xref: /openbmc/linux/kernel/time/ntp.c (revision 2d6bed9c)
1 /*
2  * NTP state machine interfaces and logic.
3  *
4  * This code was mainly moved from kernel/timer.c and kernel/time.c
5  * Please see those files for relevant copyright info and historical
6  * changelogs.
7  */
8 #include <linux/capability.h>
9 #include <linux/clocksource.h>
10 #include <linux/workqueue.h>
11 #include <linux/hrtimer.h>
12 #include <linux/jiffies.h>
13 #include <linux/math64.h>
14 #include <linux/timex.h>
15 #include <linux/time.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 
19 #include "tick-internal.h"
20 
21 /*
22  * NTP timekeeping variables:
23  */
24 
25 DEFINE_SPINLOCK(ntp_lock);
26 
27 
28 /* USER_HZ period (usecs): */
29 unsigned long			tick_usec = TICK_USEC;
30 
31 /* SHIFTED_HZ period (nsecs): */
32 unsigned long			tick_nsec;
33 
34 static u64			tick_length;
35 static u64			tick_length_base;
36 
37 #define MAX_TICKADJ		500LL		/* usecs */
38 #define MAX_TICKADJ_SCALED \
39 	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
40 
41 /*
42  * phase-lock loop variables
43  */
44 
45 /*
46  * clock synchronization status
47  *
48  * (TIME_ERROR prevents overwriting the CMOS clock)
49  */
50 static int			time_state = TIME_OK;
51 
52 /* clock status bits:							*/
53 static int			time_status = STA_UNSYNC;
54 
55 /* TAI offset (secs):							*/
56 static long			time_tai;
57 
58 /* time adjustment (nsecs):						*/
59 static s64			time_offset;
60 
61 /* pll time constant:							*/
62 static long			time_constant = 2;
63 
64 /* maximum error (usecs):						*/
65 static long			time_maxerror = NTP_PHASE_LIMIT;
66 
67 /* estimated error (usecs):						*/
68 static long			time_esterror = NTP_PHASE_LIMIT;
69 
70 /* frequency offset (scaled nsecs/secs):				*/
71 static s64			time_freq;
72 
73 /* time at last adjustment (secs):					*/
74 static long			time_reftime;
75 
76 static long			time_adjust;
77 
78 /* constant (boot-param configurable) NTP tick adjustment (upscaled)	*/
79 static s64			ntp_tick_adj;
80 
81 #ifdef CONFIG_NTP_PPS
82 
83 /*
84  * The following variables are used when a pulse-per-second (PPS) signal
85  * is available. They establish the engineering parameters of the clock
86  * discipline loop when controlled by the PPS signal.
87  */
88 #define PPS_VALID	10	/* PPS signal watchdog max (s) */
89 #define PPS_POPCORN	4	/* popcorn spike threshold (shift) */
90 #define PPS_INTMIN	2	/* min freq interval (s) (shift) */
91 #define PPS_INTMAX	8	/* max freq interval (s) (shift) */
92 #define PPS_INTCOUNT	4	/* number of consecutive good intervals to
93 				   increase pps_shift or consecutive bad
94 				   intervals to decrease it */
95 #define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */
96 
97 static int pps_valid;		/* signal watchdog counter */
98 static long pps_tf[3];		/* phase median filter */
99 static long pps_jitter;		/* current jitter (ns) */
100 static struct timespec pps_fbase; /* beginning of the last freq interval */
101 static int pps_shift;		/* current interval duration (s) (shift) */
102 static int pps_intcnt;		/* interval counter */
103 static s64 pps_freq;		/* frequency offset (scaled ns/s) */
104 static long pps_stabil;		/* current stability (scaled ns/s) */
105 
106 /*
107  * PPS signal quality monitors
108  */
109 static long pps_calcnt;		/* calibration intervals */
110 static long pps_jitcnt;		/* jitter limit exceeded */
111 static long pps_stbcnt;		/* stability limit exceeded */
112 static long pps_errcnt;		/* calibration errors */
113 
114 
115 /* PPS kernel consumer compensates the whole phase error immediately.
116  * Otherwise, reduce the offset by a fixed factor times the time constant.
117  */
118 static inline s64 ntp_offset_chunk(s64 offset)
119 {
120 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
121 		return offset;
122 	else
123 		return shift_right(offset, SHIFT_PLL + time_constant);
124 }
125 
126 static inline void pps_reset_freq_interval(void)
127 {
128 	/* the PPS calibration interval may end
129 	   surprisingly early */
130 	pps_shift = PPS_INTMIN;
131 	pps_intcnt = 0;
132 }
133 
134 /**
135  * pps_clear - Clears the PPS state variables
136  *
137  * Must be called while holding a write on the ntp_lock
138  */
139 static inline void pps_clear(void)
140 {
141 	pps_reset_freq_interval();
142 	pps_tf[0] = 0;
143 	pps_tf[1] = 0;
144 	pps_tf[2] = 0;
145 	pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
146 	pps_freq = 0;
147 }
148 
149 /* Decrease pps_valid to indicate that another second has passed since
150  * the last PPS signal. When it reaches 0, indicate that PPS signal is
151  * missing.
152  *
153  * Must be called while holding a write on the ntp_lock
154  */
155 static inline void pps_dec_valid(void)
156 {
157 	if (pps_valid > 0)
158 		pps_valid--;
159 	else {
160 		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
161 				 STA_PPSWANDER | STA_PPSERROR);
162 		pps_clear();
163 	}
164 }
165 
166 static inline void pps_set_freq(s64 freq)
167 {
168 	pps_freq = freq;
169 }
170 
171 static inline int is_error_status(int status)
172 {
173 	return (time_status & (STA_UNSYNC|STA_CLOCKERR))
174 		/* PPS signal lost when either PPS time or
175 		 * PPS frequency synchronization requested
176 		 */
177 		|| ((time_status & (STA_PPSFREQ|STA_PPSTIME))
178 			&& !(time_status & STA_PPSSIGNAL))
179 		/* PPS jitter exceeded when
180 		 * PPS time synchronization requested */
181 		|| ((time_status & (STA_PPSTIME|STA_PPSJITTER))
182 			== (STA_PPSTIME|STA_PPSJITTER))
183 		/* PPS wander exceeded or calibration error when
184 		 * PPS frequency synchronization requested
185 		 */
186 		|| ((time_status & STA_PPSFREQ)
187 			&& (time_status & (STA_PPSWANDER|STA_PPSERROR)));
188 }
189 
190 static inline void pps_fill_timex(struct timex *txc)
191 {
192 	txc->ppsfreq	   = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
193 					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
194 	txc->jitter	   = pps_jitter;
195 	if (!(time_status & STA_NANO))
196 		txc->jitter /= NSEC_PER_USEC;
197 	txc->shift	   = pps_shift;
198 	txc->stabil	   = pps_stabil;
199 	txc->jitcnt	   = pps_jitcnt;
200 	txc->calcnt	   = pps_calcnt;
201 	txc->errcnt	   = pps_errcnt;
202 	txc->stbcnt	   = pps_stbcnt;
203 }
204 
205 #else /* !CONFIG_NTP_PPS */
206 
207 static inline s64 ntp_offset_chunk(s64 offset)
208 {
209 	return shift_right(offset, SHIFT_PLL + time_constant);
210 }
211 
212 static inline void pps_reset_freq_interval(void) {}
213 static inline void pps_clear(void) {}
214 static inline void pps_dec_valid(void) {}
215 static inline void pps_set_freq(s64 freq) {}
216 
217 static inline int is_error_status(int status)
218 {
219 	return status & (STA_UNSYNC|STA_CLOCKERR);
220 }
221 
222 static inline void pps_fill_timex(struct timex *txc)
223 {
224 	/* PPS is not implemented, so these are zero */
225 	txc->ppsfreq	   = 0;
226 	txc->jitter	   = 0;
227 	txc->shift	   = 0;
228 	txc->stabil	   = 0;
229 	txc->jitcnt	   = 0;
230 	txc->calcnt	   = 0;
231 	txc->errcnt	   = 0;
232 	txc->stbcnt	   = 0;
233 }
234 
235 #endif /* CONFIG_NTP_PPS */
236 
237 
238 /**
239  * ntp_synced - Returns 1 if the NTP status is not UNSYNC
240  *
241  */
242 static inline int ntp_synced(void)
243 {
244 	return !(time_status & STA_UNSYNC);
245 }
246 
247 
248 /*
249  * NTP methods:
250  */
251 
252 /*
253  * Update (tick_length, tick_length_base, tick_nsec), based
254  * on (tick_usec, ntp_tick_adj, time_freq):
255  */
256 static void ntp_update_frequency(void)
257 {
258 	u64 second_length;
259 	u64 new_base;
260 
261 	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
262 						<< NTP_SCALE_SHIFT;
263 
264 	second_length		+= ntp_tick_adj;
265 	second_length		+= time_freq;
266 
267 	tick_nsec		 = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
268 	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
269 
270 	/*
271 	 * Don't wait for the next second_overflow, apply
272 	 * the change to the tick length immediately:
273 	 */
274 	tick_length		+= new_base - tick_length_base;
275 	tick_length_base	 = new_base;
276 }
277 
278 static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
279 {
280 	time_status &= ~STA_MODE;
281 
282 	if (secs < MINSEC)
283 		return 0;
284 
285 	if (!(time_status & STA_FLL) && (secs <= MAXSEC))
286 		return 0;
287 
288 	time_status |= STA_MODE;
289 
290 	return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
291 }
292 
293 static void ntp_update_offset(long offset)
294 {
295 	s64 freq_adj;
296 	s64 offset64;
297 	long secs;
298 
299 	if (!(time_status & STA_PLL))
300 		return;
301 
302 	if (!(time_status & STA_NANO))
303 		offset *= NSEC_PER_USEC;
304 
305 	/*
306 	 * Scale the phase adjustment and
307 	 * clamp to the operating range.
308 	 */
309 	offset = min(offset, MAXPHASE);
310 	offset = max(offset, -MAXPHASE);
311 
312 	/*
313 	 * Select how the frequency is to be controlled
314 	 * and in which mode (PLL or FLL).
315 	 */
316 	secs = get_seconds() - time_reftime;
317 	if (unlikely(time_status & STA_FREQHOLD))
318 		secs = 0;
319 
320 	time_reftime = get_seconds();
321 
322 	offset64    = offset;
323 	freq_adj    = ntp_update_offset_fll(offset64, secs);
324 
325 	/*
326 	 * Clamp update interval to reduce PLL gain with low
327 	 * sampling rate (e.g. intermittent network connection)
328 	 * to avoid instability.
329 	 */
330 	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
331 		secs = 1 << (SHIFT_PLL + 1 + time_constant);
332 
333 	freq_adj    += (offset64 * secs) <<
334 			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
335 
336 	freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);
337 
338 	time_freq   = max(freq_adj, -MAXFREQ_SCALED);
339 
340 	time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
341 }
342 
343 /**
344  * ntp_clear - Clears the NTP state variables
345  */
346 void ntp_clear(void)
347 {
348 	unsigned long flags;
349 
350 	spin_lock_irqsave(&ntp_lock, flags);
351 
352 	time_adjust	= 0;		/* stop active adjtime() */
353 	time_status	|= STA_UNSYNC;
354 	time_maxerror	= NTP_PHASE_LIMIT;
355 	time_esterror	= NTP_PHASE_LIMIT;
356 
357 	ntp_update_frequency();
358 
359 	tick_length	= tick_length_base;
360 	time_offset	= 0;
361 
362 	/* Clear PPS state variables */
363 	pps_clear();
364 	spin_unlock_irqrestore(&ntp_lock, flags);
365 
366 }
367 
368 
369 u64 ntp_tick_length(void)
370 {
371 	unsigned long flags;
372 	s64 ret;
373 
374 	spin_lock_irqsave(&ntp_lock, flags);
375 	ret = tick_length;
376 	spin_unlock_irqrestore(&ntp_lock, flags);
377 	return ret;
378 }
379 
380 
381 /*
382  * this routine handles the overflow of the microsecond field
383  *
384  * The tricky bits of code to handle the accurate clock support
385  * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
386  * They were originally developed for SUN and DEC kernels.
387  * All the kudos should go to Dave for this stuff.
388  *
389  * Also handles leap second processing, and returns leap offset
390  */
391 int second_overflow(unsigned long secs)
392 {
393 	s64 delta;
394 	int leap = 0;
395 	unsigned long flags;
396 
397 	spin_lock_irqsave(&ntp_lock, flags);
398 
399 	/*
400 	 * Leap second processing. If in leap-insert state at the end of the
401 	 * day, the system clock is set back one second; if in leap-delete
402 	 * state, the system clock is set ahead one second.
403 	 */
404 	switch (time_state) {
405 	case TIME_OK:
406 		if (time_status & STA_INS)
407 			time_state = TIME_INS;
408 		else if (time_status & STA_DEL)
409 			time_state = TIME_DEL;
410 		break;
411 	case TIME_INS:
412 		if (!(time_status & STA_INS))
413 			time_state = TIME_OK;
414 		else if (secs % 86400 == 0) {
415 			leap = -1;
416 			time_state = TIME_OOP;
417 			time_tai++;
418 			printk(KERN_NOTICE
419 				"Clock: inserting leap second 23:59:60 UTC\n");
420 		}
421 		break;
422 	case TIME_DEL:
423 		if (!(time_status & STA_DEL))
424 			time_state = TIME_OK;
425 		else if ((secs + 1) % 86400 == 0) {
426 			leap = 1;
427 			time_tai--;
428 			time_state = TIME_WAIT;
429 			printk(KERN_NOTICE
430 				"Clock: deleting leap second 23:59:59 UTC\n");
431 		}
432 		break;
433 	case TIME_OOP:
434 		time_state = TIME_WAIT;
435 		break;
436 
437 	case TIME_WAIT:
438 		if (!(time_status & (STA_INS | STA_DEL)))
439 			time_state = TIME_OK;
440 		break;
441 	}
442 
443 
444 	/* Bump the maxerror field */
445 	time_maxerror += MAXFREQ / NSEC_PER_USEC;
446 	if (time_maxerror > NTP_PHASE_LIMIT) {
447 		time_maxerror = NTP_PHASE_LIMIT;
448 		time_status |= STA_UNSYNC;
449 	}
450 
451 	/* Compute the phase adjustment for the next second */
452 	tick_length	 = tick_length_base;
453 
454 	delta		 = ntp_offset_chunk(time_offset);
455 	time_offset	-= delta;
456 	tick_length	+= delta;
457 
458 	/* Check PPS signal */
459 	pps_dec_valid();
460 
461 	if (!time_adjust)
462 		goto out;
463 
464 	if (time_adjust > MAX_TICKADJ) {
465 		time_adjust -= MAX_TICKADJ;
466 		tick_length += MAX_TICKADJ_SCALED;
467 		goto out;
468 	}
469 
470 	if (time_adjust < -MAX_TICKADJ) {
471 		time_adjust += MAX_TICKADJ;
472 		tick_length -= MAX_TICKADJ_SCALED;
473 		goto out;
474 	}
475 
476 	tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
477 							 << NTP_SCALE_SHIFT;
478 	time_adjust = 0;
479 
480 out:
481 	spin_unlock_irqrestore(&ntp_lock, flags);
482 
483 	return leap;
484 }
485 
486 #ifdef CONFIG_GENERIC_CMOS_UPDATE
487 
488 static void sync_cmos_clock(struct work_struct *work);
489 
490 static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
491 
492 static void sync_cmos_clock(struct work_struct *work)
493 {
494 	struct timespec now, next;
495 	int fail = 1;
496 
497 	/*
498 	 * If we have an externally synchronized Linux clock, then update
499 	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
500 	 * called as close as possible to 500 ms before the new second starts.
501 	 * This code is run on a timer.  If the clock is set, that timer
502 	 * may not expire at the correct time.  Thus, we adjust...
503 	 */
504 	if (!ntp_synced()) {
505 		/*
506 		 * Not synced, exit, do not restart a timer (if one is
507 		 * running, let it run out).
508 		 */
509 		return;
510 	}
511 
512 	getnstimeofday(&now);
513 	if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
514 		fail = update_persistent_clock(now);
515 
516 	next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
517 	if (next.tv_nsec <= 0)
518 		next.tv_nsec += NSEC_PER_SEC;
519 
520 	if (!fail)
521 		next.tv_sec = 659;
522 	else
523 		next.tv_sec = 0;
524 
525 	if (next.tv_nsec >= NSEC_PER_SEC) {
526 		next.tv_sec++;
527 		next.tv_nsec -= NSEC_PER_SEC;
528 	}
529 	schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next));
530 }
531 
532 static void notify_cmos_timer(void)
533 {
534 	schedule_delayed_work(&sync_cmos_work, 0);
535 }
536 
537 #else
538 static inline void notify_cmos_timer(void) { }
539 #endif
540 
541 
542 /*
543  * Propagate a new txc->status value into the NTP state:
544  */
545 static inline void process_adj_status(struct timex *txc, struct timespec *ts)
546 {
547 	if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
548 		time_state = TIME_OK;
549 		time_status = STA_UNSYNC;
550 		/* restart PPS frequency calibration */
551 		pps_reset_freq_interval();
552 	}
553 
554 	/*
555 	 * If we turn on PLL adjustments then reset the
556 	 * reference time to current time.
557 	 */
558 	if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
559 		time_reftime = get_seconds();
560 
561 	/* only set allowed bits */
562 	time_status &= STA_RONLY;
563 	time_status |= txc->status & ~STA_RONLY;
564 }
565 
566 /*
567  * Called with ntp_lock held, so we can access and modify
568  * all the global NTP state:
569  */
570 static inline void process_adjtimex_modes(struct timex *txc, struct timespec *ts)
571 {
572 	if (txc->modes & ADJ_STATUS)
573 		process_adj_status(txc, ts);
574 
575 	if (txc->modes & ADJ_NANO)
576 		time_status |= STA_NANO;
577 
578 	if (txc->modes & ADJ_MICRO)
579 		time_status &= ~STA_NANO;
580 
581 	if (txc->modes & ADJ_FREQUENCY) {
582 		time_freq = txc->freq * PPM_SCALE;
583 		time_freq = min(time_freq, MAXFREQ_SCALED);
584 		time_freq = max(time_freq, -MAXFREQ_SCALED);
585 		/* update pps_freq */
586 		pps_set_freq(time_freq);
587 	}
588 
589 	if (txc->modes & ADJ_MAXERROR)
590 		time_maxerror = txc->maxerror;
591 
592 	if (txc->modes & ADJ_ESTERROR)
593 		time_esterror = txc->esterror;
594 
595 	if (txc->modes & ADJ_TIMECONST) {
596 		time_constant = txc->constant;
597 		if (!(time_status & STA_NANO))
598 			time_constant += 4;
599 		time_constant = min(time_constant, (long)MAXTC);
600 		time_constant = max(time_constant, 0l);
601 	}
602 
603 	if (txc->modes & ADJ_TAI && txc->constant > 0)
604 		time_tai = txc->constant;
605 
606 	if (txc->modes & ADJ_OFFSET)
607 		ntp_update_offset(txc->offset);
608 
609 	if (txc->modes & ADJ_TICK)
610 		tick_usec = txc->tick;
611 
612 	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
613 		ntp_update_frequency();
614 }
615 
616 /*
617  * adjtimex mainly allows reading (and writing, if superuser) of
618  * kernel time-keeping variables. used by xntpd.
619  */
620 int do_adjtimex(struct timex *txc)
621 {
622 	struct timespec ts;
623 	int result;
624 
625 	/* Validate the data before disabling interrupts */
626 	if (txc->modes & ADJ_ADJTIME) {
627 		/* singleshot must not be used with any other mode bits */
628 		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
629 			return -EINVAL;
630 		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
631 		    !capable(CAP_SYS_TIME))
632 			return -EPERM;
633 	} else {
634 		/* In order to modify anything, you gotta be super-user! */
635 		 if (txc->modes && !capable(CAP_SYS_TIME))
636 			return -EPERM;
637 
638 		/*
639 		 * if the quartz is off by more than 10% then
640 		 * something is VERY wrong!
641 		 */
642 		if (txc->modes & ADJ_TICK &&
643 		    (txc->tick <  900000/USER_HZ ||
644 		     txc->tick > 1100000/USER_HZ))
645 			return -EINVAL;
646 	}
647 
648 	if (txc->modes & ADJ_SETOFFSET) {
649 		struct timespec delta;
650 		delta.tv_sec  = txc->time.tv_sec;
651 		delta.tv_nsec = txc->time.tv_usec;
652 		if (!capable(CAP_SYS_TIME))
653 			return -EPERM;
654 		if (!(txc->modes & ADJ_NANO))
655 			delta.tv_nsec *= 1000;
656 		result = timekeeping_inject_offset(&delta);
657 		if (result)
658 			return result;
659 	}
660 
661 	getnstimeofday(&ts);
662 
663 	spin_lock_irq(&ntp_lock);
664 
665 	if (txc->modes & ADJ_ADJTIME) {
666 		long save_adjust = time_adjust;
667 
668 		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
669 			/* adjtime() is independent from ntp_adjtime() */
670 			time_adjust = txc->offset;
671 			ntp_update_frequency();
672 		}
673 		txc->offset = save_adjust;
674 	} else {
675 
676 		/* If there are input parameters, then process them: */
677 		if (txc->modes)
678 			process_adjtimex_modes(txc, &ts);
679 
680 		txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
681 				  NTP_SCALE_SHIFT);
682 		if (!(time_status & STA_NANO))
683 			txc->offset /= NSEC_PER_USEC;
684 	}
685 
686 	result = time_state;	/* mostly `TIME_OK' */
687 	/* check for errors */
688 	if (is_error_status(time_status))
689 		result = TIME_ERROR;
690 
691 	txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
692 					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
693 	txc->maxerror	   = time_maxerror;
694 	txc->esterror	   = time_esterror;
695 	txc->status	   = time_status;
696 	txc->constant	   = time_constant;
697 	txc->precision	   = 1;
698 	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
699 	txc->tick	   = tick_usec;
700 	txc->tai	   = time_tai;
701 
702 	/* fill PPS status fields */
703 	pps_fill_timex(txc);
704 
705 	spin_unlock_irq(&ntp_lock);
706 
707 	txc->time.tv_sec = ts.tv_sec;
708 	txc->time.tv_usec = ts.tv_nsec;
709 	if (!(time_status & STA_NANO))
710 		txc->time.tv_usec /= NSEC_PER_USEC;
711 
712 	notify_cmos_timer();
713 
714 	return result;
715 }
716 
717 #ifdef	CONFIG_NTP_PPS
718 
719 /* actually struct pps_normtime is good old struct timespec, but it is
720  * semantically different (and it is the reason why it was invented):
721  * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
722  * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
723 struct pps_normtime {
724 	__kernel_time_t	sec;	/* seconds */
725 	long		nsec;	/* nanoseconds */
726 };
727 
728 /* normalize the timestamp so that nsec is in the
729    ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
730 static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
731 {
732 	struct pps_normtime norm = {
733 		.sec = ts.tv_sec,
734 		.nsec = ts.tv_nsec
735 	};
736 
737 	if (norm.nsec > (NSEC_PER_SEC >> 1)) {
738 		norm.nsec -= NSEC_PER_SEC;
739 		norm.sec++;
740 	}
741 
742 	return norm;
743 }
744 
745 /* get current phase correction and jitter */
746 static inline long pps_phase_filter_get(long *jitter)
747 {
748 	*jitter = pps_tf[0] - pps_tf[1];
749 	if (*jitter < 0)
750 		*jitter = -*jitter;
751 
752 	/* TODO: test various filters */
753 	return pps_tf[0];
754 }
755 
756 /* add the sample to the phase filter */
757 static inline void pps_phase_filter_add(long err)
758 {
759 	pps_tf[2] = pps_tf[1];
760 	pps_tf[1] = pps_tf[0];
761 	pps_tf[0] = err;
762 }
763 
764 /* decrease frequency calibration interval length.
765  * It is halved after four consecutive unstable intervals.
766  */
767 static inline void pps_dec_freq_interval(void)
768 {
769 	if (--pps_intcnt <= -PPS_INTCOUNT) {
770 		pps_intcnt = -PPS_INTCOUNT;
771 		if (pps_shift > PPS_INTMIN) {
772 			pps_shift--;
773 			pps_intcnt = 0;
774 		}
775 	}
776 }
777 
778 /* increase frequency calibration interval length.
779  * It is doubled after four consecutive stable intervals.
780  */
781 static inline void pps_inc_freq_interval(void)
782 {
783 	if (++pps_intcnt >= PPS_INTCOUNT) {
784 		pps_intcnt = PPS_INTCOUNT;
785 		if (pps_shift < PPS_INTMAX) {
786 			pps_shift++;
787 			pps_intcnt = 0;
788 		}
789 	}
790 }
791 
792 /* update clock frequency based on MONOTONIC_RAW clock PPS signal
793  * timestamps
794  *
795  * At the end of the calibration interval the difference between the
796  * first and last MONOTONIC_RAW clock timestamps divided by the length
797  * of the interval becomes the frequency update. If the interval was
798  * too long, the data are discarded.
799  * Returns the difference between old and new frequency values.
800  */
801 static long hardpps_update_freq(struct pps_normtime freq_norm)
802 {
803 	long delta, delta_mod;
804 	s64 ftemp;
805 
806 	/* check if the frequency interval was too long */
807 	if (freq_norm.sec > (2 << pps_shift)) {
808 		time_status |= STA_PPSERROR;
809 		pps_errcnt++;
810 		pps_dec_freq_interval();
811 		pr_err("hardpps: PPSERROR: interval too long - %ld s\n",
812 				freq_norm.sec);
813 		return 0;
814 	}
815 
816 	/* here the raw frequency offset and wander (stability) is
817 	 * calculated. If the wander is less than the wander threshold
818 	 * the interval is increased; otherwise it is decreased.
819 	 */
820 	ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
821 			freq_norm.sec);
822 	delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
823 	pps_freq = ftemp;
824 	if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
825 		pr_warning("hardpps: PPSWANDER: change=%ld\n", delta);
826 		time_status |= STA_PPSWANDER;
827 		pps_stbcnt++;
828 		pps_dec_freq_interval();
829 	} else {	/* good sample */
830 		pps_inc_freq_interval();
831 	}
832 
833 	/* the stability metric is calculated as the average of recent
834 	 * frequency changes, but is used only for performance
835 	 * monitoring
836 	 */
837 	delta_mod = delta;
838 	if (delta_mod < 0)
839 		delta_mod = -delta_mod;
840 	pps_stabil += (div_s64(((s64)delta_mod) <<
841 				(NTP_SCALE_SHIFT - SHIFT_USEC),
842 				NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
843 
844 	/* if enabled, the system clock frequency is updated */
845 	if ((time_status & STA_PPSFREQ) != 0 &&
846 	    (time_status & STA_FREQHOLD) == 0) {
847 		time_freq = pps_freq;
848 		ntp_update_frequency();
849 	}
850 
851 	return delta;
852 }
853 
854 /* correct REALTIME clock phase error against PPS signal */
855 static void hardpps_update_phase(long error)
856 {
857 	long correction = -error;
858 	long jitter;
859 
860 	/* add the sample to the median filter */
861 	pps_phase_filter_add(correction);
862 	correction = pps_phase_filter_get(&jitter);
863 
864 	/* Nominal jitter is due to PPS signal noise. If it exceeds the
865 	 * threshold, the sample is discarded; otherwise, if so enabled,
866 	 * the time offset is updated.
867 	 */
868 	if (jitter > (pps_jitter << PPS_POPCORN)) {
869 		pr_warning("hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
870 		       jitter, (pps_jitter << PPS_POPCORN));
871 		time_status |= STA_PPSJITTER;
872 		pps_jitcnt++;
873 	} else if (time_status & STA_PPSTIME) {
874 		/* correct the time using the phase offset */
875 		time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
876 				NTP_INTERVAL_FREQ);
877 		/* cancel running adjtime() */
878 		time_adjust = 0;
879 	}
880 	/* update jitter */
881 	pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
882 }
883 
884 /*
885  * hardpps() - discipline CPU clock oscillator to external PPS signal
886  *
887  * This routine is called at each PPS signal arrival in order to
888  * discipline the CPU clock oscillator to the PPS signal. It takes two
889  * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
890  * is used to correct clock phase error and the latter is used to
891  * correct the frequency.
892  *
893  * This code is based on David Mills's reference nanokernel
894  * implementation. It was mostly rewritten but keeps the same idea.
895  */
896 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
897 {
898 	struct pps_normtime pts_norm, freq_norm;
899 	unsigned long flags;
900 
901 	pts_norm = pps_normalize_ts(*phase_ts);
902 
903 	spin_lock_irqsave(&ntp_lock, flags);
904 
905 	/* clear the error bits, they will be set again if needed */
906 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
907 
908 	/* indicate signal presence */
909 	time_status |= STA_PPSSIGNAL;
910 	pps_valid = PPS_VALID;
911 
912 	/* when called for the first time,
913 	 * just start the frequency interval */
914 	if (unlikely(pps_fbase.tv_sec == 0)) {
915 		pps_fbase = *raw_ts;
916 		spin_unlock_irqrestore(&ntp_lock, flags);
917 		return;
918 	}
919 
920 	/* ok, now we have a base for frequency calculation */
921 	freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));
922 
923 	/* check that the signal is in the range
924 	 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
925 	if ((freq_norm.sec == 0) ||
926 			(freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
927 			(freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
928 		time_status |= STA_PPSJITTER;
929 		/* restart the frequency calibration interval */
930 		pps_fbase = *raw_ts;
931 		spin_unlock_irqrestore(&ntp_lock, flags);
932 		pr_err("hardpps: PPSJITTER: bad pulse\n");
933 		return;
934 	}
935 
936 	/* signal is ok */
937 
938 	/* check if the current frequency interval is finished */
939 	if (freq_norm.sec >= (1 << pps_shift)) {
940 		pps_calcnt++;
941 		/* restart the frequency calibration interval */
942 		pps_fbase = *raw_ts;
943 		hardpps_update_freq(freq_norm);
944 	}
945 
946 	hardpps_update_phase(pts_norm.nsec);
947 
948 	spin_unlock_irqrestore(&ntp_lock, flags);
949 }
950 EXPORT_SYMBOL(hardpps);
951 
952 #endif	/* CONFIG_NTP_PPS */
953 
954 static int __init ntp_tick_adj_setup(char *str)
955 {
956 	ntp_tick_adj = simple_strtol(str, NULL, 0);
957 	ntp_tick_adj <<= NTP_SCALE_SHIFT;
958 
959 	return 1;
960 }
961 
962 __setup("ntp_tick_adj=", ntp_tick_adj_setup);
963 
964 void __init ntp_init(void)
965 {
966 	ntp_clear();
967 }
968