_reftime;
90 	time_reftime = xtime.tv_sec;
91 
92 	freq_adj = (s64)offset * mtemp;
93 	freq_adj <<= NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant);
94 	time_status &= ~STA_MODE;
95 	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)) {
96 		freq_adj += div_s64((s64)offset << (NTP_SCALE_SHIFT - SHIFT_FLL),
97 				    mtemp);
98 		time_status |= STA_MODE;
99 	}
100 	freq_adj += time_freq;
101 	freq_adj = min(freq_adj, MAXFREQ_SCALED);
102 	time_freq = max(freq_adj, -MAXFREQ_SCALED);
103 
104 	time_offset = div_s64((s64)offset << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
105 }
106 
107 /**
108  * ntp_clear - Clears the NTP state variables
109  *
110  * Must be called while holding a write on the xtime_lock
111  */
112 void ntp_clear(void)
113 {
114 	time_adjust = 0;		/* stop active adjtime() */
115 	time_status |= STA_UNSYNC;
116 	time_maxerror = NTP_PHASE_LIMIT;
117 	time_esterror = NTP_PHASE_LIMIT;
118 
119 	ntp_update_frequency();
120 
121 	tick_length = tick_length_base;
122 	time_offset = 0;
123 }
124 
125 /*
126  * Leap second processing. If in leap-insert state at the end of the
127  * day, the system clock is set back one second; if in leap-delete
128  * state, the system clock is set ahead one second.
129  */
130 static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
131 {
132 	enum hrtimer_restart res = HRTIMER_NORESTART;
133 
134 	write_seqlock(&xtime_lock);
135 
136 	switch (time_state) {
137 	case TIME_OK:
138 		break;
139 	case TIME_INS:
140 		xtime.tv_sec--;
141 		wall_to_monotonic.tv_sec++;
142 		time_state = TIME_OOP;
143 		printk(KERN_NOTICE "Clock: "
144 		       "inserting leap second 23:59:60 UTC\n");
145 		hrtimer_add_expires_ns(&leap_timer, NSEC_PER_SEC);
146 		res = HRTIMER_RESTART;
147 		break;
148 	case TIME_DEL:
149 		xtime.tv_sec++;
150 		time_tai--;
151 		wall_to_monotonic.tv_sec--;
152 		time_state = TIME_WAIT;
153 		printk(KERN_NOTICE "Clock: "
154 		       "deleting leap second 23:59:59 UTC\n");
155 		break;
156 	case TIME_OOP:
157 		time_tai++;
158 		time_state = TIME_WAIT;
159 		/* fall through */
160 	case TIME_WAIT:
161 		if (!(time_status & (STA_INS | STA_DEL)))
162 			time_state = TIME_OK;
163 		break;
164 	}
165 	update_vsyscall(&xtime, clock);
166 
167 	write_sequnlock(&xtime_lock);
168 
169 	return res;
170 }
171 
172 /*
173  * this routine handles the overflow of the microsecond field
174  *
175  * The tricky bits of code to handle the accurate clock support
176  * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
177  * They were originally developed for SUN and DEC kernels.
178  * All the kudos should go to Dave for this stuff.
179  */
180 void second_overflow(void)
181 {
182 	s64 time_adj;
183 
184 	/* Bump the maxerror field */
185 	time_maxerror += MAXFREQ / NSEC_PER_USEC;
186 	if (time_maxerror > NTP_PHASE_LIMIT) {
187 		time_maxerror = NTP_PHASE_LIMIT;
188 		time_status |= STA_UNSYNC;
189 	}
190 
191 	/*
192 	 * Compute the phase adjustment for the next second. The offset is
193 	 * reduced by a fixed factor times the time constant.
194 	 */
195 	tick_length = tick_length_base;
196 	time_adj = shift_right(time_offset, SHIFT_PLL + time_constant);
197 	time_offset -= time_adj;
198 	tick_length += time_adj;
199 
200 	if (unlikely(time_adjust)) {
201 		if (time_adjust > MAX_TICKADJ) {
202 			time_adjust -= MAX_TICKADJ;
203 			tick_length += MAX_TICKADJ_SCALED;
204 		} else if (time_adjust < -MAX_TICKADJ) {
205 			time_adjust += MAX_TICKADJ;
206 			tick_length -= MAX_TICKADJ_SCALED;
207 		} else {
208 			tick_length += (s64)(time_adjust * NSEC_PER_USEC /
209 					NTP_INTERVAL_FREQ) << NTP_SCALE_SHIFT;
210 			time_adjust = 0;
211 		}
212 	}
213 }
214 
215 #ifdef CONFIG_GENERIC_CMOS_UPDATE
216 
217 /* Disable the cmos update - used by virtualization and embedded */
218 int no_sync_cmos_clock  __read_mostly;
219 
220 static void sync_cmos_clock(struct work_struct *work);
221 
222 static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
223 
224 static void sync_cmos_clock(struct work_struct *work)
225 {
226 	struct timespec now, next;
227 	int fail = 1;
228 
229 	/*
230 	 * If we have an externally synchronized Linux clock, then update
231 	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
232 	 * called as close as possible to 500 ms before the new second starts.
233 	 * This code is run on a timer.  If the clock is set, that timer
234 	 * may not expire at the correct time.  Thus, we adjust...
235 	 */
236 	if (!ntp_synced())
237 		/*
238 		 * Not synced, exit, do not restart a timer (if one is
239 		 * running, let it run out).
240 		 */
241 		return;
242 
243 	getnstimeofday(&now);
244 	if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
245 		fail = update_persistent_clock(now);
246 
247 	next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
248 	if (next.tv_nsec <= 0)
249 		next.tv_nsec += NSEC_PER_SEC;
250 
251 	if (!fail)
252 		next.tv_sec = 659;
253 	else
254 		next.tv_sec = 0;
255 
256 	if (next.tv_nsec >= NSEC_PER_SEC) {
257 		next.tv_sec++;
258 		next.tv_nsec -= NSEC_PER_SEC;
259 	}
260 	schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next));
261 }
262 
263 static void notify_cmos_timer(void)
264 {
265 	if (!no_sync_cmos_clock)
266 		schedule_delayed_work(&sync_cmos_work, 0);
267 }
268 
269 #else
270 static inline void notify_cmos_timer(void) { }
271 #endif
272 
273 /* adjtimex mainly allows reading (and writing, if superuser) of
274  * kernel time-keeping variables. used by xntpd.
275  */
276 int do_adjtimex(struct timex *txc)
277 {
278 	struct timespec ts;
279 	int result;
280 
281 	/* Validate the data before disabling interrupts */
282 	if (txc->modes & ADJ_ADJTIME) {
283 		/* singleshot must not be used with any other mode bits */
284 		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
285 			return -EINVAL;
286 		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
287 		    !capable(CAP_SYS_TIME))
288 			return -EPERM;
289 	} else {
290 		/* In order to modify anything, you gotta be super-user! */
291 		 if (txc->modes && !capable(CAP_SYS_TIME))
292 			return -EPERM;
293 
294 		/* if the quartz is off by more than 10% something is VERY wrong! */
295 		if (txc->modes & ADJ_TICK &&
296 		    (txc->tick <  900000/USER_HZ ||
297 		     txc->tick > 1100000/USER_HZ))
298 				return -EINVAL;
299 
300 		if (txc->modes & ADJ_STATUS && time_state != TIME_OK)
301 			hrtimer_cancel(&leap_timer);
302 	}
303 
304 	getnstimeofday(&ts);
305 
306 	write_seqlock_irq(&xtime_lock);
307 
308 	/* If there are input parameters, then process them */
309 	if (txc->modes & ADJ_ADJTIME) {
310 		long save_adjust = time_adjust;
311 
312 		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
313 			/* adjtime() is independent from ntp_adjtime() */
314 			time_adjust = txc->offset;
315 			ntp_update_frequency();
316 		}
317 		txc->offset = save_adjust;
318 		goto adj_done;
319 	}
320 	if (txc->modes) {
321 		long sec;
322 
323 		if (txc->modes & ADJ_STATUS) {
324 			if ((time_status & STA_PLL) &&
325 			    !(txc->status & STA_PLL)) {
326 				time_state = TIME_OK;
327 				time_status = STA_UNSYNC;
328 			}
329 			/* only set allowed bits */
330 			time_status &= STA_RONLY;
331 			time_status |= txc->status & ~STA_RONLY;
332 
333 			switch (time_state) {
334 			case TIME_OK:
335 			start_timer:
336 				sec = ts.tv_sec;
337 				if (time_status & STA_INS) {
338 					time_state = TIME_INS;
339 					sec += 86400 - sec % 86400;
340 					hrtimer_start(&leap_timer, ktime_set(sec, 0), HRTIMER_MODE_ABS);
341 				} else if (time_status & STA_DEL) {
342 					time_state = TIME_DEL;
343 					sec += 86400 - (sec + 1) % 86400;
344 					hrtimer_start(&leap_timer, ktime_set(sec, 0), HRTIMER_MODE_ABS);
345 				}
346 				break;
347 			case TIME_INS:
348 			case TIME_DEL:
349 				time_state = TIME_OK;
350 				goto start_timer;
351 				break;
352 			case TIME_WAIT:
353 				if (!(time_status & (STA_INS | STA_DEL)))
354 					time_state = TIME_OK;
355 				break;
356 			case TIME_OOP:
357 				hrtimer_restart(&leap_timer);
358 				break;
359 			}
360 		}
361 
362 		if (txc->modes & ADJ_NANO)
363 			time_status |= STA_NANO;
364 		if (txc->modes & ADJ_MICRO)
365 			time_status &= ~STA_NANO;
366 
367 		if (txc->modes & ADJ_FREQUENCY) {
368 			time_freq = (s64)txc->freq * PPM_SCALE;
369 			time_freq = min(time_freq, MAXFREQ_SCALED);
370 			time_freq = max(time_freq, -MAXFREQ_SCALED);
371 		}
372 
373 		if (txc->modes & ADJ_MAXERROR)
374 			time_maxerror = txc->maxerror;
375 		if (txc->modes & ADJ_ESTERROR)
376 			time_esterror = txc->esterror;
377 
378 		if (txc->modes & ADJ_TIMECONST) {
379 			time_constant = txc->constant;
380 			if (!(time_status & STA_NANO))
381 				time_constant += 4;
382 			time_constant = min(time_constant, (long)MAXTC);
383 			time_constant = max(time_constant, 0l);
384 		}
385 
386 		if (txc->modes & ADJ_TAI && txc->constant > 0)
387 			time_tai = txc->constant;
388 
389 		if (txc->modes & ADJ_OFFSET)
390 			ntp_update_offset(txc->offset);
391 		if (txc->modes & ADJ_TICK)
392 			tick_usec = txc->tick;
393 
394 		if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
395 			ntp_update_frequency();
396 	}
397 
398 	txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
399 				  NTP_SCALE_SHIFT);
400 	if (!(time_status & STA_NANO))
401 		txc->offset /= NSEC_PER_USEC;
402 
403 adj_done:
404 	result = time_state;	/* mostly `TIME_OK' */
405 	if (time_status & (STA_UNSYNC|STA_CLOCKERR))
406 		result = TIME_ERROR;
407 
408 	txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
409 					 (s64)PPM_SCALE_INV, NTP_SCALE_SHIFT);
410 	txc->maxerror	   = time_maxerror;
411 	txc->esterror	   = time_esterror;
412 	txc->status	   = time_status;
413 	txc->constant	   = time_constant;
414 	txc->precision	   = 1;
415 	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
416 	txc->tick	   = tick_usec;
417 	txc->tai	   = time_tai;
418 
419 	/* PPS is not implemented, so these are zero */
420 	txc->ppsfreq	   = 0;
421 	txc->jitter	   = 0;
422 	txc->shift	   = 0;
423 	txc->stabil	   = 0;
424 	txc->jitcnt	   = 0;
425 	txc->calcnt	   = 0;
426 	txc->errcnt	   = 0;
427 	txc->stbcnt	   = 0;
428 	write_sequnlock_irq(&xtime_lock);
429 
430 	txc->time.tv_sec = ts.tv_sec;
431 	txc->time.tv_usec = ts.tv_nsec;
432 	if (!(time_status & STA_NANO))
433 		txc->time.tv_usec /= NSEC_PER_USEC;
434 
435 	notify_cmos_timer();
436 
437 	return result;
438 }
439 
440 static int __init ntp_tick_adj_setup(char *str)
441 {
442 	ntp_tick_adj = simple_strtol(str, NULL, 0);
443 	return 1;
444 }
445 
446 __setup("ntp_tick_adj=", ntp_tick_adj_setup);
447 
448 void __init ntp_init(void)
449 {
450 	ntp_clear();
451 	hrtimer_init(&leap_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
452 	leap_timer.function = ntp_leap_second;
453 }
454