1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Author: Andrei Vagin <avagin@openvz.org> 4 * Author: Dmitry Safonov <dima@arista.com> 5 */ 6 7 #include <linux/time_namespace.h> 8 #include <linux/user_namespace.h> 9 #include <linux/sched/signal.h> 10 #include <linux/sched/task.h> 11 #include <linux/clocksource.h> 12 #include <linux/seq_file.h> 13 #include <linux/proc_ns.h> 14 #include <linux/export.h> 15 #include <linux/time.h> 16 #include <linux/slab.h> 17 #include <linux/cred.h> 18 #include <linux/err.h> 19 #include <linux/mm.h> 20 21 #include <vdso/datapage.h> 22 23 ktime_t do_timens_ktime_to_host(clockid_t clockid, ktime_t tim, 24 struct timens_offsets *ns_offsets) 25 { 26 ktime_t offset; 27 28 switch (clockid) { 29 case CLOCK_MONOTONIC: 30 offset = timespec64_to_ktime(ns_offsets->monotonic); 31 break; 32 case CLOCK_BOOTTIME: 33 case CLOCK_BOOTTIME_ALARM: 34 offset = timespec64_to_ktime(ns_offsets->boottime); 35 break; 36 default: 37 return tim; 38 } 39 40 /* 41 * Check that @tim value is in [offset, KTIME_MAX + offset] 42 * and subtract offset. 43 */ 44 if (tim < offset) { 45 /* 46 * User can specify @tim *absolute* value - if it's lesser than 47 * the time namespace's offset - it's already expired. 48 */ 49 tim = 0; 50 } else { 51 tim = ktime_sub(tim, offset); 52 if (unlikely(tim > KTIME_MAX)) 53 tim = KTIME_MAX; 54 } 55 56 return tim; 57 } 58 59 static struct ucounts *inc_time_namespaces(struct user_namespace *ns) 60 { 61 return inc_ucount(ns, current_euid(), UCOUNT_TIME_NAMESPACES); 62 } 63 64 static void dec_time_namespaces(struct ucounts *ucounts) 65 { 66 dec_ucount(ucounts, UCOUNT_TIME_NAMESPACES); 67 } 68 69 /** 70 * clone_time_ns - Clone a time namespace 71 * @user_ns: User namespace which owns a new namespace. 72 * @old_ns: Namespace to clone 73 * 74 * Clone @old_ns and set the clone refcount to 1 75 * 76 * Return: The new namespace or ERR_PTR. 77 */ 78 static struct time_namespace *clone_time_ns(struct user_namespace *user_ns, 79 struct time_namespace *old_ns) 80 { 81 struct time_namespace *ns; 82 struct ucounts *ucounts; 83 int err; 84 85 err = -ENOSPC; 86 ucounts = inc_time_namespaces(user_ns); 87 if (!ucounts) 88 goto fail; 89 90 err = -ENOMEM; 91 ns = kmalloc(sizeof(*ns), GFP_KERNEL); 92 if (!ns) 93 goto fail_dec; 94 95 kref_init(&ns->kref); 96 97 ns->vvar_page = alloc_page(GFP_KERNEL | __GFP_ZERO); 98 if (!ns->vvar_page) 99 goto fail_free; 100 101 err = ns_alloc_inum(&ns->ns); 102 if (err) 103 goto fail_free_page; 104 105 ns->ucounts = ucounts; 106 ns->ns.ops = &timens_operations; 107 ns->user_ns = get_user_ns(user_ns); 108 ns->offsets = old_ns->offsets; 109 ns->frozen_offsets = false; 110 return ns; 111 112 fail_free_page: 113 __free_page(ns->vvar_page); 114 fail_free: 115 kfree(ns); 116 fail_dec: 117 dec_time_namespaces(ucounts); 118 fail: 119 return ERR_PTR(err); 120 } 121 122 /** 123 * copy_time_ns - Create timens_for_children from @old_ns 124 * @flags: Cloning flags 125 * @user_ns: User namespace which owns a new namespace. 126 * @old_ns: Namespace to clone 127 * 128 * If CLONE_NEWTIME specified in @flags, creates a new timens_for_children; 129 * adds a refcounter to @old_ns otherwise. 130 * 131 * Return: timens_for_children namespace or ERR_PTR. 132 */ 133 struct time_namespace *copy_time_ns(unsigned long flags, 134 struct user_namespace *user_ns, struct time_namespace *old_ns) 135 { 136 if (!(flags & CLONE_NEWTIME)) 137 return get_time_ns(old_ns); 138 139 return clone_time_ns(user_ns, old_ns); 140 } 141 142 static struct timens_offset offset_from_ts(struct timespec64 off) 143 { 144 struct timens_offset ret; 145 146 ret.sec = off.tv_sec; 147 ret.nsec = off.tv_nsec; 148 149 return ret; 150 } 151 152 /* 153 * A time namespace VVAR page has the same layout as the VVAR page which 154 * contains the system wide VDSO data. 155 * 156 * For a normal task the VVAR pages are installed in the normal ordering: 157 * VVAR 158 * PVCLOCK 159 * HVCLOCK 160 * TIMENS <- Not really required 161 * 162 * Now for a timens task the pages are installed in the following order: 163 * TIMENS 164 * PVCLOCK 165 * HVCLOCK 166 * VVAR 167 * 168 * The check for vdso_data->clock_mode is in the unlikely path of 169 * the seq begin magic. So for the non-timens case most of the time 170 * 'seq' is even, so the branch is not taken. 171 * 172 * If 'seq' is odd, i.e. a concurrent update is in progress, the extra check 173 * for vdso_data->clock_mode is a non-issue. The task is spin waiting for the 174 * update to finish and for 'seq' to become even anyway. 175 * 176 * Timens page has vdso_data->clock_mode set to VDSO_CLOCKMODE_TIMENS which 177 * enforces the time namespace handling path. 178 */ 179 static void timens_setup_vdso_data(struct vdso_data *vdata, 180 struct time_namespace *ns) 181 { 182 struct timens_offset *offset = vdata->offset; 183 struct timens_offset monotonic = offset_from_ts(ns->offsets.monotonic); 184 struct timens_offset boottime = offset_from_ts(ns->offsets.boottime); 185 186 vdata->seq = 1; 187 vdata->clock_mode = VDSO_CLOCKMODE_TIMENS; 188 offset[CLOCK_MONOTONIC] = monotonic; 189 offset[CLOCK_MONOTONIC_RAW] = monotonic; 190 offset[CLOCK_MONOTONIC_COARSE] = monotonic; 191 offset[CLOCK_BOOTTIME] = boottime; 192 offset[CLOCK_BOOTTIME_ALARM] = boottime; 193 } 194 195 /* 196 * Protects possibly multiple offsets writers racing each other 197 * and tasks entering the namespace. 198 */ 199 static DEFINE_MUTEX(offset_lock); 200 201 static void timens_set_vvar_page(struct task_struct *task, 202 struct time_namespace *ns) 203 { 204 struct vdso_data *vdata; 205 unsigned int i; 206 207 if (ns == &init_time_ns) 208 return; 209 210 /* Fast-path, taken by every task in namespace except the first. */ 211 if (likely(ns->frozen_offsets)) 212 return; 213 214 mutex_lock(&offset_lock); 215 /* Nothing to-do: vvar_page has been already initialized. */ 216 if (ns->frozen_offsets) 217 goto out; 218 219 ns->frozen_offsets = true; 220 vdata = arch_get_vdso_data(page_address(ns->vvar_page)); 221 222 for (i = 0; i < CS_BASES; i++) 223 timens_setup_vdso_data(&vdata[i], ns); 224 225 out: 226 mutex_unlock(&offset_lock); 227 } 228 229 void free_time_ns(struct kref *kref) 230 { 231 struct time_namespace *ns; 232 233 ns = container_of(kref, struct time_namespace, kref); 234 dec_time_namespaces(ns->ucounts); 235 put_user_ns(ns->user_ns); 236 ns_free_inum(&ns->ns); 237 __free_page(ns->vvar_page); 238 kfree(ns); 239 } 240 241 static struct time_namespace *to_time_ns(struct ns_common *ns) 242 { 243 return container_of(ns, struct time_namespace, ns); 244 } 245 246 static struct ns_common *timens_get(struct task_struct *task) 247 { 248 struct time_namespace *ns = NULL; 249 struct nsproxy *nsproxy; 250 251 task_lock(task); 252 nsproxy = task->nsproxy; 253 if (nsproxy) { 254 ns = nsproxy->time_ns; 255 get_time_ns(ns); 256 } 257 task_unlock(task); 258 259 return ns ? &ns->ns : NULL; 260 } 261 262 static struct ns_common *timens_for_children_get(struct task_struct *task) 263 { 264 struct time_namespace *ns = NULL; 265 struct nsproxy *nsproxy; 266 267 task_lock(task); 268 nsproxy = task->nsproxy; 269 if (nsproxy) { 270 ns = nsproxy->time_ns_for_children; 271 get_time_ns(ns); 272 } 273 task_unlock(task); 274 275 return ns ? &ns->ns : NULL; 276 } 277 278 static void timens_put(struct ns_common *ns) 279 { 280 put_time_ns(to_time_ns(ns)); 281 } 282 283 static int timens_install(struct nsset *nsset, struct ns_common *new) 284 { 285 struct nsproxy *nsproxy = nsset->nsproxy; 286 struct time_namespace *ns = to_time_ns(new); 287 int err; 288 289 if (!current_is_single_threaded()) 290 return -EUSERS; 291 292 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN) || 293 !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN)) 294 return -EPERM; 295 296 timens_set_vvar_page(current, ns); 297 298 err = vdso_join_timens(current, ns); 299 if (err) 300 return err; 301 302 get_time_ns(ns); 303 put_time_ns(nsproxy->time_ns); 304 nsproxy->time_ns = ns; 305 306 get_time_ns(ns); 307 put_time_ns(nsproxy->time_ns_for_children); 308 nsproxy->time_ns_for_children = ns; 309 return 0; 310 } 311 312 int timens_on_fork(struct nsproxy *nsproxy, struct task_struct *tsk) 313 { 314 struct ns_common *nsc = &nsproxy->time_ns_for_children->ns; 315 struct time_namespace *ns = to_time_ns(nsc); 316 int err; 317 318 /* create_new_namespaces() already incremented the ref counter */ 319 if (nsproxy->time_ns == nsproxy->time_ns_for_children) 320 return 0; 321 322 timens_set_vvar_page(tsk, ns); 323 324 err = vdso_join_timens(tsk, ns); 325 if (err) 326 return err; 327 328 get_time_ns(ns); 329 put_time_ns(nsproxy->time_ns); 330 nsproxy->time_ns = ns; 331 332 return 0; 333 } 334 335 static struct user_namespace *timens_owner(struct ns_common *ns) 336 { 337 return to_time_ns(ns)->user_ns; 338 } 339 340 static void show_offset(struct seq_file *m, int clockid, struct timespec64 *ts) 341 { 342 char *clock; 343 344 switch (clockid) { 345 case CLOCK_BOOTTIME: 346 clock = "boottime"; 347 break; 348 case CLOCK_MONOTONIC: 349 clock = "monotonic"; 350 break; 351 default: 352 clock = "unknown"; 353 break; 354 } 355 seq_printf(m, "%-10s %10lld %9ld\n", clock, ts->tv_sec, ts->tv_nsec); 356 } 357 358 void proc_timens_show_offsets(struct task_struct *p, struct seq_file *m) 359 { 360 struct ns_common *ns; 361 struct time_namespace *time_ns; 362 363 ns = timens_for_children_get(p); 364 if (!ns) 365 return; 366 time_ns = to_time_ns(ns); 367 368 show_offset(m, CLOCK_MONOTONIC, &time_ns->offsets.monotonic); 369 show_offset(m, CLOCK_BOOTTIME, &time_ns->offsets.boottime); 370 put_time_ns(time_ns); 371 } 372 373 int proc_timens_set_offset(struct file *file, struct task_struct *p, 374 struct proc_timens_offset *offsets, int noffsets) 375 { 376 struct ns_common *ns; 377 struct time_namespace *time_ns; 378 struct timespec64 tp; 379 int i, err; 380 381 ns = timens_for_children_get(p); 382 if (!ns) 383 return -ESRCH; 384 time_ns = to_time_ns(ns); 385 386 if (!file_ns_capable(file, time_ns->user_ns, CAP_SYS_TIME)) { 387 put_time_ns(time_ns); 388 return -EPERM; 389 } 390 391 for (i = 0; i < noffsets; i++) { 392 struct proc_timens_offset *off = &offsets[i]; 393 394 switch (off->clockid) { 395 case CLOCK_MONOTONIC: 396 ktime_get_ts64(&tp); 397 break; 398 case CLOCK_BOOTTIME: 399 ktime_get_boottime_ts64(&tp); 400 break; 401 default: 402 err = -EINVAL; 403 goto out; 404 } 405 406 err = -ERANGE; 407 408 if (off->val.tv_sec > KTIME_SEC_MAX || 409 off->val.tv_sec < -KTIME_SEC_MAX) 410 goto out; 411 412 tp = timespec64_add(tp, off->val); 413 /* 414 * KTIME_SEC_MAX is divided by 2 to be sure that KTIME_MAX is 415 * still unreachable. 416 */ 417 if (tp.tv_sec < 0 || tp.tv_sec > KTIME_SEC_MAX / 2) 418 goto out; 419 } 420 421 mutex_lock(&offset_lock); 422 if (time_ns->frozen_offsets) { 423 err = -EACCES; 424 goto out_unlock; 425 } 426 427 err = 0; 428 /* Don't report errors after this line */ 429 for (i = 0; i < noffsets; i++) { 430 struct proc_timens_offset *off = &offsets[i]; 431 struct timespec64 *offset = NULL; 432 433 switch (off->clockid) { 434 case CLOCK_MONOTONIC: 435 offset = &time_ns->offsets.monotonic; 436 break; 437 case CLOCK_BOOTTIME: 438 offset = &time_ns->offsets.boottime; 439 break; 440 } 441 442 *offset = off->val; 443 } 444 445 out_unlock: 446 mutex_unlock(&offset_lock); 447 out: 448 put_time_ns(time_ns); 449 450 return err; 451 } 452 453 const struct proc_ns_operations timens_operations = { 454 .name = "time", 455 .type = CLONE_NEWTIME, 456 .get = timens_get, 457 .put = timens_put, 458 .install = timens_install, 459 .owner = timens_owner, 460 }; 461 462 const struct proc_ns_operations timens_for_children_operations = { 463 .name = "time_for_children", 464 .real_ns_name = "time", 465 .type = CLONE_NEWTIME, 466 .get = timens_for_children_get, 467 .put = timens_put, 468 .install = timens_install, 469 .owner = timens_owner, 470 }; 471 472 struct time_namespace init_time_ns = { 473 .kref = KREF_INIT(3), 474 .user_ns = &init_user_ns, 475 .ns.inum = PROC_TIME_INIT_INO, 476 .ns.ops = &timens_operations, 477 .frozen_offsets = true, 478 }; 479 480 static int __init time_ns_init(void) 481 { 482 return 0; 483 } 484 subsys_initcall(time_ns_init); 485