xref: /openbmc/linux/kernel/time/ntp.c (revision 2c684d89)
1 /*
2  * NTP state machine interfaces and logic.
3  *
4  * This code was mainly moved from kernel/timer.c and kernel/time.c
5  * Please see those files for relevant copyright info and historical
6  * changelogs.
7  */
8 #include <linux/capability.h>
9 #include <linux/clocksource.h>
10 #include <linux/workqueue.h>
11 #include <linux/hrtimer.h>
12 #include <linux/jiffies.h>
13 #include <linux/math64.h>
14 #include <linux/timex.h>
15 #include <linux/time.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/rtc.h>
19 
20 #include "ntp_internal.h"
21 
22 /*
23  * NTP timekeeping variables:
24  *
25  * Note: All of the NTP state is protected by the timekeeping locks.
26  */
27 
28 
29 /* USER_HZ period (usecs): */
30 unsigned long			tick_usec = TICK_USEC;
31 
32 /* SHIFTED_HZ period (nsecs): */
33 unsigned long			tick_nsec;
34 
35 static u64			tick_length;
36 static u64			tick_length_base;
37 
38 #define SECS_PER_DAY		86400
39 #define MAX_TICKADJ		500LL		/* usecs */
40 #define MAX_TICKADJ_SCALED \
41 	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
42 
43 /*
44  * phase-lock loop variables
45  */
46 
47 /*
48  * clock synchronization status
49  *
50  * (TIME_ERROR prevents overwriting the CMOS clock)
51  */
52 static int			time_state = TIME_OK;
53 
54 /* clock status bits:							*/
55 static int			time_status = STA_UNSYNC;
56 
57 /* time adjustment (nsecs):						*/
58 static s64			time_offset;
59 
60 /* pll time constant:							*/
61 static long			time_constant = 2;
62 
63 /* maximum error (usecs):						*/
64 static long			time_maxerror = NTP_PHASE_LIMIT;
65 
66 /* estimated error (usecs):						*/
67 static long			time_esterror = NTP_PHASE_LIMIT;
68 
69 /* frequency offset (scaled nsecs/secs):				*/
70 static s64			time_freq;
71 
72 /* time at last adjustment (secs):					*/
73 static long			time_reftime;
74 
75 static long			time_adjust;
76 
77 /* constant (boot-param configurable) NTP tick adjustment (upscaled)	*/
78 static s64			ntp_tick_adj;
79 
80 /* second value of the next pending leapsecond, or TIME64_MAX if no leap */
81 static time64_t			ntp_next_leap_sec = TIME64_MAX;
82 
83 #ifdef CONFIG_NTP_PPS
84 
85 /*
86  * The following variables are used when a pulse-per-second (PPS) signal
87  * is available. They establish the engineering parameters of the clock
88  * discipline loop when controlled by the PPS signal.
89  */
90 #define PPS_VALID	10	/* PPS signal watchdog max (s) */
91 #define PPS_POPCORN	4	/* popcorn spike threshold (shift) */
92 #define PPS_INTMIN	2	/* min freq interval (s) (shift) */
93 #define PPS_INTMAX	8	/* max freq interval (s) (shift) */
94 #define PPS_INTCOUNT	4	/* number of consecutive good intervals to
95 				   increase pps_shift or consecutive bad
96 				   intervals to decrease it */
97 #define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */
98 
99 static int pps_valid;		/* signal watchdog counter */
100 static long pps_tf[3];		/* phase median filter */
101 static long pps_jitter;		/* current jitter (ns) */
102 static struct timespec64 pps_fbase; /* beginning of the last freq interval */
103 static int pps_shift;		/* current interval duration (s) (shift) */
104 static int pps_intcnt;		/* interval counter */
105 static s64 pps_freq;		/* frequency offset (scaled ns/s) */
106 static long pps_stabil;		/* current stability (scaled ns/s) */
107 
108 /*
109  * PPS signal quality monitors
110  */
111 static long pps_calcnt;		/* calibration intervals */
112 static long pps_jitcnt;		/* jitter limit exceeded */
113 static long pps_stbcnt;		/* stability limit exceeded */
114 static long pps_errcnt;		/* calibration errors */
115 
116 
117 /* PPS kernel consumer compensates the whole phase error immediately.
118  * Otherwise, reduce the offset by a fixed factor times the time constant.
119  */
120 static inline s64 ntp_offset_chunk(s64 offset)
121 {
122 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
123 		return offset;
124 	else
125 		return shift_right(offset, SHIFT_PLL + time_constant);
126 }
127 
128 static inline void pps_reset_freq_interval(void)
129 {
130 	/* the PPS calibration interval may end
131 	   surprisingly early */
132 	pps_shift = PPS_INTMIN;
133 	pps_intcnt = 0;
134 }
135 
136 /**
137  * pps_clear - Clears the PPS state variables
138  */
139 static inline void pps_clear(void)
140 {
141 	pps_reset_freq_interval();
142 	pps_tf[0] = 0;
143 	pps_tf[1] = 0;
144 	pps_tf[2] = 0;
145 	pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
146 	pps_freq = 0;
147 }
148 
149 /* Decrease pps_valid to indicate that another second has passed since
150  * the last PPS signal. When it reaches 0, indicate that PPS signal is
151  * missing.
152  */
153 static inline void pps_dec_valid(void)
154 {
155 	if (pps_valid > 0)
156 		pps_valid--;
157 	else {
158 		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
159 				 STA_PPSWANDER | STA_PPSERROR);
160 		pps_clear();
161 	}
162 }
163 
164 static inline void pps_set_freq(s64 freq)
165 {
166 	pps_freq = freq;
167 }
168 
169 static inline int is_error_status(int status)
170 {
171 	return (status & (STA_UNSYNC|STA_CLOCKERR))
172 		/* PPS signal lost when either PPS time or
173 		 * PPS frequency synchronization requested
174 		 */
175 		|| ((status & (STA_PPSFREQ|STA_PPSTIME))
176 			&& !(status & STA_PPSSIGNAL))
177 		/* PPS jitter exceeded when
178 		 * PPS time synchronization requested */
179 		|| ((status & (STA_PPSTIME|STA_PPSJITTER))
180 			== (STA_PPSTIME|STA_PPSJITTER))
181 		/* PPS wander exceeded or calibration error when
182 		 * PPS frequency synchronization requested
183 		 */
184 		|| ((status & STA_PPSFREQ)
185 			&& (status & (STA_PPSWANDER|STA_PPSERROR)));
186 }
187 
188 static inline void pps_fill_timex(struct timex *txc)
189 {
190 	txc->ppsfreq	   = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
191 					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
192 	txc->jitter	   = pps_jitter;
193 	if (!(time_status & STA_NANO))
194 		txc->jitter /= NSEC_PER_USEC;
195 	txc->shift	   = pps_shift;
196 	txc->stabil	   = pps_stabil;
197 	txc->jitcnt	   = pps_jitcnt;
198 	txc->calcnt	   = pps_calcnt;
199 	txc->errcnt	   = pps_errcnt;
200 	txc->stbcnt	   = pps_stbcnt;
201 }
202 
203 #else /* !CONFIG_NTP_PPS */
204 
205 static inline s64 ntp_offset_chunk(s64 offset)
206 {
207 	return shift_right(offset, SHIFT_PLL + time_constant);
208 }
209 
210 static inline void pps_reset_freq_interval(void) {}
211 static inline void pps_clear(void) {}
212 static inline void pps_dec_valid(void) {}
213 static inline void pps_set_freq(s64 freq) {}
214 
215 static inline int is_error_status(int status)
216 {
217 	return status & (STA_UNSYNC|STA_CLOCKERR);
218 }
219 
220 static inline void pps_fill_timex(struct timex *txc)
221 {
222 	/* PPS is not implemented, so these are zero */
223 	txc->ppsfreq	   = 0;
224 	txc->jitter	   = 0;
225 	txc->shift	   = 0;
226 	txc->stabil	   = 0;
227 	txc->jitcnt	   = 0;
228 	txc->calcnt	   = 0;
229 	txc->errcnt	   = 0;
230 	txc->stbcnt	   = 0;
231 }
232 
233 #endif /* CONFIG_NTP_PPS */
234 
235 
236 /**
237  * ntp_synced - Returns 1 if the NTP status is not UNSYNC
238  *
239  */
240 static inline int ntp_synced(void)
241 {
242 	return !(time_status & STA_UNSYNC);
243 }
244 
245 
246 /*
247  * NTP methods:
248  */
249 
250 /*
251  * Update (tick_length, tick_length_base, tick_nsec), based
252  * on (tick_usec, ntp_tick_adj, time_freq):
253  */
254 static void ntp_update_frequency(void)
255 {
256 	u64 second_length;
257 	u64 new_base;
258 
259 	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
260 						<< NTP_SCALE_SHIFT;
261 
262 	second_length		+= ntp_tick_adj;
263 	second_length		+= time_freq;
264 
265 	tick_nsec		 = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
266 	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
267 
268 	/*
269 	 * Don't wait for the next second_overflow, apply
270 	 * the change to the tick length immediately:
271 	 */
272 	tick_length		+= new_base - tick_length_base;
273 	tick_length_base	 = new_base;
274 }
275 
276 static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
277 {
278 	time_status &= ~STA_MODE;
279 
280 	if (secs < MINSEC)
281 		return 0;
282 
283 	if (!(time_status & STA_FLL) && (secs <= MAXSEC))
284 		return 0;
285 
286 	time_status |= STA_MODE;
287 
288 	return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
289 }
290 
291 static void ntp_update_offset(long offset)
292 {
293 	s64 freq_adj;
294 	s64 offset64;
295 	long secs;
296 
297 	if (!(time_status & STA_PLL))
298 		return;
299 
300 	if (!(time_status & STA_NANO))
301 		offset *= NSEC_PER_USEC;
302 
303 	/*
304 	 * Scale the phase adjustment and
305 	 * clamp to the operating range.
306 	 */
307 	offset = min(offset, MAXPHASE);
308 	offset = max(offset, -MAXPHASE);
309 
310 	/*
311 	 * Select how the frequency is to be controlled
312 	 * and in which mode (PLL or FLL).
313 	 */
314 	secs = get_seconds() - time_reftime;
315 	if (unlikely(time_status & STA_FREQHOLD))
316 		secs = 0;
317 
318 	time_reftime = get_seconds();
319 
320 	offset64    = offset;
321 	freq_adj    = ntp_update_offset_fll(offset64, secs);
322 
323 	/*
324 	 * Clamp update interval to reduce PLL gain with low
325 	 * sampling rate (e.g. intermittent network connection)
326 	 * to avoid instability.
327 	 */
328 	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
329 		secs = 1 << (SHIFT_PLL + 1 + time_constant);
330 
331 	freq_adj    += (offset64 * secs) <<
332 			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
333 
334 	freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);
335 
336 	time_freq   = max(freq_adj, -MAXFREQ_SCALED);
337 
338 	time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
339 }
340 
341 /**
342  * ntp_clear - Clears the NTP state variables
343  */
344 void ntp_clear(void)
345 {
346 	time_adjust	= 0;		/* stop active adjtime() */
347 	time_status	|= STA_UNSYNC;
348 	time_maxerror	= NTP_PHASE_LIMIT;
349 	time_esterror	= NTP_PHASE_LIMIT;
350 
351 	ntp_update_frequency();
352 
353 	tick_length	= tick_length_base;
354 	time_offset	= 0;
355 
356 	ntp_next_leap_sec = TIME64_MAX;
357 	/* Clear PPS state variables */
358 	pps_clear();
359 }
360 
361 
362 u64 ntp_tick_length(void)
363 {
364 	return tick_length;
365 }
366 
367 /**
368  * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
369  *
370  * Provides the time of the next leapsecond against CLOCK_REALTIME in
371  * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
372  */
373 ktime_t ntp_get_next_leap(void)
374 {
375 	ktime_t ret;
376 
377 	if ((time_state == TIME_INS) && (time_status & STA_INS))
378 		return ktime_set(ntp_next_leap_sec, 0);
379 	ret.tv64 = KTIME_MAX;
380 	return ret;
381 }
382 
383 /*
384  * this routine handles the overflow of the microsecond field
385  *
386  * The tricky bits of code to handle the accurate clock support
387  * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
388  * They were originally developed for SUN and DEC kernels.
389  * All the kudos should go to Dave for this stuff.
390  *
391  * Also handles leap second processing, and returns leap offset
392  */
393 int second_overflow(unsigned long secs)
394 {
395 	s64 delta;
396 	int leap = 0;
397 
398 	/*
399 	 * Leap second processing. If in leap-insert state at the end of the
400 	 * day, the system clock is set back one second; if in leap-delete
401 	 * state, the system clock is set ahead one second.
402 	 */
403 	switch (time_state) {
404 	case TIME_OK:
405 		if (time_status & STA_INS) {
406 			time_state = TIME_INS;
407 			ntp_next_leap_sec = secs + SECS_PER_DAY -
408 						(secs % SECS_PER_DAY);
409 		} else if (time_status & STA_DEL) {
410 			time_state = TIME_DEL;
411 			ntp_next_leap_sec = secs + SECS_PER_DAY -
412 						 ((secs+1) % SECS_PER_DAY);
413 		}
414 		break;
415 	case TIME_INS:
416 		if (!(time_status & STA_INS)) {
417 			ntp_next_leap_sec = TIME64_MAX;
418 			time_state = TIME_OK;
419 		} else if (secs % SECS_PER_DAY == 0) {
420 			leap = -1;
421 			time_state = TIME_OOP;
422 			printk(KERN_NOTICE
423 				"Clock: inserting leap second 23:59:60 UTC\n");
424 		}
425 		break;
426 	case TIME_DEL:
427 		if (!(time_status & STA_DEL)) {
428 			ntp_next_leap_sec = TIME64_MAX;
429 			time_state = TIME_OK;
430 		} else if ((secs + 1) % SECS_PER_DAY == 0) {
431 			leap = 1;
432 			ntp_next_leap_sec = TIME64_MAX;
433 			time_state = TIME_WAIT;
434 			printk(KERN_NOTICE
435 				"Clock: deleting leap second 23:59:59 UTC\n");
436 		}
437 		break;
438 	case TIME_OOP:
439 		ntp_next_leap_sec = TIME64_MAX;
440 		time_state = TIME_WAIT;
441 		break;
442 	case TIME_WAIT:
443 		if (!(time_status & (STA_INS | STA_DEL)))
444 			time_state = TIME_OK;
445 		break;
446 	}
447 
448 
449 	/* Bump the maxerror field */
450 	time_maxerror += MAXFREQ / NSEC_PER_USEC;
451 	if (time_maxerror > NTP_PHASE_LIMIT) {
452 		time_maxerror = NTP_PHASE_LIMIT;
453 		time_status |= STA_UNSYNC;
454 	}
455 
456 	/* Compute the phase adjustment for the next second */
457 	tick_length	 = tick_length_base;
458 
459 	delta		 = ntp_offset_chunk(time_offset);
460 	time_offset	-= delta;
461 	tick_length	+= delta;
462 
463 	/* Check PPS signal */
464 	pps_dec_valid();
465 
466 	if (!time_adjust)
467 		goto out;
468 
469 	if (time_adjust > MAX_TICKADJ) {
470 		time_adjust -= MAX_TICKADJ;
471 		tick_length += MAX_TICKADJ_SCALED;
472 		goto out;
473 	}
474 
475 	if (time_adjust < -MAX_TICKADJ) {
476 		time_adjust += MAX_TICKADJ;
477 		tick_length -= MAX_TICKADJ_SCALED;
478 		goto out;
479 	}
480 
481 	tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
482 							 << NTP_SCALE_SHIFT;
483 	time_adjust = 0;
484 
485 out:
486 	return leap;
487 }
488 
489 #ifdef CONFIG_GENERIC_CMOS_UPDATE
490 int __weak update_persistent_clock(struct timespec now)
491 {
492 	return -ENODEV;
493 }
494 
495 int __weak update_persistent_clock64(struct timespec64 now64)
496 {
497 	struct timespec now;
498 
499 	now = timespec64_to_timespec(now64);
500 	return update_persistent_clock(now);
501 }
502 #endif
503 
504 #if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
505 static void sync_cmos_clock(struct work_struct *work);
506 
507 static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
508 
509 static void sync_cmos_clock(struct work_struct *work)
510 {
511 	struct timespec64 now;
512 	struct timespec64 next;
513 	int fail = 1;
514 
515 	/*
516 	 * If we have an externally synchronized Linux clock, then update
517 	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
518 	 * called as close as possible to 500 ms before the new second starts.
519 	 * This code is run on a timer.  If the clock is set, that timer
520 	 * may not expire at the correct time.  Thus, we adjust...
521 	 * We want the clock to be within a couple of ticks from the target.
522 	 */
523 	if (!ntp_synced()) {
524 		/*
525 		 * Not synced, exit, do not restart a timer (if one is
526 		 * running, let it run out).
527 		 */
528 		return;
529 	}
530 
531 	getnstimeofday64(&now);
532 	if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec * 5) {
533 		struct timespec64 adjust = now;
534 
535 		fail = -ENODEV;
536 		if (persistent_clock_is_local)
537 			adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
538 #ifdef CONFIG_GENERIC_CMOS_UPDATE
539 		fail = update_persistent_clock64(adjust);
540 #endif
541 
542 #ifdef CONFIG_RTC_SYSTOHC
543 		if (fail == -ENODEV)
544 			fail = rtc_set_ntp_time(adjust);
545 #endif
546 	}
547 
548 	next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
549 	if (next.tv_nsec <= 0)
550 		next.tv_nsec += NSEC_PER_SEC;
551 
552 	if (!fail || fail == -ENODEV)
553 		next.tv_sec = 659;
554 	else
555 		next.tv_sec = 0;
556 
557 	if (next.tv_nsec >= NSEC_PER_SEC) {
558 		next.tv_sec++;
559 		next.tv_nsec -= NSEC_PER_SEC;
560 	}
561 	queue_delayed_work(system_power_efficient_wq,
562 			   &sync_cmos_work, timespec64_to_jiffies(&next));
563 }
564 
565 void ntp_notify_cmos_timer(void)
566 {
567 	queue_delayed_work(system_power_efficient_wq, &sync_cmos_work, 0);
568 }
569 
570 #else
571 void ntp_notify_cmos_timer(void) { }
572 #endif
573 
574 
575 /*
576  * Propagate a new txc->status value into the NTP state:
577  */
578 static inline void process_adj_status(struct timex *txc, struct timespec64 *ts)
579 {
580 	if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
581 		time_state = TIME_OK;
582 		time_status = STA_UNSYNC;
583 		ntp_next_leap_sec = TIME64_MAX;
584 		/* restart PPS frequency calibration */
585 		pps_reset_freq_interval();
586 	}
587 
588 	/*
589 	 * If we turn on PLL adjustments then reset the
590 	 * reference time to current time.
591 	 */
592 	if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
593 		time_reftime = get_seconds();
594 
595 	/* only set allowed bits */
596 	time_status &= STA_RONLY;
597 	time_status |= txc->status & ~STA_RONLY;
598 }
599 
600 
601 static inline void process_adjtimex_modes(struct timex *txc,
602 						struct timespec64 *ts,
603 						s32 *time_tai)
604 {
605 	if (txc->modes & ADJ_STATUS)
606 		process_adj_status(txc, ts);
607 
608 	if (txc->modes & ADJ_NANO)
609 		time_status |= STA_NANO;
610 
611 	if (txc->modes & ADJ_MICRO)
612 		time_status &= ~STA_NANO;
613 
614 	if (txc->modes & ADJ_FREQUENCY) {
615 		time_freq = txc->freq * PPM_SCALE;
616 		time_freq = min(time_freq, MAXFREQ_SCALED);
617 		time_freq = max(time_freq, -MAXFREQ_SCALED);
618 		/* update pps_freq */
619 		pps_set_freq(time_freq);
620 	}
621 
622 	if (txc->modes & ADJ_MAXERROR)
623 		time_maxerror = txc->maxerror;
624 
625 	if (txc->modes & ADJ_ESTERROR)
626 		time_esterror = txc->esterror;
627 
628 	if (txc->modes & ADJ_TIMECONST) {
629 		time_constant = txc->constant;
630 		if (!(time_status & STA_NANO))
631 			time_constant += 4;
632 		time_constant = min(time_constant, (long)MAXTC);
633 		time_constant = max(time_constant, 0l);
634 	}
635 
636 	if (txc->modes & ADJ_TAI && txc->constant > 0)
637 		*time_tai = txc->constant;
638 
639 	if (txc->modes & ADJ_OFFSET)
640 		ntp_update_offset(txc->offset);
641 
642 	if (txc->modes & ADJ_TICK)
643 		tick_usec = txc->tick;
644 
645 	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
646 		ntp_update_frequency();
647 }
648 
649 
650 
651 /**
652  * ntp_validate_timex - Ensures the timex is ok for use in do_adjtimex
653  */
654 int ntp_validate_timex(struct timex *txc)
655 {
656 	if (txc->modes & ADJ_ADJTIME) {
657 		/* singleshot must not be used with any other mode bits */
658 		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
659 			return -EINVAL;
660 		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
661 		    !capable(CAP_SYS_TIME))
662 			return -EPERM;
663 	} else {
664 		/* In order to modify anything, you gotta be super-user! */
665 		 if (txc->modes && !capable(CAP_SYS_TIME))
666 			return -EPERM;
667 		/*
668 		 * if the quartz is off by more than 10% then
669 		 * something is VERY wrong!
670 		 */
671 		if (txc->modes & ADJ_TICK &&
672 		    (txc->tick <  900000/USER_HZ ||
673 		     txc->tick > 1100000/USER_HZ))
674 			return -EINVAL;
675 	}
676 
677 	if ((txc->modes & ADJ_SETOFFSET) && (!capable(CAP_SYS_TIME)))
678 		return -EPERM;
679 
680 	/*
681 	 * Check for potential multiplication overflows that can
682 	 * only happen on 64-bit systems:
683 	 */
684 	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
685 		if (LLONG_MIN / PPM_SCALE > txc->freq)
686 			return -EINVAL;
687 		if (LLONG_MAX / PPM_SCALE < txc->freq)
688 			return -EINVAL;
689 	}
690 
691 	return 0;
692 }
693 
694 
695 /*
696  * adjtimex mainly allows reading (and writing, if superuser) of
697  * kernel time-keeping variables. used by xntpd.
698  */
699 int __do_adjtimex(struct timex *txc, struct timespec64 *ts, s32 *time_tai)
700 {
701 	int result;
702 
703 	if (txc->modes & ADJ_ADJTIME) {
704 		long save_adjust = time_adjust;
705 
706 		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
707 			/* adjtime() is independent from ntp_adjtime() */
708 			time_adjust = txc->offset;
709 			ntp_update_frequency();
710 		}
711 		txc->offset = save_adjust;
712 	} else {
713 
714 		/* If there are input parameters, then process them: */
715 		if (txc->modes)
716 			process_adjtimex_modes(txc, ts, time_tai);
717 
718 		txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
719 				  NTP_SCALE_SHIFT);
720 		if (!(time_status & STA_NANO))
721 			txc->offset /= NSEC_PER_USEC;
722 	}
723 
724 	result = time_state;	/* mostly `TIME_OK' */
725 	/* check for errors */
726 	if (is_error_status(time_status))
727 		result = TIME_ERROR;
728 
729 	txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
730 					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
731 	txc->maxerror	   = time_maxerror;
732 	txc->esterror	   = time_esterror;
733 	txc->status	   = time_status;
734 	txc->constant	   = time_constant;
735 	txc->precision	   = 1;
736 	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
737 	txc->tick	   = tick_usec;
738 	txc->tai	   = *time_tai;
739 
740 	/* fill PPS status fields */
741 	pps_fill_timex(txc);
742 
743 	txc->time.tv_sec = (time_t)ts->tv_sec;
744 	txc->time.tv_usec = ts->tv_nsec;
745 	if (!(time_status & STA_NANO))
746 		txc->time.tv_usec /= NSEC_PER_USEC;
747 
748 	/* Handle leapsec adjustments */
749 	if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) {
750 		if ((time_state == TIME_INS) && (time_status & STA_INS)) {
751 			result = TIME_OOP;
752 			txc->tai++;
753 			txc->time.tv_sec--;
754 		}
755 		if ((time_state == TIME_DEL) && (time_status & STA_DEL)) {
756 			result = TIME_WAIT;
757 			txc->tai--;
758 			txc->time.tv_sec++;
759 		}
760 		if ((time_state == TIME_OOP) &&
761 					(ts->tv_sec == ntp_next_leap_sec)) {
762 			result = TIME_WAIT;
763 		}
764 	}
765 
766 	return result;
767 }
768 
769 #ifdef	CONFIG_NTP_PPS
770 
771 /* actually struct pps_normtime is good old struct timespec, but it is
772  * semantically different (and it is the reason why it was invented):
773  * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
774  * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
775 struct pps_normtime {
776 	s64		sec;	/* seconds */
777 	long		nsec;	/* nanoseconds */
778 };
779 
780 /* normalize the timestamp so that nsec is in the
781    ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
782 static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
783 {
784 	struct pps_normtime norm = {
785 		.sec = ts.tv_sec,
786 		.nsec = ts.tv_nsec
787 	};
788 
789 	if (norm.nsec > (NSEC_PER_SEC >> 1)) {
790 		norm.nsec -= NSEC_PER_SEC;
791 		norm.sec++;
792 	}
793 
794 	return norm;
795 }
796 
797 /* get current phase correction and jitter */
798 static inline long pps_phase_filter_get(long *jitter)
799 {
800 	*jitter = pps_tf[0] - pps_tf[1];
801 	if (*jitter < 0)
802 		*jitter = -*jitter;
803 
804 	/* TODO: test various filters */
805 	return pps_tf[0];
806 }
807 
808 /* add the sample to the phase filter */
809 static inline void pps_phase_filter_add(long err)
810 {
811 	pps_tf[2] = pps_tf[1];
812 	pps_tf[1] = pps_tf[0];
813 	pps_tf[0] = err;
814 }
815 
816 /* decrease frequency calibration interval length.
817  * It is halved after four consecutive unstable intervals.
818  */
819 static inline void pps_dec_freq_interval(void)
820 {
821 	if (--pps_intcnt <= -PPS_INTCOUNT) {
822 		pps_intcnt = -PPS_INTCOUNT;
823 		if (pps_shift > PPS_INTMIN) {
824 			pps_shift--;
825 			pps_intcnt = 0;
826 		}
827 	}
828 }
829 
830 /* increase frequency calibration interval length.
831  * It is doubled after four consecutive stable intervals.
832  */
833 static inline void pps_inc_freq_interval(void)
834 {
835 	if (++pps_intcnt >= PPS_INTCOUNT) {
836 		pps_intcnt = PPS_INTCOUNT;
837 		if (pps_shift < PPS_INTMAX) {
838 			pps_shift++;
839 			pps_intcnt = 0;
840 		}
841 	}
842 }
843 
844 /* update clock frequency based on MONOTONIC_RAW clock PPS signal
845  * timestamps
846  *
847  * At the end of the calibration interval the difference between the
848  * first and last MONOTONIC_RAW clock timestamps divided by the length
849  * of the interval becomes the frequency update. If the interval was
850  * too long, the data are discarded.
851  * Returns the difference between old and new frequency values.
852  */
853 static long hardpps_update_freq(struct pps_normtime freq_norm)
854 {
855 	long delta, delta_mod;
856 	s64 ftemp;
857 
858 	/* check if the frequency interval was too long */
859 	if (freq_norm.sec > (2 << pps_shift)) {
860 		time_status |= STA_PPSERROR;
861 		pps_errcnt++;
862 		pps_dec_freq_interval();
863 		printk_deferred(KERN_ERR
864 			"hardpps: PPSERROR: interval too long - %lld s\n",
865 			freq_norm.sec);
866 		return 0;
867 	}
868 
869 	/* here the raw frequency offset and wander (stability) is
870 	 * calculated. If the wander is less than the wander threshold
871 	 * the interval is increased; otherwise it is decreased.
872 	 */
873 	ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
874 			freq_norm.sec);
875 	delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
876 	pps_freq = ftemp;
877 	if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
878 		printk_deferred(KERN_WARNING
879 				"hardpps: PPSWANDER: change=%ld\n", delta);
880 		time_status |= STA_PPSWANDER;
881 		pps_stbcnt++;
882 		pps_dec_freq_interval();
883 	} else {	/* good sample */
884 		pps_inc_freq_interval();
885 	}
886 
887 	/* the stability metric is calculated as the average of recent
888 	 * frequency changes, but is used only for performance
889 	 * monitoring
890 	 */
891 	delta_mod = delta;
892 	if (delta_mod < 0)
893 		delta_mod = -delta_mod;
894 	pps_stabil += (div_s64(((s64)delta_mod) <<
895 				(NTP_SCALE_SHIFT - SHIFT_USEC),
896 				NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
897 
898 	/* if enabled, the system clock frequency is updated */
899 	if ((time_status & STA_PPSFREQ) != 0 &&
900 	    (time_status & STA_FREQHOLD) == 0) {
901 		time_freq = pps_freq;
902 		ntp_update_frequency();
903 	}
904 
905 	return delta;
906 }
907 
908 /* correct REALTIME clock phase error against PPS signal */
909 static void hardpps_update_phase(long error)
910 {
911 	long correction = -error;
912 	long jitter;
913 
914 	/* add the sample to the median filter */
915 	pps_phase_filter_add(correction);
916 	correction = pps_phase_filter_get(&jitter);
917 
918 	/* Nominal jitter is due to PPS signal noise. If it exceeds the
919 	 * threshold, the sample is discarded; otherwise, if so enabled,
920 	 * the time offset is updated.
921 	 */
922 	if (jitter > (pps_jitter << PPS_POPCORN)) {
923 		printk_deferred(KERN_WARNING
924 				"hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
925 				jitter, (pps_jitter << PPS_POPCORN));
926 		time_status |= STA_PPSJITTER;
927 		pps_jitcnt++;
928 	} else if (time_status & STA_PPSTIME) {
929 		/* correct the time using the phase offset */
930 		time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
931 				NTP_INTERVAL_FREQ);
932 		/* cancel running adjtime() */
933 		time_adjust = 0;
934 	}
935 	/* update jitter */
936 	pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
937 }
938 
939 /*
940  * __hardpps() - discipline CPU clock oscillator to external PPS signal
941  *
942  * This routine is called at each PPS signal arrival in order to
943  * discipline the CPU clock oscillator to the PPS signal. It takes two
944  * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
945  * is used to correct clock phase error and the latter is used to
946  * correct the frequency.
947  *
948  * This code is based on David Mills's reference nanokernel
949  * implementation. It was mostly rewritten but keeps the same idea.
950  */
951 void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
952 {
953 	struct pps_normtime pts_norm, freq_norm;
954 
955 	pts_norm = pps_normalize_ts(*phase_ts);
956 
957 	/* clear the error bits, they will be set again if needed */
958 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
959 
960 	/* indicate signal presence */
961 	time_status |= STA_PPSSIGNAL;
962 	pps_valid = PPS_VALID;
963 
964 	/* when called for the first time,
965 	 * just start the frequency interval */
966 	if (unlikely(pps_fbase.tv_sec == 0)) {
967 		pps_fbase = *raw_ts;
968 		return;
969 	}
970 
971 	/* ok, now we have a base for frequency calculation */
972 	freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, pps_fbase));
973 
974 	/* check that the signal is in the range
975 	 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
976 	if ((freq_norm.sec == 0) ||
977 			(freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
978 			(freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
979 		time_status |= STA_PPSJITTER;
980 		/* restart the frequency calibration interval */
981 		pps_fbase = *raw_ts;
982 		printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
983 		return;
984 	}
985 
986 	/* signal is ok */
987 
988 	/* check if the current frequency interval is finished */
989 	if (freq_norm.sec >= (1 << pps_shift)) {
990 		pps_calcnt++;
991 		/* restart the frequency calibration interval */
992 		pps_fbase = *raw_ts;
993 		hardpps_update_freq(freq_norm);
994 	}
995 
996 	hardpps_update_phase(pts_norm.nsec);
997 
998 }
999 #endif	/* CONFIG_NTP_PPS */
1000 
1001 static int __init ntp_tick_adj_setup(char *str)
1002 {
1003 	int rc = kstrtol(str, 0, (long *)&ntp_tick_adj);
1004 
1005 	if (rc)
1006 		return rc;
1007 	ntp_tick_adj <<= NTP_SCALE_SHIFT;
1008 
1009 	return 1;
1010 }
1011 
1012 __setup("ntp_tick_adj=", ntp_tick_adj_setup);
1013 
1014 void __init ntp_init(void)
1015 {
1016 	ntp_clear();
1017 }
1018