xref: /openbmc/linux/kernel/time/ntp.c (revision 3805e6a1)
1 /*
2  * NTP state machine interfaces and logic.
3  *
4  * This code was mainly moved from kernel/timer.c and kernel/time.c
5  * Please see those files for relevant copyright info and historical
6  * changelogs.
7  */
8 #include <linux/capability.h>
9 #include <linux/clocksource.h>
10 #include <linux/workqueue.h>
11 #include <linux/hrtimer.h>
12 #include <linux/jiffies.h>
13 #include <linux/math64.h>
14 #include <linux/timex.h>
15 #include <linux/time.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/rtc.h>
19 #include <linux/math64.h>
20 
21 #include "ntp_internal.h"
22 #include "timekeeping_internal.h"
23 
24 
25 /*
26  * NTP timekeeping variables:
27  *
28  * Note: All of the NTP state is protected by the timekeeping locks.
29  */
30 
31 
32 /* USER_HZ period (usecs): */
33 unsigned long			tick_usec = TICK_USEC;
34 
35 /* SHIFTED_HZ period (nsecs): */
36 unsigned long			tick_nsec;
37 
38 static u64			tick_length;
39 static u64			tick_length_base;
40 
41 #define SECS_PER_DAY		86400
42 #define MAX_TICKADJ		500LL		/* usecs */
43 #define MAX_TICKADJ_SCALED \
44 	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
45 
46 /*
47  * phase-lock loop variables
48  */
49 
50 /*
51  * clock synchronization status
52  *
53  * (TIME_ERROR prevents overwriting the CMOS clock)
54  */
55 static int			time_state = TIME_OK;
56 
57 /* clock status bits:							*/
58 static int			time_status = STA_UNSYNC;
59 
60 /* time adjustment (nsecs):						*/
61 static s64			time_offset;
62 
63 /* pll time constant:							*/
64 static long			time_constant = 2;
65 
66 /* maximum error (usecs):						*/
67 static long			time_maxerror = NTP_PHASE_LIMIT;
68 
69 /* estimated error (usecs):						*/
70 static long			time_esterror = NTP_PHASE_LIMIT;
71 
72 /* frequency offset (scaled nsecs/secs):				*/
73 static s64			time_freq;
74 
75 /* time at last adjustment (secs):					*/
76 static time64_t		time_reftime;
77 
78 static long			time_adjust;
79 
80 /* constant (boot-param configurable) NTP tick adjustment (upscaled)	*/
81 static s64			ntp_tick_adj;
82 
83 /* second value of the next pending leapsecond, or TIME64_MAX if no leap */
84 static time64_t			ntp_next_leap_sec = TIME64_MAX;
85 
86 #ifdef CONFIG_NTP_PPS
87 
88 /*
89  * The following variables are used when a pulse-per-second (PPS) signal
90  * is available. They establish the engineering parameters of the clock
91  * discipline loop when controlled by the PPS signal.
92  */
93 #define PPS_VALID	10	/* PPS signal watchdog max (s) */
94 #define PPS_POPCORN	4	/* popcorn spike threshold (shift) */
95 #define PPS_INTMIN	2	/* min freq interval (s) (shift) */
96 #define PPS_INTMAX	8	/* max freq interval (s) (shift) */
97 #define PPS_INTCOUNT	4	/* number of consecutive good intervals to
98 				   increase pps_shift or consecutive bad
99 				   intervals to decrease it */
100 #define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */
101 
102 static int pps_valid;		/* signal watchdog counter */
103 static long pps_tf[3];		/* phase median filter */
104 static long pps_jitter;		/* current jitter (ns) */
105 static struct timespec64 pps_fbase; /* beginning of the last freq interval */
106 static int pps_shift;		/* current interval duration (s) (shift) */
107 static int pps_intcnt;		/* interval counter */
108 static s64 pps_freq;		/* frequency offset (scaled ns/s) */
109 static long pps_stabil;		/* current stability (scaled ns/s) */
110 
111 /*
112  * PPS signal quality monitors
113  */
114 static long pps_calcnt;		/* calibration intervals */
115 static long pps_jitcnt;		/* jitter limit exceeded */
116 static long pps_stbcnt;		/* stability limit exceeded */
117 static long pps_errcnt;		/* calibration errors */
118 
119 
120 /* PPS kernel consumer compensates the whole phase error immediately.
121  * Otherwise, reduce the offset by a fixed factor times the time constant.
122  */
123 static inline s64 ntp_offset_chunk(s64 offset)
124 {
125 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
126 		return offset;
127 	else
128 		return shift_right(offset, SHIFT_PLL + time_constant);
129 }
130 
131 static inline void pps_reset_freq_interval(void)
132 {
133 	/* the PPS calibration interval may end
134 	   surprisingly early */
135 	pps_shift = PPS_INTMIN;
136 	pps_intcnt = 0;
137 }
138 
139 /**
140  * pps_clear - Clears the PPS state variables
141  */
142 static inline void pps_clear(void)
143 {
144 	pps_reset_freq_interval();
145 	pps_tf[0] = 0;
146 	pps_tf[1] = 0;
147 	pps_tf[2] = 0;
148 	pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
149 	pps_freq = 0;
150 }
151 
152 /* Decrease pps_valid to indicate that another second has passed since
153  * the last PPS signal. When it reaches 0, indicate that PPS signal is
154  * missing.
155  */
156 static inline void pps_dec_valid(void)
157 {
158 	if (pps_valid > 0)
159 		pps_valid--;
160 	else {
161 		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
162 				 STA_PPSWANDER | STA_PPSERROR);
163 		pps_clear();
164 	}
165 }
166 
167 static inline void pps_set_freq(s64 freq)
168 {
169 	pps_freq = freq;
170 }
171 
172 static inline int is_error_status(int status)
173 {
174 	return (status & (STA_UNSYNC|STA_CLOCKERR))
175 		/* PPS signal lost when either PPS time or
176 		 * PPS frequency synchronization requested
177 		 */
178 		|| ((status & (STA_PPSFREQ|STA_PPSTIME))
179 			&& !(status & STA_PPSSIGNAL))
180 		/* PPS jitter exceeded when
181 		 * PPS time synchronization requested */
182 		|| ((status & (STA_PPSTIME|STA_PPSJITTER))
183 			== (STA_PPSTIME|STA_PPSJITTER))
184 		/* PPS wander exceeded or calibration error when
185 		 * PPS frequency synchronization requested
186 		 */
187 		|| ((status & STA_PPSFREQ)
188 			&& (status & (STA_PPSWANDER|STA_PPSERROR)));
189 }
190 
191 static inline void pps_fill_timex(struct timex *txc)
192 {
193 	txc->ppsfreq	   = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
194 					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
195 	txc->jitter	   = pps_jitter;
196 	if (!(time_status & STA_NANO))
197 		txc->jitter /= NSEC_PER_USEC;
198 	txc->shift	   = pps_shift;
199 	txc->stabil	   = pps_stabil;
200 	txc->jitcnt	   = pps_jitcnt;
201 	txc->calcnt	   = pps_calcnt;
202 	txc->errcnt	   = pps_errcnt;
203 	txc->stbcnt	   = pps_stbcnt;
204 }
205 
206 #else /* !CONFIG_NTP_PPS */
207 
208 static inline s64 ntp_offset_chunk(s64 offset)
209 {
210 	return shift_right(offset, SHIFT_PLL + time_constant);
211 }
212 
213 static inline void pps_reset_freq_interval(void) {}
214 static inline void pps_clear(void) {}
215 static inline void pps_dec_valid(void) {}
216 static inline void pps_set_freq(s64 freq) {}
217 
218 static inline int is_error_status(int status)
219 {
220 	return status & (STA_UNSYNC|STA_CLOCKERR);
221 }
222 
223 static inline void pps_fill_timex(struct timex *txc)
224 {
225 	/* PPS is not implemented, so these are zero */
226 	txc->ppsfreq	   = 0;
227 	txc->jitter	   = 0;
228 	txc->shift	   = 0;
229 	txc->stabil	   = 0;
230 	txc->jitcnt	   = 0;
231 	txc->calcnt	   = 0;
232 	txc->errcnt	   = 0;
233 	txc->stbcnt	   = 0;
234 }
235 
236 #endif /* CONFIG_NTP_PPS */
237 
238 
239 /**
240  * ntp_synced - Returns 1 if the NTP status is not UNSYNC
241  *
242  */
243 static inline int ntp_synced(void)
244 {
245 	return !(time_status & STA_UNSYNC);
246 }
247 
248 
249 /*
250  * NTP methods:
251  */
252 
253 /*
254  * Update (tick_length, tick_length_base, tick_nsec), based
255  * on (tick_usec, ntp_tick_adj, time_freq):
256  */
257 static void ntp_update_frequency(void)
258 {
259 	u64 second_length;
260 	u64 new_base;
261 
262 	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
263 						<< NTP_SCALE_SHIFT;
264 
265 	second_length		+= ntp_tick_adj;
266 	second_length		+= time_freq;
267 
268 	tick_nsec		 = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
269 	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
270 
271 	/*
272 	 * Don't wait for the next second_overflow, apply
273 	 * the change to the tick length immediately:
274 	 */
275 	tick_length		+= new_base - tick_length_base;
276 	tick_length_base	 = new_base;
277 }
278 
279 static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
280 {
281 	time_status &= ~STA_MODE;
282 
283 	if (secs < MINSEC)
284 		return 0;
285 
286 	if (!(time_status & STA_FLL) && (secs <= MAXSEC))
287 		return 0;
288 
289 	time_status |= STA_MODE;
290 
291 	return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
292 }
293 
294 static void ntp_update_offset(long offset)
295 {
296 	s64 freq_adj;
297 	s64 offset64;
298 	long secs;
299 
300 	if (!(time_status & STA_PLL))
301 		return;
302 
303 	if (!(time_status & STA_NANO)) {
304 		/* Make sure the multiplication below won't overflow */
305 		offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC);
306 		offset *= NSEC_PER_USEC;
307 	}
308 
309 	/*
310 	 * Scale the phase adjustment and
311 	 * clamp to the operating range.
312 	 */
313 	offset = clamp(offset, -MAXPHASE, MAXPHASE);
314 
315 	/*
316 	 * Select how the frequency is to be controlled
317 	 * and in which mode (PLL or FLL).
318 	 */
319 	secs = (long)(__ktime_get_real_seconds() - time_reftime);
320 	if (unlikely(time_status & STA_FREQHOLD))
321 		secs = 0;
322 
323 	time_reftime = __ktime_get_real_seconds();
324 
325 	offset64    = offset;
326 	freq_adj    = ntp_update_offset_fll(offset64, secs);
327 
328 	/*
329 	 * Clamp update interval to reduce PLL gain with low
330 	 * sampling rate (e.g. intermittent network connection)
331 	 * to avoid instability.
332 	 */
333 	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
334 		secs = 1 << (SHIFT_PLL + 1 + time_constant);
335 
336 	freq_adj    += (offset64 * secs) <<
337 			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
338 
339 	freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);
340 
341 	time_freq   = max(freq_adj, -MAXFREQ_SCALED);
342 
343 	time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
344 }
345 
346 /**
347  * ntp_clear - Clears the NTP state variables
348  */
349 void ntp_clear(void)
350 {
351 	time_adjust	= 0;		/* stop active adjtime() */
352 	time_status	|= STA_UNSYNC;
353 	time_maxerror	= NTP_PHASE_LIMIT;
354 	time_esterror	= NTP_PHASE_LIMIT;
355 
356 	ntp_update_frequency();
357 
358 	tick_length	= tick_length_base;
359 	time_offset	= 0;
360 
361 	ntp_next_leap_sec = TIME64_MAX;
362 	/* Clear PPS state variables */
363 	pps_clear();
364 }
365 
366 
367 u64 ntp_tick_length(void)
368 {
369 	return tick_length;
370 }
371 
372 /**
373  * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
374  *
375  * Provides the time of the next leapsecond against CLOCK_REALTIME in
376  * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
377  */
378 ktime_t ntp_get_next_leap(void)
379 {
380 	ktime_t ret;
381 
382 	if ((time_state == TIME_INS) && (time_status & STA_INS))
383 		return ktime_set(ntp_next_leap_sec, 0);
384 	ret.tv64 = KTIME_MAX;
385 	return ret;
386 }
387 
388 /*
389  * this routine handles the overflow of the microsecond field
390  *
391  * The tricky bits of code to handle the accurate clock support
392  * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
393  * They were originally developed for SUN and DEC kernels.
394  * All the kudos should go to Dave for this stuff.
395  *
396  * Also handles leap second processing, and returns leap offset
397  */
398 int second_overflow(time64_t secs)
399 {
400 	s64 delta;
401 	int leap = 0;
402 	s32 rem;
403 
404 	/*
405 	 * Leap second processing. If in leap-insert state at the end of the
406 	 * day, the system clock is set back one second; if in leap-delete
407 	 * state, the system clock is set ahead one second.
408 	 */
409 	switch (time_state) {
410 	case TIME_OK:
411 		if (time_status & STA_INS) {
412 			time_state = TIME_INS;
413 			div_s64_rem(secs, SECS_PER_DAY, &rem);
414 			ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
415 		} else if (time_status & STA_DEL) {
416 			time_state = TIME_DEL;
417 			div_s64_rem(secs + 1, SECS_PER_DAY, &rem);
418 			ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
419 		}
420 		break;
421 	case TIME_INS:
422 		if (!(time_status & STA_INS)) {
423 			ntp_next_leap_sec = TIME64_MAX;
424 			time_state = TIME_OK;
425 		} else if (secs == ntp_next_leap_sec) {
426 			leap = -1;
427 			time_state = TIME_OOP;
428 			printk(KERN_NOTICE
429 				"Clock: inserting leap second 23:59:60 UTC\n");
430 		}
431 		break;
432 	case TIME_DEL:
433 		if (!(time_status & STA_DEL)) {
434 			ntp_next_leap_sec = TIME64_MAX;
435 			time_state = TIME_OK;
436 		} else if (secs == ntp_next_leap_sec) {
437 			leap = 1;
438 			ntp_next_leap_sec = TIME64_MAX;
439 			time_state = TIME_WAIT;
440 			printk(KERN_NOTICE
441 				"Clock: deleting leap second 23:59:59 UTC\n");
442 		}
443 		break;
444 	case TIME_OOP:
445 		ntp_next_leap_sec = TIME64_MAX;
446 		time_state = TIME_WAIT;
447 		break;
448 	case TIME_WAIT:
449 		if (!(time_status & (STA_INS | STA_DEL)))
450 			time_state = TIME_OK;
451 		break;
452 	}
453 
454 
455 	/* Bump the maxerror field */
456 	time_maxerror += MAXFREQ / NSEC_PER_USEC;
457 	if (time_maxerror > NTP_PHASE_LIMIT) {
458 		time_maxerror = NTP_PHASE_LIMIT;
459 		time_status |= STA_UNSYNC;
460 	}
461 
462 	/* Compute the phase adjustment for the next second */
463 	tick_length	 = tick_length_base;
464 
465 	delta		 = ntp_offset_chunk(time_offset);
466 	time_offset	-= delta;
467 	tick_length	+= delta;
468 
469 	/* Check PPS signal */
470 	pps_dec_valid();
471 
472 	if (!time_adjust)
473 		goto out;
474 
475 	if (time_adjust > MAX_TICKADJ) {
476 		time_adjust -= MAX_TICKADJ;
477 		tick_length += MAX_TICKADJ_SCALED;
478 		goto out;
479 	}
480 
481 	if (time_adjust < -MAX_TICKADJ) {
482 		time_adjust += MAX_TICKADJ;
483 		tick_length -= MAX_TICKADJ_SCALED;
484 		goto out;
485 	}
486 
487 	tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
488 							 << NTP_SCALE_SHIFT;
489 	time_adjust = 0;
490 
491 out:
492 	return leap;
493 }
494 
495 #ifdef CONFIG_GENERIC_CMOS_UPDATE
496 int __weak update_persistent_clock(struct timespec now)
497 {
498 	return -ENODEV;
499 }
500 
501 int __weak update_persistent_clock64(struct timespec64 now64)
502 {
503 	struct timespec now;
504 
505 	now = timespec64_to_timespec(now64);
506 	return update_persistent_clock(now);
507 }
508 #endif
509 
510 #if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
511 static void sync_cmos_clock(struct work_struct *work);
512 
513 static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
514 
515 static void sync_cmos_clock(struct work_struct *work)
516 {
517 	struct timespec64 now;
518 	struct timespec64 next;
519 	int fail = 1;
520 
521 	/*
522 	 * If we have an externally synchronized Linux clock, then update
523 	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
524 	 * called as close as possible to 500 ms before the new second starts.
525 	 * This code is run on a timer.  If the clock is set, that timer
526 	 * may not expire at the correct time.  Thus, we adjust...
527 	 * We want the clock to be within a couple of ticks from the target.
528 	 */
529 	if (!ntp_synced()) {
530 		/*
531 		 * Not synced, exit, do not restart a timer (if one is
532 		 * running, let it run out).
533 		 */
534 		return;
535 	}
536 
537 	getnstimeofday64(&now);
538 	if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec * 5) {
539 		struct timespec64 adjust = now;
540 
541 		fail = -ENODEV;
542 		if (persistent_clock_is_local)
543 			adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
544 #ifdef CONFIG_GENERIC_CMOS_UPDATE
545 		fail = update_persistent_clock64(adjust);
546 #endif
547 
548 #ifdef CONFIG_RTC_SYSTOHC
549 		if (fail == -ENODEV)
550 			fail = rtc_set_ntp_time(adjust);
551 #endif
552 	}
553 
554 	next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
555 	if (next.tv_nsec <= 0)
556 		next.tv_nsec += NSEC_PER_SEC;
557 
558 	if (!fail || fail == -ENODEV)
559 		next.tv_sec = 659;
560 	else
561 		next.tv_sec = 0;
562 
563 	if (next.tv_nsec >= NSEC_PER_SEC) {
564 		next.tv_sec++;
565 		next.tv_nsec -= NSEC_PER_SEC;
566 	}
567 	queue_delayed_work(system_power_efficient_wq,
568 			   &sync_cmos_work, timespec64_to_jiffies(&next));
569 }
570 
571 void ntp_notify_cmos_timer(void)
572 {
573 	queue_delayed_work(system_power_efficient_wq, &sync_cmos_work, 0);
574 }
575 
576 #else
577 void ntp_notify_cmos_timer(void) { }
578 #endif
579 
580 
581 /*
582  * Propagate a new txc->status value into the NTP state:
583  */
584 static inline void process_adj_status(struct timex *txc, struct timespec64 *ts)
585 {
586 	if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
587 		time_state = TIME_OK;
588 		time_status = STA_UNSYNC;
589 		ntp_next_leap_sec = TIME64_MAX;
590 		/* restart PPS frequency calibration */
591 		pps_reset_freq_interval();
592 	}
593 
594 	/*
595 	 * If we turn on PLL adjustments then reset the
596 	 * reference time to current time.
597 	 */
598 	if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
599 		time_reftime = __ktime_get_real_seconds();
600 
601 	/* only set allowed bits */
602 	time_status &= STA_RONLY;
603 	time_status |= txc->status & ~STA_RONLY;
604 }
605 
606 
607 static inline void process_adjtimex_modes(struct timex *txc,
608 						struct timespec64 *ts,
609 						s32 *time_tai)
610 {
611 	if (txc->modes & ADJ_STATUS)
612 		process_adj_status(txc, ts);
613 
614 	if (txc->modes & ADJ_NANO)
615 		time_status |= STA_NANO;
616 
617 	if (txc->modes & ADJ_MICRO)
618 		time_status &= ~STA_NANO;
619 
620 	if (txc->modes & ADJ_FREQUENCY) {
621 		time_freq = txc->freq * PPM_SCALE;
622 		time_freq = min(time_freq, MAXFREQ_SCALED);
623 		time_freq = max(time_freq, -MAXFREQ_SCALED);
624 		/* update pps_freq */
625 		pps_set_freq(time_freq);
626 	}
627 
628 	if (txc->modes & ADJ_MAXERROR)
629 		time_maxerror = txc->maxerror;
630 
631 	if (txc->modes & ADJ_ESTERROR)
632 		time_esterror = txc->esterror;
633 
634 	if (txc->modes & ADJ_TIMECONST) {
635 		time_constant = txc->constant;
636 		if (!(time_status & STA_NANO))
637 			time_constant += 4;
638 		time_constant = min(time_constant, (long)MAXTC);
639 		time_constant = max(time_constant, 0l);
640 	}
641 
642 	if (txc->modes & ADJ_TAI && txc->constant > 0)
643 		*time_tai = txc->constant;
644 
645 	if (txc->modes & ADJ_OFFSET)
646 		ntp_update_offset(txc->offset);
647 
648 	if (txc->modes & ADJ_TICK)
649 		tick_usec = txc->tick;
650 
651 	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
652 		ntp_update_frequency();
653 }
654 
655 
656 
657 /**
658  * ntp_validate_timex - Ensures the timex is ok for use in do_adjtimex
659  */
660 int ntp_validate_timex(struct timex *txc)
661 {
662 	if (txc->modes & ADJ_ADJTIME) {
663 		/* singleshot must not be used with any other mode bits */
664 		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
665 			return -EINVAL;
666 		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
667 		    !capable(CAP_SYS_TIME))
668 			return -EPERM;
669 	} else {
670 		/* In order to modify anything, you gotta be super-user! */
671 		 if (txc->modes && !capable(CAP_SYS_TIME))
672 			return -EPERM;
673 		/*
674 		 * if the quartz is off by more than 10% then
675 		 * something is VERY wrong!
676 		 */
677 		if (txc->modes & ADJ_TICK &&
678 		    (txc->tick <  900000/USER_HZ ||
679 		     txc->tick > 1100000/USER_HZ))
680 			return -EINVAL;
681 	}
682 
683 	if (txc->modes & ADJ_SETOFFSET) {
684 		/* In order to inject time, you gotta be super-user! */
685 		if (!capable(CAP_SYS_TIME))
686 			return -EPERM;
687 
688 		if (txc->modes & ADJ_NANO) {
689 			struct timespec ts;
690 
691 			ts.tv_sec = txc->time.tv_sec;
692 			ts.tv_nsec = txc->time.tv_usec;
693 			if (!timespec_inject_offset_valid(&ts))
694 				return -EINVAL;
695 
696 		} else {
697 			if (!timeval_inject_offset_valid(&txc->time))
698 				return -EINVAL;
699 		}
700 	}
701 
702 	/*
703 	 * Check for potential multiplication overflows that can
704 	 * only happen on 64-bit systems:
705 	 */
706 	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
707 		if (LLONG_MIN / PPM_SCALE > txc->freq)
708 			return -EINVAL;
709 		if (LLONG_MAX / PPM_SCALE < txc->freq)
710 			return -EINVAL;
711 	}
712 
713 	return 0;
714 }
715 
716 
717 /*
718  * adjtimex mainly allows reading (and writing, if superuser) of
719  * kernel time-keeping variables. used by xntpd.
720  */
721 int __do_adjtimex(struct timex *txc, struct timespec64 *ts, s32 *time_tai)
722 {
723 	int result;
724 
725 	if (txc->modes & ADJ_ADJTIME) {
726 		long save_adjust = time_adjust;
727 
728 		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
729 			/* adjtime() is independent from ntp_adjtime() */
730 			time_adjust = txc->offset;
731 			ntp_update_frequency();
732 		}
733 		txc->offset = save_adjust;
734 	} else {
735 
736 		/* If there are input parameters, then process them: */
737 		if (txc->modes)
738 			process_adjtimex_modes(txc, ts, time_tai);
739 
740 		txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
741 				  NTP_SCALE_SHIFT);
742 		if (!(time_status & STA_NANO))
743 			txc->offset /= NSEC_PER_USEC;
744 	}
745 
746 	result = time_state;	/* mostly `TIME_OK' */
747 	/* check for errors */
748 	if (is_error_status(time_status))
749 		result = TIME_ERROR;
750 
751 	txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
752 					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
753 	txc->maxerror	   = time_maxerror;
754 	txc->esterror	   = time_esterror;
755 	txc->status	   = time_status;
756 	txc->constant	   = time_constant;
757 	txc->precision	   = 1;
758 	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
759 	txc->tick	   = tick_usec;
760 	txc->tai	   = *time_tai;
761 
762 	/* fill PPS status fields */
763 	pps_fill_timex(txc);
764 
765 	txc->time.tv_sec = (time_t)ts->tv_sec;
766 	txc->time.tv_usec = ts->tv_nsec;
767 	if (!(time_status & STA_NANO))
768 		txc->time.tv_usec /= NSEC_PER_USEC;
769 
770 	/* Handle leapsec adjustments */
771 	if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) {
772 		if ((time_state == TIME_INS) && (time_status & STA_INS)) {
773 			result = TIME_OOP;
774 			txc->tai++;
775 			txc->time.tv_sec--;
776 		}
777 		if ((time_state == TIME_DEL) && (time_status & STA_DEL)) {
778 			result = TIME_WAIT;
779 			txc->tai--;
780 			txc->time.tv_sec++;
781 		}
782 		if ((time_state == TIME_OOP) &&
783 					(ts->tv_sec == ntp_next_leap_sec)) {
784 			result = TIME_WAIT;
785 		}
786 	}
787 
788 	return result;
789 }
790 
791 #ifdef	CONFIG_NTP_PPS
792 
793 /* actually struct pps_normtime is good old struct timespec, but it is
794  * semantically different (and it is the reason why it was invented):
795  * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
796  * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
797 struct pps_normtime {
798 	s64		sec;	/* seconds */
799 	long		nsec;	/* nanoseconds */
800 };
801 
802 /* normalize the timestamp so that nsec is in the
803    ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
804 static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
805 {
806 	struct pps_normtime norm = {
807 		.sec = ts.tv_sec,
808 		.nsec = ts.tv_nsec
809 	};
810 
811 	if (norm.nsec > (NSEC_PER_SEC >> 1)) {
812 		norm.nsec -= NSEC_PER_SEC;
813 		norm.sec++;
814 	}
815 
816 	return norm;
817 }
818 
819 /* get current phase correction and jitter */
820 static inline long pps_phase_filter_get(long *jitter)
821 {
822 	*jitter = pps_tf[0] - pps_tf[1];
823 	if (*jitter < 0)
824 		*jitter = -*jitter;
825 
826 	/* TODO: test various filters */
827 	return pps_tf[0];
828 }
829 
830 /* add the sample to the phase filter */
831 static inline void pps_phase_filter_add(long err)
832 {
833 	pps_tf[2] = pps_tf[1];
834 	pps_tf[1] = pps_tf[0];
835 	pps_tf[0] = err;
836 }
837 
838 /* decrease frequency calibration interval length.
839  * It is halved after four consecutive unstable intervals.
840  */
841 static inline void pps_dec_freq_interval(void)
842 {
843 	if (--pps_intcnt <= -PPS_INTCOUNT) {
844 		pps_intcnt = -PPS_INTCOUNT;
845 		if (pps_shift > PPS_INTMIN) {
846 			pps_shift--;
847 			pps_intcnt = 0;
848 		}
849 	}
850 }
851 
852 /* increase frequency calibration interval length.
853  * It is doubled after four consecutive stable intervals.
854  */
855 static inline void pps_inc_freq_interval(void)
856 {
857 	if (++pps_intcnt >= PPS_INTCOUNT) {
858 		pps_intcnt = PPS_INTCOUNT;
859 		if (pps_shift < PPS_INTMAX) {
860 			pps_shift++;
861 			pps_intcnt = 0;
862 		}
863 	}
864 }
865 
866 /* update clock frequency based on MONOTONIC_RAW clock PPS signal
867  * timestamps
868  *
869  * At the end of the calibration interval the difference between the
870  * first and last MONOTONIC_RAW clock timestamps divided by the length
871  * of the interval becomes the frequency update. If the interval was
872  * too long, the data are discarded.
873  * Returns the difference between old and new frequency values.
874  */
875 static long hardpps_update_freq(struct pps_normtime freq_norm)
876 {
877 	long delta, delta_mod;
878 	s64 ftemp;
879 
880 	/* check if the frequency interval was too long */
881 	if (freq_norm.sec > (2 << pps_shift)) {
882 		time_status |= STA_PPSERROR;
883 		pps_errcnt++;
884 		pps_dec_freq_interval();
885 		printk_deferred(KERN_ERR
886 			"hardpps: PPSERROR: interval too long - %lld s\n",
887 			freq_norm.sec);
888 		return 0;
889 	}
890 
891 	/* here the raw frequency offset and wander (stability) is
892 	 * calculated. If the wander is less than the wander threshold
893 	 * the interval is increased; otherwise it is decreased.
894 	 */
895 	ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
896 			freq_norm.sec);
897 	delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
898 	pps_freq = ftemp;
899 	if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
900 		printk_deferred(KERN_WARNING
901 				"hardpps: PPSWANDER: change=%ld\n", delta);
902 		time_status |= STA_PPSWANDER;
903 		pps_stbcnt++;
904 		pps_dec_freq_interval();
905 	} else {	/* good sample */
906 		pps_inc_freq_interval();
907 	}
908 
909 	/* the stability metric is calculated as the average of recent
910 	 * frequency changes, but is used only for performance
911 	 * monitoring
912 	 */
913 	delta_mod = delta;
914 	if (delta_mod < 0)
915 		delta_mod = -delta_mod;
916 	pps_stabil += (div_s64(((s64)delta_mod) <<
917 				(NTP_SCALE_SHIFT - SHIFT_USEC),
918 				NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
919 
920 	/* if enabled, the system clock frequency is updated */
921 	if ((time_status & STA_PPSFREQ) != 0 &&
922 	    (time_status & STA_FREQHOLD) == 0) {
923 		time_freq = pps_freq;
924 		ntp_update_frequency();
925 	}
926 
927 	return delta;
928 }
929 
930 /* correct REALTIME clock phase error against PPS signal */
931 static void hardpps_update_phase(long error)
932 {
933 	long correction = -error;
934 	long jitter;
935 
936 	/* add the sample to the median filter */
937 	pps_phase_filter_add(correction);
938 	correction = pps_phase_filter_get(&jitter);
939 
940 	/* Nominal jitter is due to PPS signal noise. If it exceeds the
941 	 * threshold, the sample is discarded; otherwise, if so enabled,
942 	 * the time offset is updated.
943 	 */
944 	if (jitter > (pps_jitter << PPS_POPCORN)) {
945 		printk_deferred(KERN_WARNING
946 				"hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
947 				jitter, (pps_jitter << PPS_POPCORN));
948 		time_status |= STA_PPSJITTER;
949 		pps_jitcnt++;
950 	} else if (time_status & STA_PPSTIME) {
951 		/* correct the time using the phase offset */
952 		time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
953 				NTP_INTERVAL_FREQ);
954 		/* cancel running adjtime() */
955 		time_adjust = 0;
956 	}
957 	/* update jitter */
958 	pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
959 }
960 
961 /*
962  * __hardpps() - discipline CPU clock oscillator to external PPS signal
963  *
964  * This routine is called at each PPS signal arrival in order to
965  * discipline the CPU clock oscillator to the PPS signal. It takes two
966  * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
967  * is used to correct clock phase error and the latter is used to
968  * correct the frequency.
969  *
970  * This code is based on David Mills's reference nanokernel
971  * implementation. It was mostly rewritten but keeps the same idea.
972  */
973 void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
974 {
975 	struct pps_normtime pts_norm, freq_norm;
976 
977 	pts_norm = pps_normalize_ts(*phase_ts);
978 
979 	/* clear the error bits, they will be set again if needed */
980 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
981 
982 	/* indicate signal presence */
983 	time_status |= STA_PPSSIGNAL;
984 	pps_valid = PPS_VALID;
985 
986 	/* when called for the first time,
987 	 * just start the frequency interval */
988 	if (unlikely(pps_fbase.tv_sec == 0)) {
989 		pps_fbase = *raw_ts;
990 		return;
991 	}
992 
993 	/* ok, now we have a base for frequency calculation */
994 	freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, pps_fbase));
995 
996 	/* check that the signal is in the range
997 	 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
998 	if ((freq_norm.sec == 0) ||
999 			(freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
1000 			(freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
1001 		time_status |= STA_PPSJITTER;
1002 		/* restart the frequency calibration interval */
1003 		pps_fbase = *raw_ts;
1004 		printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
1005 		return;
1006 	}
1007 
1008 	/* signal is ok */
1009 
1010 	/* check if the current frequency interval is finished */
1011 	if (freq_norm.sec >= (1 << pps_shift)) {
1012 		pps_calcnt++;
1013 		/* restart the frequency calibration interval */
1014 		pps_fbase = *raw_ts;
1015 		hardpps_update_freq(freq_norm);
1016 	}
1017 
1018 	hardpps_update_phase(pts_norm.nsec);
1019 
1020 }
1021 #endif	/* CONFIG_NTP_PPS */
1022 
1023 static int __init ntp_tick_adj_setup(char *str)
1024 {
1025 	int rc = kstrtol(str, 0, (long *)&ntp_tick_adj);
1026 
1027 	if (rc)
1028 		return rc;
1029 	ntp_tick_adj <<= NTP_SCALE_SHIFT;
1030 
1031 	return 1;
1032 }
1033 
1034 __setup("ntp_tick_adj=", ntp_tick_adj_setup);
1035 
1036 void __init ntp_init(void)
1037 {
1038 	ntp_clear();
1039 }
1040